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Six hundred and seventy-five measurements of dynamic viscosity and density

have been used to assess the prediction error of the Arrhenius blending rule for

kinematic viscosity of hydrocarbon mixtures. Major trends within the data show

that mixture complexity–binary to hundreds of components—and temperature

are more important determinants of prediction error than differences in

molecular size or hydrogen saturation between the components of the

mixtures. Over the range evaluated, no correlation between prediction error

andmole fractions was observed, suggesting the log of viscosity truly is linear in

mole fraction, as indicated by the Arrhenius blending rule. Mixture complexity

and temperature also impact molar volume and its prediction. However, a linear

regression between the two model errors explains less than 20% of the

observed variation, indicating that mixture viscosity and/or molar volume are

not linear with respect to temperature and/or mixture complexity. Extensive

discussion of the intermolecular forces and the geometric arrangement of

molecules and vacancies in liquids, which ultimately determines its viscosity, is

brought into context with the implicit approximations behind the Arrhenius

blending rule. The complexity of this physics is not compatible with a simple

algebraic correction to the model. However, sufficient data is now available to

determine confidence intervals around the prediction of fuel viscosity based on

its component mole fractions and viscosities. At −40°C, when all identified

components are pure molecules the modeling error is 13.2% of the predicted

(nominal) viscosity times the root mean square of the component mole

fractions.
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1 Introduction

Jet fuel viscosity is a fundamental driver of fuel atomization

during the spray breakup process and thus has a direct impact on

combustion performance (Fraser, 1957; Guildenbecher et al.,

2009). In aviation gas turbine engines, fuel viscosity varies a

great deal due to variations in fuel temperature with engine

operating conditions. At the most severe operating condition,

cold-soak altitude relight, the high altitude drives low operating

pressure, temperature, and air density. The low air density results

in low fuel flow to maintain a fuel-to-air ratio within the

flammability (or ignitability) limits. The fuel temperature at

this condition may be −40°C, or even colder in certain

platforms. This drives fuel viscosity to the highest value it

could experience over the operating range of the onboard

auxiliary power units, which provide reserve power to the

aircraft if the main engine flames out while in flight.

The combination of low fuel flow, low air flow, and high fuel

viscosity creates an environment that is difficult for fuel

atomization. For example, pressure swirl atomizers could fail

to create an open spray cone if the fuel viscosity is too high,

making it unlikely for fuel droplets to be formed and transported

into the path of the plasma where the formation of a flame kernel

is desired (Colket and Heyne, 2021). In certain combustors it

could be that a less severe impact on sprays, such as dampened

primary and secondary breakup would be enough to cross the

boundary between acceptable and unacceptable ignitability.

Recently, Kumar et al. (Kumar et al., 2021) investigated Jet

A-I and alternative aviation fuels and found that higher

viscosity promotes a larger Sauter mean diameter along with a

delayed droplet formation. To ensure satisfactory low

temperature operation, the sustainable aviation fuel

specification (ASTM D7566) calls out maximum allowable

viscosity: 8 cSt at −20°C and 12 cSt at −40°C. (Boehm et al.,

2021a; D02 Committee, 2020). Prediction of viscosity is

important for could-be producers of sustainable aviation fuels

(SAF) because any SAF candidate that exceeds viscosity limits

will not advance to product. Moreover, minimized viscosity,

subject to several other constraints adds value in terms of the

downstream benefits of both finer atomization (Guildenbecher

et al., 2009) and higher heat transfer coefficients (Boehm et al.,

2021b). The ability to predict viscosity, prior to development of

the chemical processes necessary to produce the SAF, affords

substantial savings in both time and money.

The theoretical basis to predict viscosity for pure and mixed

liquids is complex. The treatise by Reid et al. (Reid et al., 1987)

outlines several proposed methods for making viscosity

predictions. Common approaches include group contribution

methods (van Velzen et al., 1972; Bhethanabotla, 1983; Hsu et al.,

2002) and corresponding states methods (Thomas, 1942;

Przedziecki and Sridhar, 1985; Teja and Rice, 1981; Lee and

Wei, 1993). Alas, the reliability of these approaches can be

dubious. Carlson et al. (Carlson et al., 2022) provided a

comparison of the predictive performance of the

aforementioned models based on average absolute deviation

and developed a molecular dynamics force field

parameterization for simultaneous density and viscosity

predictions. They demonstrated viscosity prediction of better

than 10% across a wide temperature range for the pure molecules

they considered. Other molecular dynamics simulations

(Mondello and Grest, 1998; Galliéro et al., 2005; Maginn

et al., 2019) have been developed for pure molecules and

simple mixtures, but application of such models to mixtures

with many components, or many mixtures with few components,

is impractical.

Predictive viscosity models involving machine learning have

been developed for biofuel compounds using trained data from

the DIPPR database (Alonso Saldana et al., 2012), two-

dimensional gas chromatography (Hall et al., 2021), as well as

using combined neural networks along with semi-theoretical

models (Hosseini et al., 2019). Numerous authors have

evaluated the predictive powers of spectroscopic and

chromatographic data with purely empirical models for a

variety of fuel properties, including viscosity (Johnson et al.,

2006; Cramer et al., 2014), and Vozka et al. (Vozka and Kilaz,

2020) recently provided a thorough review of chemical

composition-property relations for aviation fuels. The range of

prediction standard error reported in these works was

0.027–2.19 cSt and the size of training databases was

34 samples to more than 800 samples.

For simple or complex mixtures blending rules can be used to

make viscosity predictions provided viscosity data is available for

the constituent liquids. Several algebraic blending rules to predict

the viscosity of mixtures based on their components’ properties

have been developed, but quantification of systematic and

random error of blending rules is rarely discussed in detail

(Centeno et al., 2011; Hauck et al., 2020; Hernández et al.,

2021). Recently Hernandez et al. (Hernández et al., 2021)

compared 30 different blending rules for petroleum-based

fuels using 303 experiment data from biodiesel and petrol-

diesel binary blends. Nine of the 30 blending rules showed a

relative standard error below 5%. This set included the Arrhenius

blending rule (Arrhenius, 1887) which has been tested in other

recent comparison studies (Barabás and Todoruţ, 2011; Centeno

et al., 2011; Kanaveli et al., 2017) as well, showing similar

predictive performance. In this work, the Arrhenius blending

rule is used for its accuracy and ease of implementation. The

blending rule is evaluated against 675 experimentally measured

data points relevant to jet fuels and its error is statistically

quantified. Additionally, the physical origin of its error

discussed. In contrast to our previous work (Yang et al.,

2021), in this work the viscosity of every component

represented by the blending rule is known by measurement.

Previously published evaluations (Barabás and Todoruţ, 2011;

Centeno et al., 2011; Kanaveli et al., 2017; Hernández et al., 2021)

focused on high-viscosity crude oils or oxygenated fuels with
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significant property differences relative to jet fuels and the full

range of molecules that may be present in jet fuel.

The remainder of this paper is divided into five sections. First,

an overview of the fundamental physics governing viscosity is

provided. Second, the materials chosen for the experiments are

described along with the motivation behind these selections.

Next, the details of the measurements are given followed by

results of this study. Lastly, the key finding of the study are

summarized.

2 Theory

At its root, the viscosity of fluids is determined by the

movements of molecules within a force field that is determined

by the instantaneous spatial arrangement of molecules and their

intermolecular interactions. As such, it is constructive to highlight

particularly significant structures, their corresponding force field,

what they mean to viscosity and how those structures and

corresponding force fields are influenced by mixing. The goal

here is not to re-hash content that can be found in other sources

dating back to Eyring (Eyring, 1936) or Jones (Jones, 1924) and as

recently as Gaudin and Ma (Gaudin and Ma, 2020). Rather, we

highlight the implicit approximation of the Arrhenius blending rule

(Arrhenius, 1887) in terms of the most important fundamental

drivers of viscosity and root causes of the observed modelling errors.

Within liquids, only molecules that happen to be adjacent to a

vacancy have an opportunity to migrate from one lattice site to an

adjacent lattice site.Moreover, the fluidity of liquids is principally the

result of vacanciesmigrating in a direction that is counter to the flow

(or deformation) of the liquid.

This discussion revolves around nearest neighboring

molecules and the interactions between them. Several terms

that may not be familiar to everyone are used throughout the

discussion and are narrowly defined the supporting material,

including: nearest neighbor, vacancy, relaxed state, perturbed

state, molecular-scale-mixing, and cluster-scale-mixing.

Additionally, ideal solution and the Arrhenius blending rule

for viscosity are stated here for convenience.

An ideal solution is a mixture whose molar volume adheres

to Eq. 1, where xi is the mole fraction of the ith component, Vmix

is the molar volume of the mixture and Vi is the molar volume of

the ith component.

Vmix � ∑
i
xi*Vi (1)

The Arrhenius blending rule is defined by Eq. 2, where μ is

the kinematic viscosity and x and the subscripts are as previously

defined.

ln μmix( ) ≈ ∑
i
xi* ln μi( ) (2)

A model packing arrangement, cubic close pack (ccp) is

employed to facilitate the discussion of the force field created by

the electronic interactions between molecules. The balance

between attractive and repulsive forces is called the interaction

potential energy, an example of which is shown in Figure 1. A

notional depiction of the distance between a homogeneous pair

of molecules in the relaxed and perturbed states of both the pure

material and a mixture is spotted onto the curve to further the

discussion. The notional point corresponding to the relaxed state

of the pure liquid was deliberately placed a little past the

minimum of the 2-body potential energy curve because the

distance between molecules in a condensed phase is typically

greater than it would be in gas-phase dimers. The notional point

corresponding to the relaxed state of the mixed liquid is depicted

further out than that of the un-mixed liquid because volume

usually increases when two spheres of different diameter are

mixed on a molecular scale. The notional point corresponding to

the perturbed state of the pure liquid was arbitrarily placed at a

distance significantly shorter than that of the relaxed state

because it is necessary for the migrating molecule to push into

some adjacent molecules to hop between lattice sites. The

notional point corresponding to the perturbed state of the

mixed liquid is the subject of interest.

The difference in the potential energy between the perturbed

and relaxed configurations is symbolized as the difference in energy

between the respective notional points corresponding to these states.

As Jones (Jones, 1924) observed 100 years ago, the viscosity of a

liquid scales exponentially with this energy difference and Eyring

(Eyring, 1936) soon thereafter expressed this relationship in terms of

transition state rate theory. Eq. 3 describes this relationship, where

ΔE is an integrated average of many terms like the one described

above, k is Boltzmann’s constant, T is temperature and C is a

proportionality constant. By substituting Eq. 3 into Eq. 2, the

Arrhenius blending rule for viscosity can be recast as Eq. 4.

FIGURE 1
Lennard-Jones curve with four points highlighted,
representing a snapshot of the effective distance between
neighbors in both the relaxed and perturbed states of a mixture
and a pure molecule.
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μ � C*ex p ΔE/kT( ) (3)
ΔEmix≈ ∑

i
xi* ΔEi (4)

As this discussion focuses on one representative set of

structures the accent (representing average) is heretofore

removed. The objective, re-stated, is to understand

conceptually how mixing influences the accuracy of Eq. 4. It

is worth noting however that the temperature dependence

implied by Eq. 3 is significantly simpler than a variety of

empirically derived relationships (Sloane and Winning, 1931;

Link and de Klerk, 2022) that are more accurate over a limited

temperature range, which implies that ΔE is also temperature

dependent.

The total potential energy of the system at any instant in time

(V(t)) is expressed by Eq. 5, where the summation runs over all

molecules in the system. Vmn is a 2-body interaction potential

where the subscripts refer to the identity of the molecules rather

than specific molecules, and rij is the instantaneous distance

between the pair of molecules, i and j. To make this expression

solvable, logic must be included to match the appropriate

pairwise potential with the identity of the ith and jth

molecules and to shed terms (beyond some threshold

distance) that are negligible.

V t( ) � ∑
i
∑

j< i Vmn rij( ) (5)

The model employed for this discussion affords significant

simplification to Eq. 5. Two instants in time are considered. One

corresponds to a spatial arrangement of molecules within the

control volume that matches the relaxed state and the other

instant corresponds to a spatial arrangement that matches the

perturbed state. The only terms inside the sum that are different

between these two instances, to first order, are those involving the

migrating molecule.

In the relaxed state there are 11 such terms, each attractive

with a contribution to the total energy that is approximately

equal to the minimum in its 2-body potential energy curve (ε).

In the perturbed state, there are 18 such terms including six

different values. In each case, where rij of the perturbed state is

higher than the lattice spacing, their sum is less exothermic

than they are in relaxed state, ε or 2ε depending on whether

there are two or four such terms. While these terms are

significant, it is the two pairs of points with rij less than

the lattice spacing that contribute the most to ΔEi. Our goal

therefore is to understand how mixing may impact, especially

these two pairs of terms.

Consider next the importance of the size of the sphere,

before considering a mixed system. Assuming the same

proportionality of vacancies and molecules as a smaller

lattice and the same dative bond strength of the larger and

smaller molecules, the system of larger molecules will have

higher viscosity primarily because the encroachment distance

(ren) scales linearly with the lattice spacing (DL) and the

repulsive forces between molecules increases sharply as ren
increases.

ren � 1 − cos 30( )( )*DL (6)

Analogous to reaction rate theory, the molecular hops that

accompany vacancy migrations will preferentially follow the path

of least resistance. Along this path the smallest molecule in the

control volumemakes the hop. Intuitively, ΔEmix should be lower

than mole-fraction-weighted sum of ΔEi, contrary to Eq. 4.

Indeed, a bias toward over-predicted values should be

expected from the Arrhenius blending rule. The data,

however, do not show this to be true. In the next few

paragraphs, the impact of molecular-scale and cluster-scale

mixing, respectively are considered on ΔEmix, Vmix, the freeze

point of a mixture and the enthalpy of mixing.

Figure 2 illustrates one possible arrangement of a 50/50%mol

mixture of a large and a small spherical molecule, mixed on a

molecular scale. Both the relaxed and the perturbed states are

shown, for effect, with no local distortion of the ccp lattice. None

of the homogeneous, nearest neighbor interactions in the relaxed

state are located close to the minimum of their respective 2-body

potential energy curve. To second order, not shown, some

FIGURE 2
Molecular scale mixing of molecules within a ccp lattice of
spacing equal toDn/1.5. Three layers consisting of 5, 10, or 5 lattice
vertices are shown (upper panel) One of the two interior vertices of
the control volume is vacant (red circle) while the other is
occupied by the smaller (green circle) of two molecules. Each of
the remaining vertices is filled at random (50/50) with a smaller or
larger (blue circle) molecule (lower panel) Much like the upper
panel except the interior molecule is shifted by ½ the lattice
spacing toward the vacancy. Endothermic changes (bottom view
to top view) are denoted with black borders. Exothermic changes
are denoted by red or gold borders. The solid borders represent
the four interaction terms that are most important to viscosity. The
dashed borders represent terms that are small in the perturbed
state.
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distortion of a ccp lattice symmetry would occur, bringing some

of the adjacent, smaller molecules closer together and some of the

adjacent, larger molecules further apart. However, such a ripple

effect would not be large relative to the salient point. If mixed on

a molecular scale the potential energy of the relaxed state would

be significantly higher than the mole-fraction-weighted sum of

the components’ relaxed-state potential energies. The same

cannot be said regarding the perturbed state. The salient point

can be made by focusing on the four closest neighbors to the

migrating molecule in the perturbed state. Even to first order, two

of the corresponding terms in the potential energy sum (Eq. 5)

are exothermic as the migrating, small molecule approaches a

distance relative to two other small molecules (in this example)

that is closer to the minimum of the relevant 2-body potential

energy curve than any of the homogeneous terms of for the

relaxed state. These two molecules are called out in Figure 2 by a

solid gold border. Moreover, the encroachment distance relevant

to the other two molecules in this quartet is not any larger than

the corresponding distance in a purely homogeneous liquid. If

mixed on a molecular scale, the potential energy of the perturbed

state would be significantly lower than the mole-fraction-

weighted sum of the components’ perturbed-state potential

energies. Therefore, ΔEmix would be significantly lower than

the mole-fraction-weighted sum of ΔEi, and the viscosity of the

mixture would be significantly lower than predicted by the

Arrhenius blending rule, contrary to empirical evidence.

Returning now to the relaxed state, measured heats of mixing

(Lundberg, 1964) do tend to be endothermic (~0.03 kJ/mol) but

significantly smaller than a typical dative bond strength (~3 kJ/

mol). This is interesting because, theoretically, forcing large and

small molecules into the same control volume within a ccp

packing arrangement causes several of the dative bonds to be

significantly stretched or compressed. Breaking the symmetry of

the model system and allowing its molar volume to exceed that of

an ideal solution, the modeled endothermicity would move closer

to measured values, but this would come at the expense of

overpredicting the molar volume of the mixture. A convenient

hypothesis to mitigate these conflicts is to mix on cluster scale

rather than a molecular scale. Another model hypothesis that

could match the observed viscosity, molar volume, and heat of

solution is one that would decrease the concentration of

vacancies in the mixed state relative to the unmixed

components. However, this hypothesis does not explain freeze

point observations. The freeze point of a mixture depends almost

entirely on the thermal properties of the highest-freeze-point

component and its mole fraction (Boehm et al., 2022), and a high

degree of separation occurs as a result of the phase change.

The homogeneous clusters within liquid mixtures

theoretically contain enough molecules such that the number

of relevant (e.g., nearest neighbors) heterogeneous terms in Eq. 5

is small relative to the number of relevant homogeneous terms.

Within each cluster the local molar volume and rate of vacancy

migration (aka viscosity) is theoretically the same as it is in the

respective pure component. The entropy of the model mixture

varies according to random variation in cluster size. It also varies

with the ratio between cluster and boundary volumes because the

boundaries necessarily contain a considerable number of

heterogeneous, intermolecular interactions. A symbolic

representation of possible cluster size distributions is provided

in Figure 3. As temperature increases, entropy becomes more

important, driving smaller mean cluster size relative to the

boundaries between clusters, a wider distribution of cluster

sizes (relative to the mean) and a higher concentration of

vacancies.

The concentration of vacancies within the boundary regions

is not known, which is especially important because the error in

Eqs 1, 2 (ideal solution and Arrhenius blending rule) originate

there. Theoretically, the rate of vacancy migration through the

boundary region will preferentially follow the path of least

resistance, which usually will involve the hop of a smaller

molecule to an adjacent, vacant lattice site. The total potential

energy of the relaxed state remains higher than the mole-

fraction-weighted sum of the components’ potential energies

even though structural distortions within the boundary

regions lead to higher molar volume. Moreover, the total

potential energy of the perturbed state remains lower than the

mole-fraction-weighted sum of the components’ potential

energies. In this respect, a correlation between higher-than-

predicted molar volume and lower-than-predicted viscosity is

expected (in a prevailing sense, not absolute), even within the

FIGURE 3
Possible arrangements of molecular clusters within the liquid
phase. Orange represents one molecular species and green
represents another molecular species. The blue lines represent
boundaries between different clusters of molecules and are
mixed at a molecular scale. (A) Large cluster sizes, enthalpy-
controlled packing arrangement. (B) Small cluster sizes, entropy-
controlled packing arrangement. In the top views, clusters of
comparable size are distributed uniformly throughout the liquid
phase. In the bottom views, clusters of variable size are distributed
throughout the liquid.
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cluster-mixing scheme. To get higher viscosity, a tighter-than-

predicted packing arrangement is necessary. A convenient

explanation for this would be a reduction in vacancies with

mixing, which would tend to offset the entropy gained by chaotic

placement of dissimilar molecules.

Of course, not all liquids have a molecular structure that is

fundamentally close pack (ccp or hcp). For some molecules, it is

exothermic relative to a close pack arrangement to bring some of the

(12) nearest neighbors closer to the central atom. In these instances,

the viscosity of the purematerial would likely be lower than it would

be if the ccp lattice packing arrangement were to be forced because

the actual vacancy migration will preferentially follow the path of

least resistance. This path would involve a perturbed state where

distances between the traveling molecule and its four closest

neighbors would be greater (closer to the minimum in the curve)

than they would be in a ccp lattice. When such a material is mixed

with some other material, the resulting lattice packing arrangement,

particularly in the boundary region could be tighter than the pure

material. This would explain lower-than-predicted molar volume,

but the impact of such changes in the fundamental packing

arrangement on the viscosity of the mixture is not clear. In this

sense, the correlation between molar volume prediction error and

viscosity prediction error should not be expected to fully explain the

viscosity prediction error.

For mixtures involving components with a large difference in

molar volume, it is possible for some or all the smaller molecules in

the relaxed state to be positioned within the interstitial cavities of the

packing arrangement of the larger molecules. The molar volume of

such a mixture would be less than predicted by the ideal solution

approximation. Its viscosity would be heavily influenced by

heterogeneous interactions. The potential energy of the relaxed

state could be exothermic relative to the separated liquids if the

two-body heterogeneous potential energy curve has a deeper well

than that of the two-body potential energy curve of the smaller

component. In the perturbed state, the smaller, traveling molecule

would have pushed into four larger molecules as it hopped from one

interstitial site to another. Such a scenario is however unlikely for

any binary pair of molecules within the jet fuel volatility range and

extremely unlikely for complex mixtures such as jet fuel.

None of the neglects of potentially important structural

difference between reality and the model system (mixture-

driven change in fundamental packing arrangement, mixture-

driven change in vacancy concentration, or local geometric

distortion) are expected to create a linear correlation between

viscosity and molar volume prediction errors. Nevertheless, we

tried to improve/tailor the Arrhenius blending rule for our

application by linearly regressing its error with molar volume

differences amongst the components and molar volume

prediction error. No improvement was found. Potential

correlations between viscosity prediction error and the depth

of the two-body potential energy curves were also explored by

varying the fraction of aromatic hydrocarbons relative to

saturated hydrocarbons. No such correlation was found.

The number of different molecules within the mixture may or

may not impact the size distribution of homogeneous clusters, but

the boundaries between clusters will be infused with a variety of

distinct species. This provides for higher entropy with a potential

impact on vacancy concentration. That issue aside, vacancy

migrations through the boundary regions will preferentially

follow the path of least resistance. This path involves migration

of the smallest molecule from one lattice site to an adjacent lattice

site that is vacant. Along the path of least resistance, the (usually 4)

encroachment distances that matter most to the net endothermicity

of the perturbed state can be driven to higher or lower values by

infusing the lattice with other molecules that impact the lattice

spacings. However, the main effect on the potential energy of the

perturbed state is the fraction of these four terms that involve the

largest molecule in the control volume. The potential energy of the

relaxed state is also principally determined by the fraction of

pairwise interactions that are compressed relative to the

minimum of two-body potential energy curve.

The difference between (say) a four-component mixture and

the mole-faction-weighted sum of two binary mixtures is not

expected to be as large as the difference between a binary mixture

and the mole-fraction-weighted sum of two pure components for

several reasons. A complex mixture of simple mixtures is more

likely to have the same fundamental packing arrangement as each

of its component mixtures. The potential energy of the relaxed

state of the complex mixture is expected to be much closer to the

mole-fraction-weighted sum of its component, simple mixtures

than it would be to the mole-fraction-weighted sum of its pure

components. Likewise, the potential energy of the perturbed

stated of a complex mixture is expected to be more like the

perturbed state of simple mixtures than the perturbed state of

pure components. The change in entropy resulting from a change

in vacancy concentration within the boundary region is largest in

systems that have the most order and smallest in the most chaotic

systems. To evaluate these points in this work, mixtures of

varying complexity were made and the inputs to Eqs 1, 2

were taken from direct measurement of the properties of each

of two components whether those components were pure or

themselves a mixtures of different molecules.

As evidenced by the increase of molar volume with

temperature exhibited by most if not all liquids, vacancy

concentration increases with temperature. The probability that

a central molecule will be adjacent to a vacancy goes up

proportionally so naturally the rate of vacancy migrations

goes up and the corresponding viscosity goes down. The

probability of a vacancy being one of the (usually four) closest

neighbors to the central (traveling) molecule of the perturbed

state also goes up. Therefore, temperature also impacts the

endothermicity of the perturbed state and ΔE. To second

order the impact of higher vacancy concentration is

manifested via an increased probability that a neighboring

lattice site to any of the (usually) four nearest neighbors to

the central molecule of the perturbed state will be vacant. A
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vacancy at any of those locations facilitates local geometric

distortion of the perturbed state, thereby reducing its

endothermicity and further reducing ΔE.
For mixtures, the impact of increasing vacancy concentration

on viscosity andmolar volume is more complicated. For a control

volume within a boundary region, the higher vacancy

concentration affords more room for geometric distortions

that drive down the potential energy of the relaxed state.

Analogous to pure components, the potential energy of the

perturbed state of the mixed system is also expected to

decrease, but the magnitude of this decrease is hard to

predict. Overall, the effect on increasing vacancy

concentration, via increasing temperature, is expected to

impact ΔEmix differently than ΔEi. In this work temperature

is varied to investigate these impacts.

3 Experimental

3.1 Controlled variables

Vacancy concentration: Measurements of each mixture and

its blend components were taken at five different temperatures

from −40°C to +15°C. The two lower

temperatures, −40 and −20°C were motivated by industry

requirements (D02 Committee, 2020) and the higher

temperatures were selected to further investigate this derivative.

Strength of dative bond: Mixtures involving varying amounts

of aromatic species were created for this investigation. The

impact of this variation was monitored by tracking viscosity

prediction error with the mixing-driven change in the fraction of

heterogeneous terms that involve one aromatic hydrocarbon and

one saturated hydrocarbon.

Lattice packing mismatch: Fifteen different molecules with

molar volumes at −20°C ranging from 108.6 to 279.1 cm3/mol

served as a base stock for 45 different binary mixtures and

36 different trinary mixtures. The impact of this variation was

monitored by tracking viscosity prediction error with a plurality

of simple algebraic combinations of the components molar volume

and mole fraction. The lists of materials are provided in Tables 1, 2.

The reported molar volumes at −20°C are from this work, while the

reported phase transition temperatures are from one or more of the

on-line data sources; PubChem, ChemSpider or NIST WebBook.

The complete list of mixtures considered, including volume fraction

of each component is provided in the supportingmaterial alongwith

measured density and viscosity data.

TABLE 1 List of pure materials used as stock for the mixtures investigated.

Molecule name Supplier Purity �V@-20°C cm3/mol Normal melting point, °C Normal boiling point, °C

n-pentane Sigma-Aldrich >99% 108.6 −202 36

o-xylene TCI >98% 116.6 −25 144

Ethylbenzene Honeywell >99% 117.5 −139 136

m-xylene TCI >99% 118.2 −48 139

Methylcyclohexane Sigma-Aldrich 99% 122.2 −127 101

n-hexane Sigma-Aldrich >99% 124.0 −95 69

2,3-dimethylpentane TCI >90% 137.5 −124 90

Ethylcyclohexane Sigma-Aldrich >99% 138.2 −111 132

2,4-dimethylpentane TCI >99% 141.5 −120 81

2-methylpentane Sigma-Aldrich >95% 147.3 −153 60

trans-decalin TCI >98% 155.2 −32 187

n-octane Acros Organics >99% 155.5 −70 126

iso-octane Sigma-Aldrich >99% 157.7 −107 99

Butylcyclohexane Alfa Aesar 99% 169.1 −75 181

Hexylbenzene Alfa Aesar 98% 182.7 −61 226

Heptylbenzene TCI >97% 198.6 −48 240

2,2,4,6,6-pentamethylheptane TCI >98% 220.0 −67 178

Iso-cetane Aldrich 98% 279.1 <−80a 240

aThe melting temperature of iso-cetane determined in our lab is less than the device limit of −80°C. This table includes three components used in type C mixtures and fifteen components

used to make binary and tertiary mixtures.
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Mixture complexity: Four types of pseudo-binary mixtures

were used to investigate the role of mixture complexity on

viscosity prediction error. Each mixture (the left side of Eqs 1,

2 was comprised of two components (the right side of Eqs 1, 2,

which themselves varied in complexity. A specific description of

the four types of mixtures is provided in Table 3.

3.2 Materials and mixtures

Table 4 provides a listing each type A mixture pair. The

molar volume mismatch between the respective pairs of pure

molecules varies from 1.8 cm3/mol to 156.9 cm3/mol. Nine of the

mixtures involve only saturated hydrocarbons, two involve only

aromatic hydrocarbons, and eight involve one of each.

Type B mixture pairs are listed in Table 5. The molar volume

differences between the pure component and the average of the

mixture component varies from 4.0 cm3/mol to 88.4 cm3/mol.

Three of these mixtures involve saturated hydrocarbons

exclusively, while a variety of aromatic/saturated blend

fractions were sampled by the other mixtures.

Table 6 includes a listing of each type C and type D mixture.

While the aromatic content varies significantly in these mixtures,

this variety was used to reinforce or repudiate trends derived

from the type B mixtures rather than elucidate any new trends.

The type D mixtures represent a statistically significant range of

the types of mixtures that may result from the blending of

sustainable alternative fuel (SAF) components with other jet

fuels. Molar volume difference between the two components

of these blends varies between 0.1 cm3/mol (0% relative

difference, %RD) and 48.8 cm3/mol (23.5%RD).

Six milliliters of each mixture were prepared using a set

(0.5–5.0 ml) of volumetric pipettes, accurate to within 0.39%, to

transfer the chemicals using standard laboratory procedures.

Mixtures were swirled in a small beaker or vial for 1 minute

prior to injecting 4 mL into the viscometer at room temperature.

Viscosity and density measurements were taken at each

temperature while chilling at a rate of 3.5 per minute, starting

at 15°C and working down to −40°C.

3.3 Viscosity and density measurement
details

The Anton Paar Kinematic Viscometer, SVM 3001 was used

to measure both viscosity and density. This viscometer is a

Stabinger viscometer which uses the Couette method to

determine the torque necessary to overcome the viscous forces

of the sample. That measured torque, M was used to calculate the

shear stress (τ) as described in Eq. 7 where L and Rb are the length

and radius of the bob, respectively. The shear rate ( _γ) can be

calculated using Eq. 8, where Rc is the radius of the container and

ω is the angular velocity. The kinematic viscosity equals the shear

stress divided by the shear rate and density (ρ), as given by Eq. 9.

τ � M / 2*π*R2
b*L( ) (7)

_γ � 2*ω*R2
c/ R2

c − R2
b( ) (8)

μ � τ/ ρ* _γ( ) (9)

TABLE 2 List of complex mixtures (fuels) as stock for the mixtures investigated. The supplier of each of these fuels and data was the air force research
laboratory, Fuels Branch (Edwards, 2017; Altjetfuels, 2021).

Sample label Comment Aromatics percent, %V

A-1 good case petroleum jet fuel 12

A-2 nominal petroleum jet fuel 16

A-3 bad case petroleum jet fuel 18

C-1 Gevo ATJ <1

C-3 high viscosity blend 12

C-7 high cycloalkanes blend 4

C-8 high aromatic blend 25

C-9 high derived cetane number blend <1

POSF12945 derived cetane number control fuel 5

HRJ UOP HRJ Camelina <1

TABLE 3 Definition of mixture complexity types.

Type Component A Component B

A Pure molecule Pure molecule

B Pure molecule 50/50%V mixture of two molecules

C Pure molecule Complex mixture

D Complex mixture Complex mixture
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The manufacturer-quoted, viscosity repeatability of this device is

0.1% over a range of 0.2–30,000 cSt. Its temperature range is −60°C to

+135°C with a repeatability of 0.005°C and a reproducibility of 0.03°C

from 15–100°C and 0.05°C for temperatures outside that range. Its

density measurement repeatability is 0.00005 g/cm3 from 0.6 to 3.0 g/

cm3.However, the repeatability and reproducibility for similar types of

devices, reported in ASTM D7042 (D02.07 Subcommittee, 2021) is

significantly different from this quote. There, it is suggested that for jet

fuels at −40°C the viscosity repeatability and reproducibility are 0.53%

and 2.1% respectively, and the density repeatability and

reproducibility are 0.197% and 0.203% respectively. Our own

assessment of repeatability, using a small sub-set of the mixtures

studied here and including mixture preparation repetition was found

to be 0.26% and 3.2% for density and viscosity, respectively. Most of

this variation is believed to be the result of mixture preparation

variation, particularly mixtures involving solvents with very low

surface tension and high vapor pressure at room temperature.

For this study, viscosity and density were collected at fluid

temperatures of 15, 0, −10, −20, and −40°C. At each temperature

increment, viscosity and densitymeasurements were recorded over a

narrower range of temperatures. For example, at 15°C, the viscosity

and density were measured over a temperature range of

14.999°C–15.001°C.

From start to finish, the test campaign extended over a

period of several months, but data collections pertaining to

any given series was completed within weeks. All data

pertaining to type D mixtures and about 2/3rds of the data

pertaining to type A mixtures were collected under one

calibration of the device while the remainder was collected

under another calibration. None of the series identified in

section 3.2 included mixed-calibration data. The SVM

3001 viscometer calibration is performed annually with a

manufacturer technician on site. For temperature

calibration, Anton Paar MKT 10 is used to establish the

reference data vector. For viscosity and density calibration,

a manufacturer-certified, standard oil is used to establish the

reference data. In-between the annual calibrations of the

device, the drift in viscosity and density measurement is

determined by our lab to be less than 1%.

While measurement uncertainty was low, it is further

noted here that systematic measurement error that is

correctable by a constant scale factor would have no

bearing on the blending rule error quantification.

Moreover, systematic error that is correctable by a constant

off-set value would affect the apparent modeling error by

approximately 1% of the off-set value. However, unidentified

systematic error that varies with torque or angular velocity

could potentially impact the blending rule error quantification

significantly. The current viscosity measurements at low

temperature (−40°C–15°C) were therefore compared with

twelve other recent measurements, as provided in the

supporting material. Seven of our measured values are

lower than those reported in the literature and five are

higher. The standard deviation of the relative error across

the fundamentally different measurement approaches was

8.8%. Such variation provides motivation to use,

exclusively, data from the same laboratory to evaluate the

accuracy of any blending rule for viscosity.

4 Results

All viscosity and density measurements were taken at

ambient pressure and are provided within the supporting

information of this manuscript. The prediction error, defined

by Eq. 10, was regressed against several independent variables

based on the concepts introduced in the theory section of this

manuscript. A set of multilinear regressions were executed

30 times; once for each temperature and mixture type

(20 sets), once with each mixture type with all temperature

data pooled (4 sets), once for each temperature with all

mixture types pooled (5 sets) and once with all data pooled

together (1 set).

Err ≡ μpred/μmeas − 1( ) ≈ ln μpred
−ln μmeas ≈ ΔEmeas − ΔEpred( )/RT (10)

TABLE 4 Components of type A, binary mixtures.

Series Component A Component B

A Methylcyclohexane Iso-cetane

B Methylcyclohexane Hexylbenzene

C Hexylbenzene Iso-cetane

D 2,3 Dimethylpentane 2,4 Dimethylpentane

E n-Hexane n-Octane

F m-Xylene o-Xylene

G Methylcyclohexane Iso-octane

H Butylcyclohexane Heptylbenzene

I Ethylbenzene Heptylbenzene

J Ethylbenzene Butylcyclohexane

K Pentamethylheptane Iso-octane

L Pentamethylheptane Ethylbenzene

M Iso-octane Ethylbenzene

N Iso-octane Heptylbenzene

O Pentane Heptylbenzene

P Pentane Iso-octane

Q Pentane Butylcyclohexane

R Pentane Pentamethylheptane

S Butylcyclohexane Pentamethylheptane
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A unity plot of the predictions relative to the

measurements is shown in Figure 4. This plot shows that

the prediction error does not correlate with viscosity

magnitude and the Arrhenius blending rule captures 99.7%

(R2) of the variation in the measured data, on a log scale. The

regressed line through all data, pooled together has a slope of

TABLE 5 Components of type B, tertiary mixtures.

Series Component A Aromatics percent, %V Component Ba Aromatics percent, %V

A Ethylbenzene 100 A.h 50

B Butylcyclohexane 0 A.i 100

C Heptylbenzene 100 A.j 50

D Ethylbenzene 100 A.k 0

E Iso-octane 0 A.l 50

F Pentamethylheptane 0 A.m 50

G Pentane 0 A.n 50

H Iso-octane 0 A.o 50

I Heptylbenzene 100 A.p 0

J Pentane 0 A.s 0

K Butylcyclohexane 0 A.r 0

L Pentamethylheptane 0 A.q 0

aThese components are 50/50%V blends of binary mixtures whose components are identified by series in Table 4.

TABLE 6 Components of types C and D mixtures.

Type Series Component A Component Ba

C a 2-Methylpentane A-1

C b Ethylcyclohexane A-1

C c 2-Methylpentane A-3

C d Ethylcyclohexane A-3

C e Trans decalin C-9

D a C-1 C-8

D b C-1 POSF12945

D c C-8 POSF12945

D d C-1 D.c 50/50%v

D e C-8 D.b 50/50%v

D f POSF12945 D.a 50/50%v

D g C-3 C-7

D h C-3 A-2

D i C-7 A-2

D J C-3 D.i 50/50%v

D K C-7 D.h 50/50%v

D L A-2 D.g 50/50%v

aSome of these components are themselves 50/50 %V mixtures of other materials which are also defined, by type and series, in this table.
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0.990 with zero intercept. Another characteristic, evident in

this plot is that data scatter decreases as mixture complexity

increases, which is discussed further in the remainder of this

section.

While several of these data subsets exhibited qualitatively

similar correlations between prediction error and a variety of

independent variables, few correlations persisted in all

subgroups with similar magnitude and sign. For example,

the molar volume difference between the mixture and its

components, as two independent variables, are correlated

with viscosity prediction error within all subgroups, having

a probability of no correlation (p-value) less than 0.01.

However, the magnitude and even the sign of the

correlation coefficient changes from subgroup to

subgroup. When all data are pooled together, only 1 molar

volume difference term remains statistically significant. That

one variable can be any of several algebraic combinations of

the three relevant molar volumes and the two relevant mole

fractions. The viscosity prediction error was also found to

correlate with molar volume prediction error in most of the

considered datasets and their respective correlation

coefficients are also inconsistent across datasets. The molar

volume prediction error is defined as the ratio of the predicted

and measured values minutes one. The measured molar

volume is the calculated molecular weight divided by the

measured density and the predicted molar volume is the

result of the ideal solution approximation, taking the

measured components’ molar volume as input. The

difference in aromatics concentration between the

components was not found to correlate with viscosity

prediction error.

The mixture complexity, its temperature and the molar

volume prediction error are the most important indicators of

viscosity prediction error. The temperature influence is not large,

but its sign and approximate magnitude are consistent across all

types of mixtures studied regardless of other independent

variables considered, as summarized in Figure 5. The mean

viscosity prediction error decreases non-linearly from a high

of 1.68% at −40°C to a low of −0.13% at 15°C when data from all

four types of mixtures are pooled. Its standard deviation also

decreases as temperature increases. The decreasing mean error

with increasing temperature suggests that the mixing has less

effect on ΔEmix as the concentration of vacancies increases.

The mean prediction error increases with mixture

complexity while the variation in that error decreases

substantially. This is partially consistent with the theory which

asserts that the potential energy of terms like Vbb(r min) in ABC

mixtures will be closer to the value it has in BC mixtures,

FIGURE 4
Unity plot. The reference viscosity is 1 cSt.

FIGURE 5
Measures of viscosity prediction error across differing
mixture complexity and temperature. Mean error (ME), mean
absolute error (MAE), standard deviation (StDev).

FIGURE 6
Viscosity and molar volume prediction error correlation.
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compared to the value it has in pure liquid, B. The theory suggests

that both the mean error and its standard deviation should

decrease with increasing mixture complexity. The opposite (as

observed) impact on mean prediction error suggests that a

greater variety of heterogeneous interactions imparts a bias

toward closer two-body interactions in the perturbed state as

necessary to accommodate certain vacancy migrations.

Figure 6 shows a plot of viscosity prediction error against

molar volume prediction error. The prevailing inverse

relationship between molar volume and viscosity prediction

error is consistent with theory and is shaped primarily by the

simpler mixtures, types A and B. If the predicted molar volume is

higher than the actual molar volume then the predicted average

distance between molecules in the relaxed state of the mixture is

higher than it really is. In most cases, this would transfer to the

perturbed state as well. Since the potential energy surface is

highly non-linear, the artificially high spacing between molecules

in the perturbed state leads to artificially low activation energy

and correspondingly low viscosity predictions. While there is

clearly a codependence between molar volume prediction error

and other independent variables considered in this work, its

inclusion as independent variable in multilinear regressions

improves the R2 significantly in most data subgroupings and

never hurts the adjusted R2. Conversely, it alone as a linear term,

explains less than 20% of the variation in the complete dataset

and less than 50% of the variation within any of the sub-groups

considered. Moreover, the nominal slope of this relationship

varies across the four sub-groups. The difference in molar

volume between the components of a mixture is important

but not sufficiently so to overshadow other important (and

non-linear) effects.

These results do not suggest an improved blending rule for

viscosity, relative to the Arrhenius blending rule, but they do

suggest a way to quantify the error. The tier alpha (Yang et al.,

2021) methodology for viscosity employs the Arrhenius blending

rule, generalized to many components, where each component is

a pure molecule. As such it employs pure molecule data

exclusively. No heterogeneous interaction terms are implicitly

included in the tier alpha model, meaning the errors introduced

by Eq. 4 are not partially captured by data inputs as they are in

this work for types B, C and Dmixtures. The error introduced by

the tier alpha approach therefore is analogous to those of the type

Amixtures of this work. The observed error (σ) in the predictions

for type A mixtures can be attributed to each term (ξ) equally by

presumption, as represented by Eq. 11. The observations

reported here suggest ξ

σ2 � xA*ξ( )2 + xB*ξ( )2 � ξ2*∑
i
x2
i (11)

equals 13.2% at −40°C and 9.6% at −20°C. To impart such

modelling error onto the tier alpha predictions, the term relating

to measured viscosity uncertainty should be replaced by the

composite of measurement uncertainty and the result of Eq. 11.

Because every component mole fraction in complex mixtures is

small, in most cases, this error term will also be small. Non-

etheless, it is expected to resolve the small miss at low

temperatures noted by Heyne et al. (Heyne et al., 2022) for a

fuel with determined identity of specific isomers accounting for

94%m of the composition

5 Conclusion

Six hundred and seventy-five measurements of dynamic

viscosity and density have been used to assess the prediction

error of the Arrhenius blending rule for kinematic viscosity of

hydrocarbon mixtures. Major trends within the data show that

mixture complexity and temperature are more important

determinants of prediction error than differences in molecular

size or hydrogen saturation between the components of the

mixtures. Over the range evaluated, no correlation to mole

fractions was observed, suggesting the log of viscosity truly is

linear in mole fraction, as indicated by the Arrhenius blending

rule. Mixture complexity and temperature also impact molar

volume and its prediction. However, a linear regression between

the two model errors explains less than 20% of the observed

variation, indicating that mixture viscosity and/or molar volume

are not linear with respect to temperature and/or mixture

complexity.

Because the main effects, namely mole fractions are already

captured by the Arrhenius blending rule for viscosity while other,

lesser influence factors such as changes to vacancy distribution,

the distances between nearest neighbors and the number

percentage and variety of heterogeneous interactions, each

have a complex impact on viscosity it is difficult to refine the

model. Moreover, each of these fundamental drivers are hard to

control independently in an experiment, rendering an

empirically driven correction to the Arrhenius blending rule

elusive as well. Nonetheless, sufficient data has been collected to

measure the prediction error. That information has been

transferred back to the model to enable direct determinations

of confidence intervals around subsequent viscosity predictions

of any fuel based on its component mole fractions and viscosities.

At −40°C, when all identified components are pure molecules the

modeling error is 0.132 times the predicted (nominal) viscosity

times the root mean square of the component mole fractions. At

-20 °C the scalar decreases to 0.096 as part of a general trend

observed here that viscosity prediction errors decrease as

temperature increases.

6 Supporting information

All the viscosity and density data measured in support of this

manuscript are provided within the “data” tab of the attached

document called HEAT_LAB_ViscosityData_2022 (XLSX).
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Expanded versions of Tables 1, 2 are provided in the other tab,

“Material_list”. A definition of important terms used throughout

the theory section is provided in Viscosity_molecular_level

(DOCX).
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Nomenclature

Acronyms

ASTM ASTM international, standards organization

cSt centistoke unit of kinematic viscosity

ME mean error

MAE mean absolute error

SAF sustainable aviation fuel or fuels

StDev standard deviation

Symbols and Labels

A,B,C,Dmixture types delineating the number of distinct species

present from 2 A) to many D)

E total potential energy

L length of bob used in experimental apparatus

M measured torque

N number of molecules

R universal gas constant

R2 coefficient of determination

Rb, Rc radius of bob and sample chamber respectively used in

experimental apparatus

r distance between molecules

DL lattice spacing

T temperature

V potential energy terms

�V molar volume

x mole fraction

Δ difference between two sets of defining conditions

_γ shear rate

τ shear stress

ω angular velocity

ρ density

μ kinematic viscosity

σ observed error or uncertainty

ξ uncertainty attributed to each pure component

Subscripts

i, j molecule tracking indices, regardless of molecular identity

m,n,a,b identifiers of molecular identity

A,B msixture component tracking indices, regardless of

component complexity

mix mixture

aro aromatic

meas measured

pred predicted
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