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1 Introduction

The economically developed and densely population-rich southeastern part of China

has always been a load center for electricity. However, due to the high population density,

land resources in southeastern China are tight, making it impossible to build large-scale

contiguous ground-mounted photovoltaics (PV) plants as in western China (Fu, 2022a).

Therefore, distributed PV has become the preferred choice in southeastern China.

Combining the characteristics of coastal and wetlands of rivers and lakes, a new

concept of the fishery-solar hybrid system is proposed, which is a new model of

distributed PV combined with the fishery, that is, the photovoltaic panel array is set

up above the water surface of the fish pond, and the water below the photovoltaic panels

can be used for fish and shrimp farming, and the photovoltaic array can also provide good

shading for fish farming (Fu, 2022b). Through the clean, efficient, low-carbon innovation

model, we can improve the added value of land, and also achieve complementary

development between multiple industries. The project is doubly beneficial to achieve

the carbon peaking and carbon neutrality goal and economic development.

Fishery meteorological services play an important role in the production regulation of

fishery. At the same time, fishery weather also affects PV power generation in the fishery-solar

hybrid system. In other words, weather can directly affect the sources and loads of the fishery

energy network, and weather sensitivity of the energy network is inevitable (Fu, 2022a).

Therefore, how to accurately model fishery weather is significant. In general, traditional

methods for generating weather scenarios can usually be divided into three types, which are the

fixed-date method, the shifted-date method, and the bootstrap method (Xie and Hong, 2018).

The fixed-datemethod is to learn the profile of the givenweather data. The shifted-datemethod

is based on the fixed-date method, which shifts the profile of historical weather data forward to

generate weather data with shifted profile features. The bootstrap method is a computational

inference method that relies on the resampling of the dataset. Most of the above methods are

based on probabilistic models, which cannot adequately portray the complex and high-

dimensional characteristics of weather data (Fu et al., 2022). Meanwhile, most of the above
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methods do not consider the correlation between weather variables

(Sun et al., 2020). Compared to probabilistic models, Statistical

Machine Learning (SML) based models are well-controllable and

scalable. Legasa and Gutirrrez (2020) used Bayesian networks to

approximate the probability distribution of observed multivariate

(multi-location) weather data. Fu and Niu (2022) used nonlinear

regression models, seasonal autoregressive models, and Markov

chains to simulate temperature and solar radiation data

respectively. Klemmer et al. (2021) proposed a GAN (Generative

Adversarial Network) based method to generate spatio-temporal

weather scenarios under extreme events. By combining the

interpretability of probability theory with the autonomous

learning capability of machine learning, the above SML method

effectively deals with the simulation of weather data of high

dimensional complexity (Fu et al., 2020), which is of guiding

significance for us to carry out the simulation of fishery weather data.

2 Relationship between weather and
fishery-solar hybrid system

Weather directly affects the sources and loads of the fishery

energy network in the fishery-solar hybrid system. For sources,

temperature and solar radiation can directly affect photovoltaic

power generation. For loads, different meteorological conditions

directly affect the physiological habits of fish. We will elaborate

on both sides in Sections 2.1, Sections 2.2, respectively.

2.1 How weather affects fishery PV

Solar radiation directly affects the magnitude of the output

power of photovoltaic cells, which are the main components of

photovoltaic power generation. In addition, the power output of

the PV cell is directly related to the temperature of the PV cell

itself. Solar radiation and temperature are the direct factors that

affect PV cells, this is because it affects the temperature drift of

PV cells and thus has a great impact on the efficiency of PV

cells.

The above are the direct effects of weather on PV power

generation, but in the context of fishery production, there are

other effects of weather on PV power generation. As the PV

power modules are built on top of the water surface of the fish

pond, the specific heat of water is larger than that of soil, and the

distance between the PVmodules is larger than that of traditional

power stations, which creates good sunlight, cooling, and

ventilation environment for the PV power module

group. Therefore, it is conducive to prolonging the life of the

PV power modules and improving the power generation

efficiency of the PV power modules. However, as PV modules

are always in a hygrometric environment, water vapor will easily

accumulate on the PV modules and will easily erode the PV set,

which will lead to a serious loss of PV power generation. As a

result, we may also increase the maintenance cost of PV modules

in the context of the fishery-solar hybrid system.

2.2 How weather affects electricity
consumption in the fishery industry

Fish are typically poikilothermal animals. Low temperatures

affect the reproduction of fish and even freeze to death. High

temperatures can affect the hatching rate of fish eggs and may also

lead to outbreaks of certain bacterial or viral infectious diseases.

The heat pump is an important piece of equipment to ensure the

constant temperature of the aquatic environment. In recent years,

air-source heat pumps have been commonly used in the fishing

industry because of their energy efficiency and stable operation. An

air-source heat pump is a form of heat pump that uses outdoor air

as the heat source, and the equipment is used to heat up the

aquaculture water through heat exchange with the outdoor air. The

heat pump can control the water temperature in the appropriate

range, thus effectively improving the survival rate and breeding

density, which strongly improves the economic benefits of farmers.

Precipitation can also have a significant impact on fishery

production. Heavy rain may cause a sharp rise in the water level

of ponds, increasing the risk of pond overflow. Continuous heavy

rainfall may also impede convection up and down the water

column, causing illness and even death of fish due to lack of

oxygen. Fishermen need to use pumps to exchange water from

fish ponds with water from rivers, lakes, or reservoirs so that the

water level in fish ponds remains within a reasonable range, thus

coping with the economic impact caused by precipitation.

The oxygen content of the water is one of the main factors

affecting the growth of fish. When the oxygen content of the

water is too low, most of the fish will have slow growth and even

leading to morbidity or death. Therefore, oxygenators have

become essential equipment for aquaculture ponds. The

oxygenator increases the oxygen content of fish pond water by

increasing the contact area between the water and the air that

infiltrates the oxygen from the air into the water. Fishermen need

to deploy oxygenators in time to reduce the impact of low water

oxygen levels on fish growth.

Most of the current fishery equipment is intelligent, capable

of intelligent regulation and intelligent control, thus ensuring the

appropriate environment for fish growth even when the weather

changes. Therefore, guaranteeing a stable power supply plays a

key role in guaranteeing a normal growing water environment

for fish.

3 SML model for weather simulation
of fishery-solar hybrid system

We have introduced the drawbacks of traditional weather

simulation algorithms in the previous section. Most of the
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traditional modeling methods rely on sophisticated probabilistic

analysis, which is highly interpretable but has limitations in the

face of complex and high-dimensional data. Machine learning

algorithms represented by deep learning have powerful

autonomous learning capabilities, the results of weather

simulation are better than traditional probabilistic models, but

internally they can be approximated as a black box model with

poor interpretability. As an integrator of both, SML combines the

advantages and becomes a powerful tool to deal with high-

dimensional complex data and can better handle the

simulation of weather data.

GAN, a generative model that has emerged in recent years,

plays an important role in the simulation of various types of data.

GAN takes full advantage of the feedforward properties of neural

networks to learn the distribution characteristics of the weather

data directly, without explicitly specifying the probability

distribution function as in the case of probabilistic weather

models. Meanwhile, the neural networks in GAN can actively

establish functional relationships for data, effectively solving the

problem of difficulty in modeling multivariate weather data in

traditional probabilistic models. Some variants of GAN can also

be effectively applied in weather simulation. Traditional GAN is

not pre-modeled, and this poses the problem that GAN is

uncontrolled in the process of generating data. Given the

scenarios of fishery-solar hybrid system applications, we may

need some weather data for specific situations, such as

temperature data under high-temperature conditions or solar

radiation data under cloudy conditions. For this application

requirement, we can use Conditional GAN (CGAN) to

simulate weather data by introducing conditional variables in

the modeling of both generators and discriminators. The added

conditional variables can guide the data generation process (Loey

et al., 2020).

For weather data, we also need to design a specific neural

network based on the characteristics of the weather data (Lim

and Zohren, 2021). Weather data are typically time-series data,

and for this feature, we generally use Recurrent Neural Networks

(RNN) or Long Short-Term Memory (LSTM) for modeling.

However, in recent years, a model that has received a lot of

attention in the field of natural language processing has emerged,

namely the transformer. Transformer, like RNN, is a model with

obvious advantages for processing time-series data, but it can

directly obtain the global information of the data, while RNN

requires one layer of recursion to obtain the global information,

which effectively solves the criticism of slow training speed of

RNN (Karita et al., 2019). Given the advantage of the fast-

training speed of the transformer, the transformer can be

increased to a very deep depth, so it can fully exploit the

characteristics of a deep neural network and improve the

realism of weather data simulation.

Table 1 shows some of the traditional probabilistic methods

used for weather simulation and some SML algorithms with

applications. Probabilistic models need to have a rigorous

derivation process for different weather variables, the model

capacity is small, and the numerical features can only capture

local data features, which cannot fully portray the complex high-

dimensional features of weather data. At the same time,

probabilistic methods are also a major problem for modeling

correlations. However, the SML model has a high capacity to

learn the numerical characteristics of the weather more fully, and

the neural network actively establishes relationships between the

weather variables, which have certain advantages in dealing with

TABLE 1 Comparison of weather simulation algorithms.

Classification Algorithm References Advantage Disadvantage

Traditional
algorithm

First-order homogeneous
Markov model

Tseng et al. (2020) Preserve seasonal characteristics of the
variables

Low time resolution

Hidden Markov model Ahn and
Steinschneider, (2019)

Weather type is introduced as a latent variable
and the types fit the data well

Model is simple and cannot reproduce the
complexity of the data

Resampling method Verdin et al. (2018) Multi-variable weather data can be generated Potential changes in extreme weather are
difficult to obtain

Block bootstrap method Zhao et al. (2019) Reproduce the spatial variability of
precipitation

Generated weather scenarios rely on the
data itself and block size

SML algorithm GAN Chan et al. (2021) Direct learning of the distribution
characteristics of the data

Prone to pattern collapse and uncontrolled
process of generating data

Wasserstein GAN Ming et al. (2020) Ensure the diversity of data generated
by GAN.

Conditional GAN Loey et al. (2020) Make the GAN generation process
controllable

RNN Luo et al. (2020) Fully learn the time-series nature of weather
data

Easy to fall into gradient disappearance,
long iteration time

Transformer Liu et al. (2021) Learn global features of time-series data
directly, fast training
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weather data modeling. Therefore, we conclude from the

comparison that SML is the main direction for our future

fishery weather simulation.

4 Conclusion

As a newmodel with complementary advantages, the fishery-

solar hybrid system has natural advantages for development in

areas such as southeastern China where land resources are tight

but aquaculture is well developed. The obvious advantage of the

fishery-solar hybrid system is that it canmake comprehensive use

of land and increase the economic return per unit of land. The

electricity generated by PV can also be used directly for electricity

for the fishery, reducing the cost of aquaculture.

In the context of the fishery-solar hybrid system, weather

conditions become an important factor affecting PV and fishery

production in multiple directions. Therefore, how to model fishery

weather accurately becomes an important issue for modeling and

analysis of the fishery-solar hybrid system.We use the SMLmethod

to solve this problem, which combines the interpretability of

probability theory and the autonomous learning capability of

machine learning to effectively handle the high-dimensional

complexity of weather data. Compared to traditional

probabilistic models, SML can more fully capture the numerical

characteristics of weather data, while generating more diverse data

due to the high model capacity. In addition, we do not need to

perform complex modeling work for correlations because the

neural network actively makes connections between features.

In today’s rapid development of artificial intelligence

technology, SML technology represented by deep learning

continues to push the boundaries, providing more

mindfulness and new methods for weather simulation. At the

same time, as computer hardware continues to be upgraded, we

are able to handle more high-dimensional and large-scale

weather data more easily.
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