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Under the background of large-scale and rapid development of renewable

energy, in order to improve the economic benefit of the system and ensure the

reliability of the system, this paper introduces hydrogen production and energy

storage into the independent wind/photovoltaic/hydrogen/storage capacity

optimization configuration method. In order to minimize the total planning

cost and self-sufficiency rate of system power supply, a capacity optimization

allocation model was established. On the basis of this model, the Multi-

objective Salp Swarm Algorithm (MOSSA) was improved in Algorithm

structure, Tent chaotic mapping was introduced to initialize the population,

and the positions of leaders and followers were updated based on the adaptive

spiral search strategy. The validity of the algorithm is verified by test function.

Finally, the specific example is solved by MATLAB programming, and the

improved multi-objective Salp Swarm Algorithm (IMOSSA) is used to obtain

the capacity configuration scheme, which provides reference for the

optimization design of independent photovoltaic hydrogen storage system.
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1 Introduction

The goal of “striving to achieve carbon peak by 2030 and carbon neutralization by

2060” defines the direction of green and low-carbon development of power system under

the goal of “double carbon” (Qiu et al., 2021; Wu et al., 2021). Wind energy and light

energy are the representatives of renewable clean energy at present, which have the

advantages of renewable, not limited by region, and are complementary in time and space

(Chen and Sun, 2021; Dar et al., 2022). However, in practical applications, they are

generally attached with energy storage devices to balance power fluctuations due to the

randomness of meteorological conditions leading to the instability of the output power of
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wind-solar complementary power generation (Zhao et al., 2021;

Zhang et al., 2022). Therefore, it is an urgent challenge for the

independent wind power storage system to reasonably

configuration. The fan capacity, photovoltaic panel capacity

and energy storage capacity so as to improve the economy

and reliability of the system.

In the past few years, the topic of independent wind power

storage system capacity optimization configuration has been

widely discussed and a large number of research results have

been obtained. In Reference (Yao et al., 2020), Monte Carlo

simulation was used to deal with the uncertainty of wind, light

and load, and the universal gravitation search algorithm is used

for global optimization to get the optimal allocation scheme of

wind, light and storage. In Reference (Liu et al., 2019), an

optimal configuration model considering the whole life cycle

cost of the system was proposed. The mixed decimal genetic

algorithm with integer variables was adopted to solve the

model, and the optimal capacity allocation of distributed

power generation and energy storage devices is obtained. In

Reference (Lin et al., 2021), the battery and supercapacitor are

introduced into the wind-solar complementary power

generation system as energy storage devices, and the

configured energy storage capacity is obtained by using the

improved quantum particle swarm optimization algorithm to

minimize the monthly average life cycle cost. In Reference (Xu

et al., 2006), taking the installation cost of the system as the

target and the power supply reliability as the constraint, the

constraint is dealt with by adaptive penalty function method

through genetic algorithm optimization including elite strategy.

At the same time, the type and capacity of wind turbine, the

capacity and inclination angle of photovoltaic panel and the

capacity of storage battery are optimized. Currently, the

independent landscape storage system capacity optimization

configuration mostly focuses on fans, photovoltaic panels and

batteries, and few literatures apply hydrogen storage energy to

the combined power supply system. Hydrogen energy has the

advantages of green environmental protection, high power

density and low maintenance cost. The combined energy

storage form of battery and hydrogen energy storage can

effectively make up for the shortcomings of the battery

energy storage device, such as limited capacity, low power

density and large maintenance, and greatly improve the

performance of the energy storage device.

Therefore, the capacity optimization configuration of wind/

photovoltaic/hydrogen/storage joint power supply system is

studied, and a capacity optimization configuration method

based on improved Salp sea sheath group algorithm is

proposed. First of all, the hydrogen energy storage system is

introduced into the independent wind and solar energy storage

system, and the capacity optimization configuration model is

constructed with the goal of minimizing the total annual

planning cost and the self-supporting loss rate of the system

power supply. Secondly, the structure of MOSSA algorithm is

improved, including the introduction of Tent chaotic map for

population initialization, the use of adaptive spiral search strategy

for group location update, and the use of test functions to verify

the effectiveness of the algorithm. Finally, according to the

annual measured landscape data and load data of a certain

place, the model is solved by MATLAB software under the

action of power generation control strategy, and the capacity

allocation scheme of each unit of the system is obtained, which

provides a reference for the optimal design of independent wind

storage system.

2 New energy grid-connected model

Independent wind-photovoltaic-hydrogen-battery

system consists of power generation unit, energy storage

unit, electricity load and other necessary components of

power system. The power generation unit includes a fan

and a photovoltaic battery board, and the energy storage

unit includes a storage battery and a hydrogen energy storage

device. The hydrogen energy storage device is composed of a

hydrogen storage tank, a fuel cell and an electrolytic cell, and

its structure is shown in Figure 1.

2.1 Fan output model

The output power Pwt of wind turbine mainly depends on the

variation of wind speed vt, and its functional relationship can be

approximately expressed by Eq. 1.

PWT t( ) �

0 v t( ) ≤ vin, v t( )≥ vout

Prated ×
v t( )3 − vin

3

vrated
3 − vin

3 vin ≤ v t( )≤ vrated
Prated vrated ≤ v t( )≤ vout

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(1)

Wherein, PWT(t) is the output power of the wind turbine at time

t; v(t) represents the wind speed at the time t; vin, vrated and vout
represent the cut-in wind speed, rated wind speed and cut-out

wind speed of the wind turbine respectively; Prated represents the

rated power of the wind turbine.

2.2 Photovoltaic panel output model

The output power of photovoltaic array is mainly related to

light intensity and temperature, and the expression of output

power is as shown in Eq. 2:

PPV t( ) � PSTC
G t( )
GSTC

1 + ε T t( ) − TSTC( )[ ] (2)

Wherein, PSTC, GSTC, and TSTC represent the maximum test

power, light intensity and temperature under standard test
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conditions (STC), G(t), and T(t) represent the actual solar light

intensity and actual temperature at time t, respectively, and ε

represents the power temperature coefficient.

2.3 Battery output model

During the charging and discharging process of the battery,

the change of the charge state is as shown in Eq. 3:

SOCc t( ) � 1 − Δ( ) · SOC t − 1( ) + Pc · ηc
E

SOCf t( ) � 1 − Δ( ) · SOC t − 1( ) + Pf

ηf · E

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
(3)

Wherein, SOCc(t) and SOCf(t) represent the SOC value of

charging and discharging of the battery at time t respectively;

Δ represents the self-discharge rate of the battery; SOC(t-1)

represents the charge state of the battery at the previous

moment; Pc and Pf represent the charging and discharging

power of the battery; ηc and ηf represent the charging and

discharging efficiency of the battery, and 10% and 90%; E

represents the rated capacity of the battery respectively. From

the above formula, it can be deduced that the output model of the

battery is:

Pc t( ) � SOCc t( ) − 1 − Δ( ) · SOC t − 1( )[ ] · E
ηc

Pf t( ) � 1 − Δ( ) · SOC t − 1( ) − SOCf t( )[ ] · E · ηf

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (4)

2.4 Hydrogen energy storage device
model

The models of electrolytic cell, hydrogen storage tank and

hydrogen fuel cell can be expressed as follows:

Pele � nH2 ·HHHV

ηele
(5)

QH2 � nH2 · ηtank (6)
Pfc � nH2 ·HHHV · ηfc (7)

Wherein, Pele represents the input power of the electrolytic cell; nH2
represents the hydrogen production capacity of the system; HHHV

represents the calorific value of hydrogen; ηele represents the

hydrogen production efficiency of the electrolytic cell, 70%; QH2

represents the hydrogen storage capacity of the hydrogen storage

tank; ηtank represents the hydrogen storage efficiency of the

hydrogen storage tank, 95%; Pfc represents the fuel cell output

power; ηfc represents the conversion efficiency of the fuel cell, 65%.

3 Establishment of optimal
configuration model

3.1 Objective functions

In this work, an optimization model is constructed with the

goal of minimizing the annual total planning cost and the lowest

self-supporting loss rate of the system power supply, to

characterize the economy and reliability of the whole system,

and to obtain the optimal capacity allocation scheme of fans,

photovoltaic panels and energy storage devices, and thus,

improving the economic benefits of the system and ensure the

reliable operation of the system at the same time.

3.1.1 Total annual planning cost
The total annual planning cost f1 of the system is mainly

related to the equivalent annual fee of equipment installation

(Cinstall), annual maintenance fee of equipment (Chold), annual

cost of equipment replacement (Creplace), loss cost of load and

power shortage (Cpunish), and penalty cost of abandoning wind

and light (Closs). The calculation formula is as follows:

FIGURE 1
Independent wind-photovoltaic-hydrogen-battery system structure.
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f1 � Cinstall + Chold + Creplace + Cpunish + Closs (8)

The annual cost of equipment installation, annual

maintenance, replacement of equipment, loss of load and

power, and penalty cost of abandoning wind and light can be

expressed as:

Cinstall � ∑6
i�1
Ci ·Ni · j 1 + j( )Ri

1 + j( )Ri − 1

Chold � ∑8760
t�1

∑6
i�1
ki ·Ni · Pi t( )

Creplace � ∑6
i�1
Ci ·Ni · j

1 + j( )Ri − 1

Cpunish � kp · ∑8760
t�1

Pdrump t( )Δt

Closs � kl · ∑8760
t�1

Ploss t( )Δt

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(9)

Wherein, Ci and Ni represent the number and unit price of

each device, j represents the depreciation rate, Ri represents

the service life of each device, ki represents the maintenance

cost coefficient of each device, Pi(t) represents the power of

each device at time t, kp represents the unit loss cost of power

outage, taking 0.3 yuan/kWh; kp represents the unit

abandonment wind and light penalty cost, taking 0.2 yuan/

kWh; Pdrump(t) represents the system load power shortage

power; and Ploss(t) represents the power of abandoning wind

and light in the system.

3.1.2 Self-sufficient loss rate of the power supply
The self-sufficient loss rate of the power supply represents the

probability that the generating power of the system can not meet the

local load demand in a certain period of time (Wu et al., 2014). In

this work, the system power supply self-sufficiency loss rate is used

as an index to characterize the system reliability. The smaller the

system power supply self-sufficiency loss rate is, the higher the

system reliability is. The expression is as shown in Eq. 10:

f2 �
∑8760
t�1

PL t( ) − PWT t( ) + PPV t( ) + Pb t( ) + Pfc t( )( )[ ]
∑8760
t�1

PL t( )
(10)

Wherein, PL(t) represents the load power at time t; PWT(t),

PPV(t), Pb(t) and Pfc(t) represent the output power of fan,

photovoltaic battery, battery and fuel cell at time t,

respectively.

3.2 Constraint conditions

The constraint conditions of independent landscape storage

combined power supply system are as follows:

0<Ni ≤Nimax

QH2 min ≤QH2 ≤QH2 max

SOC min ≤ SOC≤ SOCmax

⎧⎪⎨⎪⎩ (11)

0≤Pc t( )≤ Pcmax,
E SOCmax t( ) − 1 − Δ( ) · SOC t − 1( )[ ]

ηc
{ }

0≤Pf t( )≤ Pfmax, 1 − Δ( ) · SOC t − 1( ) − SOCf t( )[ ] · E · ηf{ }
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(12)
Wherein, Nimax,i∈ (Qiu et al., 2021; Zhao et al., 2021) represents

the maximum number of devices; QH2min and QH2max represent

the lower limit and upper limit of hydrogen storage capacity of

the hydrogen storage tank respectively; SOCmin and SOCmax

represent the lower limit and upper limit of the battery charge

state respectively; Pcmax and Pfmax represent the maximum charge

and discharge power of the battery respectively.

4 System operation control strategy

The operation control strategy of pv/wind hydrogen storage

system is shown in Figure 2. In this work, fans and photovoltaic

panels are given priority to meet the load needs of users.

According to the wind power generation and the user load, it

can be divided into three situations: 1) if the wind power output

can just meet the user load demand, there is no need for the

energy storage system to intervene; 2) if the pv/wind output is

greater than the user’s load demand, priority will be given to

charging the battery, and when the battery’s charge state reaches

the maximum value, the battery will stop charging, and if there is

still any remaining power, the excess wind power will be obtained

from the electrolytic cell and stored in the hydrogen storage tank

until the capacity of the hydrogen storage tank reaches the upper

limit; and 3) if the output of pv/wind is less than the load demand

of the user, priority is given to replenishing the electricity through

the output of the battery and the charge state of the battery is not

lower than the minimum, if the output of the battery is not

enough to meet the load demand, the hydrogen stored in the

hydrogen storage tank is discharged through the fuel cell, and if

the sum of the output power still can not meet the load demand,

it will be removed according to the importance of the load.

5 Model solving methods

5.1 Salp swarm algorithms

Salp Swarm Algorithms (SSA) is a new heuristic optimization

algorithm proposed by Professor Mirjalili et al. by simulating the

individual and group behavior of ascidian in the ocean (Seyedali et al.,

2017). In the deep sea, Salp sea squirts usually form a group called

Salp sea sheath chain in order to quickly coordinate change and

foraging. The Salp sea sheath chain can be divided into two groups:
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the leader at the front of the Salp sea sheath chain is responsible for

finding the location of food; the rest of the Salp sea squirts are

followers, connected from head to tail, following the leader, as shown

in Figure 3. As the leader leads his followers closer to the food source,

the algorithm gradually tends to the optimal solution.

The location update formula for leaders is as follows:

X1
j �

Fj + c1 uj − lj( )c2 + lj[ ] c3 ≥ 0.5

Fj − c1 uj − lj( )c2 + lj[ ] c3 < 0.5

⎧⎨⎩ (13)

Wherein, Xj
1 represents the position of the first ascidian (leader)

in dimension j, Fj represents the position of food source in

dimension j, uj, lj represents the upper and lower bounds of

dimension j, c2 and c3 represent random numbers in the range of

[0,1], and c1 represents convergence factor, whose values are

shown as follows:

c1 � 2e−
4l
L( )2 (14)

Wherein, l represents the current number of iterations and L

represents the maximum number of iterations.

The location update formula for followers is:

Xi
j �

1
2

Xi
j +Xi−1

j( ) (15)

Wherein, Xj
i represents the position of the ith follower in the jth

dimension of the space, and Xj
i−1 represents the position of the i-

1-th follower in the jth dimension of the space, where i ≥ 2.

5.2 Improved multi-objective salp sheath
group algorithm

SSA algorithm can only be used to solve optimization

problems with a single objective, while multi-objective

optimization problems usually require a set of optimal

solutions (non-dominant solution sets), whose objective vector

set is the Pareto Frontier. Therefore, it is necessary to adjust the

traditional SSA algorithm to solve the multi-objective problem.

The MOSSA algorithm introduces the external file Archive to

store the non-dominant solution of the current population. After

each iteration, the algorithm will generate new individuals.

Compare these individuals with the individuals in Archive one

by one and update the individuals in Archive. The updating

method is as follows: if the new individual dominates one or

more individuals in the external file, the new individual will be

added to the external file and the old individual dominated by it

will be deleted. If the new individual is dominated by at least one

FIGURE 2
Flow chart of system running policies.
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individual in the external file, the new individual does not join the

external file; if the new individual and any individual in the

external file do not dominate each other, the new individual joins

the external file. According to the density of other solutions in the

neighborhood of the non-dominant solution, the grade is

determined. The more other solutions in the neighborhood,

the higher the level of the non-dominant solution. Due to the

limited capacity of the external file, the densest solution, that is,

the solution with the highest level, is deleted when the external

file is full. Roulette is used to determine the food source

individuals that the next-generation of leaders will pursue.

(Fan et al., 2020). Among them, if the two non-dominant

solutions xi and xj in the external file are adjacent to each

other, the following conditions must be met:

fa xi( ) − fa xj( )∣∣∣∣∣ ∣∣∣∣∣<Ha, ∀a ∈ A

Ha � fa
max − fa

min

n max

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (16)

Wherein, fa represents the value of the ath objective function, A

represents the set of objective functions, Ha represents the

neighborhood distance threshold of the ath objective function,

fa
max and fa

min represent the maximum and minimum values of

the ath objective function in the current external file, and nmax

represents the limit value of the number of non-dominant

solutions stored in the external file.

5.2.1 Tent chaotic map
In the process of initializing the population, the MOSSA

algorithm usually uses the randomly generated data as the initial

information of the population, which increases the premature

risk of the algorithm and affects the optimization results of the

algorithm. The initial value of the population with more uniform

distribution can be obtained by using the ergodicity and

randomness of chaotic motion, which is helpful for the

algorithm to break away from the local optimal solution.

In this paper, Tent map, which has better chaotic

characteristics than Logistic map, is introduced for population

initialization. (Zeng et al., 2017; Teng et al., 2018). Figure 4 shows

the bifurcation diagram of the basic Tent mapping, but the Tent

mapping is easy to fall into fixed points and small periodic cycles,

so an improved Tent mapping formula is introduced as shown in

Eq. 17.

xk+1 � 2xk 0≤xk ≤ 0.5
2 1 − xk( ) 0.5≤xk ≤ 1

{ (17)

The steps to initialize the Tent mapping are as follows:

1) Select the initial value x0 randomly and prevent it from falling

into the small periodic point {0.2, 0.4, 0.6, and 0.8}.

2) The reference Eq. 16. generates a set of x sequences, and i = i +

1 after the iteration is completed. If the maximum number of

iterations is reached, jump directly to the last step.

3) If xi = {0,0.25,0.50,0.75} or xi = xi-m, and wherem = {0,1,2,3,4},

then make xi = xi+0.1*rand (0,1) replace the original value

and move on to the second step.

4) Stop running and keep the x sequence.

5.2.2 Spiral position update strategy
In the late iteration of the basic MOSSA algorithm, it is easy

to have a slow local optimal convergence rate. In order to

improve the local search ability of the algorithm, inspired by

the tuna foraging algorithm in reference, (Lei et al., 2021), a spiral

position update strategy is used to improve the location update of

leaders and followers in the salp sea squirt group, and expand the

search scope. This makes it easy to find more potential better

solutions. (Zhao et al., 2020; Li and Wang, 2021).

5.2.2.1 Leader location update

The location update strategy takes 0.5 as the demarcation

point, and the location update mode of the leader at the front end

of the salp sea sheath chain is determined by a random

probability rand in the random range of 0–1. When

rand <0.5, the original algorithm position update mode is

selected, and when rand ≥0.5, the spiral position update mode

is selected.

The helix position is updated by:

X1
j � Fj + c1 uj − lj( )β + lj[ ]

β � ebl cos 2πb( )
l � e 3 cos tmax+1/t( )−1( )π( )

⎧⎪⎪⎨⎪⎪⎩ (18)

Wherein, b represents a random number, which is evenly

distributed between 0 and1; t represents the current number

of iterations of the algorithm; tmax represents the maximum

number of iterations of the algorithm.

5.2.2.2 Follower location update

The follower location is updated by:

Xi
j � Fj + rand Xi

j −Xi−1
j( ) + β · Fj −Xi−1

j( ) (19)

FIGURE 3
Structure diagram of Salp sea squirt group. (A) Single Salp sea
squirt; (B) Salp sea squirt Chain.
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Where, rand represents the random number between [0,1].

5.3 Solving steps of improved algorithm

Using the IMOSSA algorithm to find the Pareto front, the

specific steps to obtain the capacity optimization configuration

results of the independent wind/light/hydrogen/storage system

are as follows:

(1) initialize the population. Firstly, the annual wind speed, solar

light intensity, temperature, load time series data and the

purchase unit price, unit installed capacity and maintenance

cost coefficient of each device are introduced, and the

algorithm parameters such as problem dimension dim,

population size N, external archive scale ArchiveMaxSize,

maximum number of iterations tmax, upper and lower limit

uj and lj are set. Secondly, taking the number of each device

as the decision variable, the chaotic sequence is generated by

introducing Tent map within the constraint range, and the

population is initialized according to the upper and lower

limits of the search space.

(2) According to the Eqs 8–12, the fitness values f1 and f2 of each

individual are calculated according to the operation control

strategy, and the external file Archive is updated according to

the relationship between the new solution and the original

non-dominant solution.

(3) Judge whether the number of non-dominant solutions in the

external file Archive exceeds the limit, if so, the density of

other solutions in the neighborhood of each non-dominant

solution is judged according to Eq. 16, and the solution with

the highest density is deleted first. Otherwise, roulette is

directly used to select a non-dominant solution from the

external file as the food source individual to be pursued by

the next-generation of leaders.

(4) Update the position of the leader according to the Eqs 13, 18.

(5) Update the position of the followers according to the Eq. 19.

(6) Determine whether the algorithm reaches the maximum

number of iterations, if so, output the pareto solution set,

that is, the capacity optimization configuration scheme of the

independent wind/light/hydrogen/storage system, otherwise

turn to Step (2).

5.4 Algorithm performance test

In order to verify the performance of the improved

algorithm IMOSSA, the standard test function ZDT1-ZDT4

(Li et al., 2021) is selected to analyze the algorithm

qualitatively. Set the population size 100, the external

archive capacity 200, and the maximum number of

iterations 100. Figure 5 shows the comparison between the

Pareto front and the real Pareto front of the IMOSSA

algorithm on four test functions.

According to Figure 5, the pareto front obtained by the

improved algorithm can be distributed around the real pareto

front of the test function, and has good convergence and

distribution. However, the superiority of the algorithm can

not be shown directly by qualitative analysis, so the

cec2009 series test function in reference (Fan et al., 2020)

is selected to test, and the inverse generation distance (IGD)

(Geng et al., 2019) is introduced to comprehensively evaluate

the convergence and diversity of the algorithm. The smaller

the IGD is, the better the result is. The test results are

compared with those of MOSSA algorithm, NSGAII

algorithm and MOPSO algorithm. The calculation formula

of IGD is as follows:

IGD �
∑
p∈P*

d p, P( )
P*| | (20)

Wherein, P and P* represent the Pareto Frontier solution set and

the real Pareto optimal Frontier obtained by the algorithm,

respectively; |Pp| represents the number of individuals in Pp;

d represents the minimum Euclidean distance between individual

p and Pp in P, respectively.

IMOSSA, MOSSA, NSGAII, and MOPSO are run 30 times

on the UF1-UF7 test function respectively. The IGD of the

solution set obtained by the four algorithms in each operation

is recorded and the average value and standard deviation are

calculated. The results are shown in Table 1. According to

Table 1, compared with MOSSA, NSGAII and MOPSO, the

mean and standard deviation of IGD in most of the test functions

of IMOSSA algorithm are lower than those of the other three

algorithms, that is, the convergence and diversity of IMOSSA

algorithm are better than those of the other three algorithms,

indicating that IMOSSA algorithm effectively improves the

original algorithm and has more advantages in dealing with

multi-objective problems.

FIGURE 4
Basic Tent mapping bifurcation diagram.
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6 Example analysis

6.1 Basic parameters

Based on the capacity optimization configuration model

established above, the time series data of wind speed, solar

light intensity, ambient temperature and load measured in a

place in the whole year are introduced (as shown in Figure 6).

Based on the system operation control strategy, the IMOSSA

algorithm is used to solve the optimization problem. Table 2

shows the relevant technical parameters of fan, photovoltaic

panel, storage battery, electrolytic cell, hydrogen storage tank

and fuel cell.

6.2 Analysis of capacity optimization
results

The initial parameters of IMOSSA algorithm are set as

follows: the population size is 30, the number of iterations

is 200, and the external file size is 50. Figure 7 shows the

pareto optimal solution set obtained by MATLAB software

FIGURE 5
Basic Tent mapping bifurcation diagram. (A) ZDT1; (B) ZDT2; (C) ZDT3; (D) ZDT4.
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TABLE 1 Test results of four algorithms on test function.

Algorithms UF1 UF2 UF3 UF4 UF5 UF6

IMO Mean 0.0089 0.0069 0.1211 0.0082 0.0204 0.0965

SSA SD 0.0018 0.0045 0.0803 0.0018 0.0135 0.0202

MO Mean 0.0260 0.0268 0.1671 0.0241 0.0417 0.1175

SSA SD 0.0125 0.0157 0.0926 0.0125 0.0223 0.0256

NSG Mean 0.1118 0.0448 0.1638 0.0267 0.0378 0.1327

AII SD 0.0240 0.0168 0.0769 0.0136 0.0224 0.0354

MO Mean 0.1150 0.0504 0.2119 0.1240 0.0479 0.1475

PSO SD 0.0275 0.0172 0.0846 0.0053 0.0264 0.0261

FIGURE 6
Weather and load data of a locality for 1 year. (A) Wind Speed; (B) Light Intensity; (C) Ambient Temperature; (D) Load.
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using IMOSSA, MOSSA, and NSGAII algorithms,

respectively.

According to Figure 7, when the initial parameter values

are the same, the Pareto Frontier obtained by IMOSSA

algorithm is better than that of the other two algorithms,

and the distribution of Pareto optimal solution is more

dispersed and uniform, which verifies the effectiveness and

necessity of algorithm improvement. Based on the topsis

decision method, the system optimization Pareto solution

set is decided, and the final result is the optimal solution.

The capacity allocation scheme and the objective function

values obtained by the three algorithms are shown in

Tables 3, 4.

Generally, the annual total planning cost of the two sub-

objective functions and the system power supply self-sufficiency

loss rate contradict each other. When the system power supply

self-sufficiency loss rate tends to zero, the required annual total

planning cost reaches the peak. This is because the higher the

planning cost of the system means that it can be equipped with

more distributed power and energy storage devices, provide more

spare capacity to meet the power supply needs of the load side,

and effectively avoid the abandonment of wind and light or

insufficient power of the system. As can be seen from the data in

Table 4, the MOSSA algorithm configuration scheme is more

economical than the NSGAII algorithm configuration scheme,

and the total annual planning cost is reduced by 5.46%, but it is

not dominant in terms of reliability, and the self-sufficient loss

rate of the system power supply is reduced by 6.62%. Compared

with the first two configuration schemes, the configuration

scheme of IMOSSA algorithm is both economical and reliable,

the total annual planning cost is reduced by 5.28% compared

with MOSSA algorithm, and the self-sufficient loss rate of system

power supply is reduced by 54.39% compared with NSGAII

algorithm.

Figure 8 shows the comparison of wind turbine,

photovoltaic panel power generation and load-side power

demand. Obviously, the power supply of wind turbine and

photovoltaic panels will be surplus after meeting the power

demand of the load end in most cases, but sometimes the wind

power generation can not meet the demand of the load end,

and the battery and hydrogen storage can store electric energy

when the wind power resources are surplus, and supplement

the power when the wind power generation is insufficient.

Figure 9 shows the state diagram of the charge constant of a

single energy storage battery for 1 year. It is obvious that the

charge constant of the battery is more than 0.5 in spring and

autumn, but lower in summer and winter, especially in

summer. This is also in line with the reality, the summer

electricity consumption is too much, the situation of power

shortage is more obvious.

The change of the capacity ratio of the hydrogen storage

tank is shown in Figure 10, which indicates the proportion of

the existing hydrogen in the total hydrogen storage tank,

which shows that the hydrogen content in the hydrogen

storage tank is constantly changing, which further proves

the effect of the hydrogen energy storage device on the

power balance of the system. The power of electrolytic cell

TABLE 2 Related technical parameters of each device in the system.

Device Single machine
capacity

Purchase cost/
yuan

Operation and maintenance cost
factor/(yuan/kW h)

Replacement cost/
yuan

Useful life/
year

Air blower 3 kW 9,000 0.0187 7,000 20

PV battery board 0.2 kW 2,500 0.0079 2000 20

Accumulator
battery

4 kW h 1,000 0.008 880 10

Electrolytic cell 5 kW 5,000 0.03 4,000 20

Hydrogen storage
tank

1 kg 10,000 0 9,000 20

Fuel cell 1 kW 6,000 0.5 5,000 10

FIGURE 7
Pareto optimal solution set of three algorithms.
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and fuel cell is shown in Figure 11, it can be seen that from

October to November, the wind speed is larger, photovoltaic

panels and batteries have been supplemented to basically meet

the power demand of the load end, and most of the hydrogen

storage tanks are in the full stage. From June to August,

although the light intensity and ambient temperature are

basically at the highest value of the year, the power

demand of the load side also increases synchronously.

When the wind output is less than the user load demand,

the battery gives priority to the output. When the minimum

SOC is reached, the hydrogen storage tank releases hydrogen

to power through the fuel cell to reduce the load shortage.

From January to March, the wind speed, light intensity and

ambient temperature are low, the demand for electricity at the

load end is high, and the battery can not meet the load

demand, so it also needs the power supply of hydrogen

storage device.

Figure 12 shows the power balance chart of the system for

one 3 days. As can be seen from the chart, wind power generation

is first used to meet the power load demand, and the rest depends

TABLE 3 Capacity configuration schemes of three algorithms.

Algorithms Fan/
unit

Photovoltaic panel/
block

Battery/
set

Electrolytic cell/
unit

Hydrogen storage tank/
unit

Fuel cell/
group

NSGAII 178 2,474 199 42 199 48

MOSSA 178 2,471 163 48 180 40

IMOSSA 178 2,466 157 51 175 39

TABLE 4 Objective function values of the three algorithms.

Algorithms Total annual planning cost/yuan Self-sufficient loss rate of system power supply/%

NSGAII 1,693,372 0.0317

MOSSA 1,600,948 0.0296

IMOSSA 1,516,471 0.0135

FIGURE 8
Comparison of wind power generation and load demand.

FIGURE 9
Charge state diagram of energy storage battery.
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on battery and fuel cell supply. When the supply of wind power

exceeds demand, the battery and electrolytic cell work to reduce

the abandonment of wind and light. According to the power

shortage power of the load at different times of the system

(Figure 13), it can be seen that the proportion of the power

shortage penalty cost of the system to the total cost is less than

1%, and the number of times that the system cannot meet the

demand of the load side in the whole year is very few, and the

system can supply power to the load. Furthermore, it shows that

the capacity configuration of the system is reasonable.

7 Conclusion

For independent wind-photovoltaic-hydrogen-battery

system, the capacity optimization configuration model is

constructed after considering the total annual planning cost of

the system and the self-supporting loss rate of system power

supply, and the improved multi-objective SSA is used to solve the

model. Through the performance test of the algorithm and the

simulation analysis of an example, the results show that:

(1) The IMOSSA algorithm introduces Tent mapping and

adaptive spiral search strategy, which makes the algorithm

easy to break away from the local optimal solution and

improves the convergence speed of the algorithm. In the

algorithm performance test, it is better than MOSSA

algorithm, NSGAII algorithm and MOPSO algorithm, and

can better solve the multi-objective optimization problem.

2) The multi-objective optimal configuration of each device of

wind/photovoltaic hydrogen storage system is carried out based

on the scenery and load data of the selected area. In the case of

low self-sufficient loss rate of power supply of the system, the

annual planning cost of the system is reduced, the economy of

the system is balanced with the reliability of power supply, and a

reference is provided for the early design and planning of the

independent wind hydrogen storage system.
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FIGURE 10
Hydrogen storage tank capacity ratio.

FIGURE 11
Electrolytic cell and fuel cell power.

FIGURE 12
Power balance diagram of the system for a certain three days.

FIGURE 13
The system is short of power at different times.
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