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Existing energymanagementmethods for integrated energy systems aremostly

in distributed communication and computation now, need a large number of

iterations, and each time of iteration needs lots of communication and

computation. For this reason, on one hand, the iteration may cause energy-

delay. On the other hand, iterationwill significantly increase the communication

and computation burden. The integrated energy systems contain a variety of

devices and energy resources (including renewable energy resources), so the

communication and computation burden is already very high. If the

communication and computation cannot be solved very well, the cost

functions of each device need to be much easier to ensure the operation of

the system and their systematic error will be much larger. For this reason, the

result of optimization will be much worse because of the accuracy of cost

functions. The greatest challenge of this issue is to establish an algorithm

without iteration. For handling this issue, first, we adopt the theoretical

demonstration to prove that if all prices of all devices are the same, the

optimization will be realized and the instantaneous price is the one-order

derivative. (we assume the relationship between the operating cost and the

energy flow of each device as the convex cost functions.) Second, we reshape

all cost functions. Third, we change the function to the total of the foregoing

functions in the directed annular path and adopt the total function of the hole

system to solve the energy price. Last, we use the price to ensure their operating

condition. Our theoretical demonstration has already proved the optimization,

convergence, the plug and play performance, scalability, and the emergency

scheduling performance of the annular partial differential algorithm (APDA).
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1 Introduction

Recently, there were several papers on the concept of “integrated energy system (IES)”

for handling problems related to utilizing sustainable and environmentally friendly

renewable energy resources, renovating the energy utilization model, enhancing

energy management, and securing system control (Wang et al., 2021; Zhou et al.,

2021; Chen et al., 2022). The most prominent development regarding the IES is a
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framework that includes various energy types. During the

transition from traditional single-energy systems to an IES,

the most important issue that should be revisited is how to

maximize social profits (Liu et al., 2022a). Accordingly, the

energy management issue, which is one of the fundamental

issues in power systems (Yang et al., 2022), should be

revisited to achieve the envisioned IES concept.

Fundamentally, energy management is formulated as an

optimization problem. Numerous methods have been adopted

to address the optimization problem, which can be classified into

two main categories: centralized approaches (CAs) and

distributed approaches (DAs). The CA optimally dispatches

various energy resources in different areas by running an

integrated economic dispatch center over the entire IES.

However, an IES is typically composed of too many

distributed areas that may be operated by various energy

operators; therefore, a centralized solution for the IES is

impractical owing to both technical and administrative

reasons. In addition, the CA depends on a strong centralized

control center and numerous communication paths from that

center, which can sharply increase computational costs and the

likelihood of single-point failures. Moreover, the CA cannot

ensure user privacy. To address these shortcomings, with the

development of multi-agent systems, numerous scholars have

adopted DAs to replace CAs. The design of a DA is inspired by

the multi-agent theory and edge computing methods in the fields

of computing and blockchain (Wei et al., 2021; Feng et al., 2022a;

Feng et al., 2022b; Liu et al., 2022b; Mao et al., 2022; Wei et al.,

2022). DAs aim to achieve multi-area integrated optimality in a

distributed and coordinated fashion without revealing the private

information regarding each area. Compared with CAs, DAs

exhibit better robustness (Xing et al., 2015; Hua et al., 2018;

Xu et al., 2019), scalability (Binetti et al., 1720; Huang et al., 2022;

Kirli et al., 2022), resilience (Abessi and Jadid, 2021; Guo et al.,

2021; Mishra et al., 2022), and privacy protection (Zhou et al.,

1667), (Zhou et al., 2020). Zhang et al. (2017) proposed a

distributed consensus algorithm that can be applied to energy

management in a fully distributed manner for the first time. The

novel distributed algorithm introduced in Chen et al., (2015)

does not require projection and can control the underlying power

flow. In addition, many scholars have integrated event-triggered

theory with DAs to reduce redundant communications in the

IES. Tan et al. (2021) and Tan (2022) investigated asynchronous

communication DA systems with partial inputs. Liu et al. (2021)

examined an event-triggered system with bipartite consensus-

quantized control. From these studies, we can conclude that the

DA is better suited to energy management because it

disintegrates global computation into local computation and

assigns the energy management problem to the energy

subsystem and distributed energy device, which uses only

local communication, computation, and control to achieve

optimal operation. Ma et al. (2021) proposed a three-step-

based graph partitioning algorithm to divide a power network

into several groups according to the characteristics of power flow

to adjust bus among the groups. He et al. (2017) studied the

group work and big data and combined the power flow analysis

and fault detection for the first time. However, the fault detection

does not only fit for electrical power system, but the pipeline

network also needs fault detection. Hu et al. (2022) studied the

fault detection of the small leak location for intelligent pipeline.

Ma et al. (2022) proposed a dual-predictive control method to

handle the error issue. Chang et al. (2021) had already modeled

the network constraint to avoid the power flow violating the

limit.

The main idea behind the existing multi-agent theory and

edge computing studies is that to optimally control a complex

and large industrial system, the large system should be divided

into small systems, which should be appropriately adopted to

optimally control the large system. This approach is similar to

dividing the smart grid into microgrids and dividing the multi-

agent system into agents. Therefore, the IES must be divided as

well. For handling this issue, Yang et al. (2020) proposed the

concept of “we-energy” to divide an IES. As a subunit of the IES,

we-energy is a small independent energy system coupled with

various energy sources. These small energy systems are

connected to each other through energy ports to form an IES.

In addition, we-energies are significantly different from

microgrids because they are deeply coupled systems of

information, physics, energy, and economics. We-energy can

play various roles in an IES, including but not limited to energy

manufacturing, energy consumption, energy conversion hubs,

and energy store hubs. In summary, this study adopts we-energy

as a subsystem of IESs.

Although DA applications in IESs have already been

developed significantly, these existing methods still have many

limitations. First, an excessive number of iterations can aggravate

the communication and computational burden. The reason for

this is that the DA only disperses the communication and

computational burden from the control center to the hole

system; however, the total communication and computational

burden remains exceedingly large because the existing DA

approaches require iterations on many occasions. If the

iterations waste too much time, the communication and

computation costs become significant and the time wasted by

the iteration may cause an energy delay. Second, the adoption of

DAs in energy management is dependent predominantly on

assumptions regarding the operating conditions of devices in

an IES and well-tuned algorithm parameters. However, tuning

certain parameters is extremely challenging. Third, except for

several finite-step distributed algorithms, (Zhao et al., 2014);

(Guo et al., 2017), most traditional decomposition methods and

distributed algorithms are asymptotically convergent, resulting

in a trade-off between the accuracy of a given algorithm and

number of iterations (Lai et al., 2017).

Although existing DAs can disperse the communication and

computation burden from the control center to every we-energy,
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the communication and computation burden is still in the IES. In

addition, compared with traditional electrical power systems, the

IES contains more energy types, more energy resources, and

more energy loads. So the complexity of the IES is much higher

than that of traditional electrical power systems, which will

significantly increase the communication and computation

burden. Also, that burden will do great harm to the IES. On

one hand, if that burden is too large, the IES needs to consume

enormous costs on communication and computation.

Traditional electrical systems only dispatch energy costs and

ignore communication and computation costs. However, the

communication and computation cost is also very high,

especially in complicated IESs. On the other hand, too much

communication and computation will consume too much time.

In a power–heat–gas IES, the time scale of power is much shorter

than that of heat and gas. However, the complex of heat and gas

in energy quality ( temperature of the water and calorific value of

gas) and energy transmission is much higher than that of power.

In the traditional electrical power system, we only need to

dispatch power, so energy management is not very slow so

that power may not be a delay. However, in the IES, we need

to communicate and compute power, heat, and gas. So, the power

time delay will happen more frequently.

To overcome these challenges, it is necessary to develop a

distributed algorithm without iterations as it can considerably

reduce communication and computational costs, has better

accuracy, and is insensitive to parameters and initial values.

First, each iteration needs to communicate and compute, and

an iteration usually takes significant time. Consequently, the

communication and computational costs in an algorithm with

iterations is one hundred times less than those of an algorithm

without iterations. Second, traditional algorithms with iterations

are asymptotically convergent, which results in a trade-off

between accuracy and number of iterations. Because the IES is

a large system, a few unfit parameters can result in a strong

energy mismatch. Third, the algorithms with iterations are

sensitive to parameters and initial values because the result

may lead to oscillation or divergence. However, the algorithm

without iterations does not have this disadvantage.

To address these problems, we propose an algorithm without

iterations called the annular partial differential algorithm

(APDA) in this study. First, we depict a theoretical

demonstration to prove that if all devices are priced the same,

optimization can be realized, and instantaneous price becomes a

one-order derivative. Second, we reshape all cost functions. We

set the independent variable to the first derivative and dependent

variable to the energy value. Third, we changed the function to

the total of the foregoing functions in the directed annular path.

Each agent must be computed only once. Fourth, we adjusted the

total function of the hole system to set the energy price. Finally,

we transmit the energy prices to all devices, and the devices can

use this price point to ensure their operating conditions. Our

theoretical demonstration has already proved that APDA reliably

attains the optimal operating condition for an IES. The key

contributions of this study are as follows:

1) APDA can avoid energy delays and significantly reduce the

communication and computational burden of the IES. In

existing DA applications, each iteration requires

communication and computation. However, APDA does

not require iterations; therefore, the communication and

computational burden will be much less. In addition, the

algorithm without iteration will be much quicker; thus, an

energy delay because of the slow algorithms will never occur.

2) The APDA is far more accurate than existing algorithms.

Existing decomposition methods and distributed algorithms

are asymptotically convergent, resulting in a trade-off

between the accuracy of a given algorithm and the number

of iterations. However, the APDA does not suffer from this

problem because it can accurately determine the optimization

result in one communication and computation iteration.

3) The APDA does not depend on suitable parameters or initial

values. Existing algorithms are sensitive to parameters and

initial values because the results may lead to oscillation or

divergence. However, the APDA does not suffer from this

disadvantage.

4) Privacy protection in the APDA is much better than that in

existing algorithms. Although existing distributed methods

can protect user privacy to a certain degree, there are still

some ratios, power outputs, or estimated prices that must be

shared among neighboring agents. However, the APDA can

protect all data, including the information presented below,

among neighboring agents. In the APDA, there are no

neighbor agents because all data in the APDA are

cryptographic, and neighbor agents are meaningless.

Table 1 summarizes the performance of the APDA and

traditional methodologies to underline the contribution of this

study. Table 2 summarizes the methods used in the APDA and

whether the innovation of this study is original or not. The non-

iterative mechanism of the APDA is summarized as follows:

The APDA transforms all cost functions into another

function type. The independent variable of this function is the

first-order differential, and the dependent variable is energy flow.

The APDA accumulates the differentials of all orders into new

functions via an annular communication path. The annular path

can be used to ensure that the APDA can sum all differentials in a

distributed manner. Accordingly, the high computational and

communication pressure on the control center is overcome. The

control center can utilize the total of these differentials to restore

the hole functions. The independent variable of this function is

the first-order differential, and the energy mismatch is the

dependent variable. The number of hole functions

corresponds to the number of energy types. The control

center uses each hole function to set an independent variable

for each energy type. These independent variables were regarded
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as the energy prices of the corresponding energy types. The

control center relays the prices of each energy source using the

communication path, and each device adjusts the operating

conditions according to these prices. Under these

circumstances, convergence and optimization are satisfied, and

iteration is not required. A detailed introduction and proof of the

APDA are presented below.

The presented APDA can significantly speed up the

optimization algorithm and protect the user privacy

effectively. Therefore, it is suitable for the IES, which requires

TABLE 1 Contributions of different methods.

Method Privacy
protection

Need for iteration and
pressure of communication
and computation

Solving numerous
models

Dependence on
initial values

Accuracy of
energy
management

Traditional DA
approach Guo
et al. (2017)

Protects some data.
Cannot protect data
among neighbor
agents

Requires considerable asynchronous
communication; hence, the pressure of
communication and computation is
very high

Needs to solve all models Depends on initial
values

Inaccurate

Algorithm
proposed in
Zhang et al.
(2017)

Protects all data Needs iteration; hence, the pressure of
communication and computation is
very high

Needs to solve all models Depends on initial
values

Inaccurate

APDA proposed
in this study

Protects all data Does not require iterations; hence, the
pressure of communication and
computation is exceedingly low

Merges all model types into
several models. In this article,
13 device types could be
merged into two functions

Does not depend on
initial values

Accurate

TABLE 2 Innovation of this study.

Theory Annular communication
path to privacy protection

Does not
require
iteration

Merge all model
types into several
models

Adopt a first-order differential
equation as the independent
variable

Accurate energy
management

Not original Original Original Original Original

TABLE 3 Devices in each we-energy.

Device number
j

Device type Device name

1 Renewable energy devices Wind-based power generator

2 Solar-based power generator

3 Solar-based heat device

4 Coal-based energy devices Coal-based CHP

5 Energy conversion devices Power-to-gas device

6 Electric boiler

7 Gas-based CHP

8 Energy storage device Power store device

9 Heat store device

10 Gas store device

11 Energy load Power load

12 Heat load

13 Gas load
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high speed and good privacy protection. However, the

APDA requires synchronous communication and large-

scale communication simultaneously. Some changeable

IESs are unfit because they require frequent dispatches.

In addition, the APDA can only handle convex

optimization, and an IES with non-convex devices is

unsuitable for it. Therefore, the IES approaches depicted

in Yang et al. (2020) and Tan and Li (2022) are suitable for

the APDA, while the IESs presented in Wang et al. (2021)

and Feng et al. (2022b) are not.

2 Models of IESs

The devices in we-energies are listed in Table 3.

Here, j denotes the number of devices and i denotes the

number of we-energies. The IES has three types of energy: power,

heat, and gas. The vector

Xi,j ∈ R3 | i � 1, . . . , n + 1; j � 1, . . . , 12{ } has three

dimensionalities that indicate the operating conditions

(power–heat–gas input or output) of devices. The element xm
i,j

represents the m-th element in that vector. The power–heat–gas

energy flow rate are x1
i,j, x

2
i,j, and x3

i,j, respectively. Additionally,

the IES has a centralized power plant. Owing to the

aforementioned reasons, the centralized power plant cannot

be settled in we-energies. In addition, the centralized power

plant should not be CHP because heat cannot be transmitted

over long distances. The energy in the centralized power plants is

exceedingly large. Thus, we can ignore the heat demand near the

plant.

2.1 Models and limits of the IES

Devices in the IES can be divided into two types: certain and

uncertain devices. Devices that can be controlled are certain

devices; for example, CHP and energy conversion devices are

certain devices, whereas devices that cannot be controlled are

uncertain devices. In the IES, the uncertain devices are renewable

energy devices and terminal energy loads. It should be noted that

uncertain devices do not have any operating cost functions

because the operating cost for energy devices and terminal

energy loads is considerably low. These devices have only an

energy input or output value xm
i,j. The limits for uncertain

devices are

xm
i,j ∈ 0, xm−up

i,j[ ]{ }. (1)

xm−up
i,j represents the operating limit. Because the

performance of uncertain devices including but not limited to

lines and transformers is not infinite, we need to establish an

operating limit.

The operating cost function and limits of CHP are

Ci,j,tk � ai,jx
1 2

i,j + bi,jx
1
i,j,tk

+ αi,jx2 2

i,j,tk
+ βi,jx2

i,j,tk
+ χi,j (2)

where ai,j, bi,j, αi,j, βi,j, and χi,j represent constants and ai,j is

positive. We regard the energy conversion efficiency of gas or

coal to power and heat as 100%. The constant values in Equation

2 and other equations determine the character of devices. The

constant values affect the relationship between the operating cost

and the rate of energies. The main motivation of the APDA is the

scalability because the APDA suits all kinds of convex functions.

How to match cost functions is not the emphasis of the APDA.

The limits are

−Pi,j
ramp ≤x1

i,j,tk
− x1

i,j,tk−1 ≤Pi,j
ramp, (3)

di,jx
1
i,j,tk

+ ei,jx
2
i,j,tk

+ f i,j ≥ 0, (4)
di,jx

1
i,j,tk

+ ei,jx
2
i,j,tk

≤ gi,j, (5)
xm
i,j ∈ xm−down

i,j , xm−up
i,j[ ]{ }. (6)

xm−down
i,j and xm−up

i,j indicate the operating limits of CHP,

and Pramp
i,j denotes the ramp limit of power. Because the output of’

CHP cannot change too fast, we should add a ramp limit.

However, we only consider the ramp limit of power because

the time-scale of heat is exceedingly large. In addition, the CHP

also has a maximum operating limit and a start–stop limit. The

reason for the maximum operating limit is very easy to

understand. However, what is the reason for the start–stop

limit? If a CHP stops operating, it is too hard to restart it. So

we need to establish a start–stop limit to keep the CHP in

operation. Zhang et al. (2017) have already shown that the

maximum operating limit and the start-–stop limit for CHP

should be linear as in (4) and (5). di,j, ei,j, f i,j, and gi,j are positive

constants. In addition, because the power and heat output

transmission of CHP is not infinite, we establish limit (6), and

xm−down
i,j and xm−up

i,j indicate the transmission limits of CHP.

Natural gas is a fossil fuel; hence, we cannot produce it. Gas

price is decided by other departments, and not by the IES.

The model and limits of energy storage devices are

Om
i,j,tki,t

� ai,jx
m−S
i,j,tk

xm−S
i,j,tk

− μmi,j( ) + bi,j
C � Om

i,j,tki,t
− Om

i,j,tki,t−1
, (7)

It is worth noting that there are two energy values in the

energy storage device. One is the energy that is stored in the

energy storage device, for which we use xm−S
i,j,tk

to express, and the

other is the energy output (input) to (from) the IES, for which we

adopt xm
i,j,tk

to express. In addition, because if the energy in the

storage device is too much or too little will reduce the service life

of the device, each energy storage device has an optimization

store value, and we adopt Om
i,j,tki,t

to express the optimization of

energy storage value. So, the cost of the energy storage device is

the loss of store optimization. ai,j, μmi,j, and bi,j are constants and

ai,j is negative. Thus, we obtain

xm
i,j,tk

� xm−S
i,j,tk−1 − xm−S

i,j,tk
. (8)
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The limits are

−xm in−SD
i,j ≤ xm

i,j,tk
≤xm out−SD

i,j

∣∣∣∣∣xm−S−min
i,j ≤xm−S

i,j,tk
≤xm−S−max

i,j . (9)

Not only the energy exchanged from the IES but also the

energy stored in the energy storage devices has maximum and

minimum limits, so there are four limits in one energy storage

device. xmin−SD
i,j and xmout−SD

i,j are the energy input and output limits,

respectively; and xm−S−min
i,j and xm−S−max

i,j indicate minimum and

maximum energy store limits, respectively.

Furthermore, there is a coupling item of energy load because

one load can choose more than one energy to realize its function.

In this study, we considered that the power to gas devices and

electric boilers are supplied by energy transformation devices

that can change energy loads. It is worth mentioning that the

energy transformation devices need to satisfy the energy input

required to be a price-changeable energy, so gas-based CHPs are

not classified under such devices. The energy load changing and

its cost is given as

Δxa � −η ×Δxb C � w ×Δxa| . (10)

Essentially, we can adopt load of energy a to replace load of

energy b. The energy conversion efficiency is η, and the operating

cost price is w.

The cost function of the equivalent gas producer is

CDGP
i,t � aDGPi,t GDGP2

i,t + bDGPi,t GDGP
i,t + cDGPi,t . (11)

How to model the network limits? Because the information

and the energy flow are disconnected in the APDA and the

privacy protection in the APDA is entire, the energy flow in the

APDA can choose every path, and each we-energy can link to

every other we-energies. In other words, the adjacency matrix of

the APDA is an all-one matrix. For this reason, the energy flow in

the APDA is more free than that in existing distributionmethods,

so the possibility of energy violating the limit is much less in the

APDA than in other distribution methods. The only two

possibilities of that harm are as follows. on one hand, if the

hole energy flow in the hole IES is very large, all networks cannot

handle the energy, and the energy violating the limit may happen.

On the other hand, if the energy input or output in one we-energy

is large, the energy transmission will go wrong. The complex

network can change the energy flow to another path in the

network, but if too much energy will transmit from (to) one we-

energy, the complex network will be meaningless. The two cases

can be handled together. We can establish an energy output or

input limit for each energy because the energy that the IES

network can contain is much larger than the total absolute value

of each we-energy limit. In addition, because the operation of

each device is dependent on the energy price, we can change the

energy limit to the price limit of each we-energy. Each we-energy

will compute its two price limits by the island model before

energy management. Then, if the dispatch result of the price is

beyond the energy limit, the we-energy will stop dispatch and

operate by its price limit. The IES will consider it as a device that

cannot respond to dispatch.

3 APDA and its advantages

Notably, the APDA is scalable. Models discussed previously

only serve as examples. However, all types of IESs with convex

models are suitable for the APDA. To this end, this study

introduces the application of the APDA to all convex IES

models except for the proposed model.

3.1 Communication path

First, the communication path of the APDA is not a

traditional centralized communication path or traditional

distributed communication path. It is an annular-directed

communication path from Zhang et al. (2017) shown in

Figure 1A–C, which illustrates the traditional centralized and

distributed IES. There are several advantages of the annular-

directed communication path, of which the biggest advantage is

that it is compatible with the APDA. The difference between the

three communication paths is listed in Table 4.

Remark 1: In traditional research energy ratios, energy input

or output and energy prices had to be known among neighboring

agents; hence, they could not completely protect privacy.

However, in the annular communication in the APDA, all

data are cryptographic, which ensures that all data are

completely protected even if among neighbor agents, no

information is known by each other. The reason behind this

will be introduced in the proceeding sections.

Privacy protection in the IES means that designers should

make information, including but not limited to energy input,

energy output, energy store values, and parameters in one we-

energy, unknown to other we-energies because they may be

business competitors. The APDA only needs to transmit some

parameters, so protecting parameters is the content of privacy

protection in the APDA. Existing methods established some

neighbor agents and then transmitted data between them and

did not transmit data to non-neighbor agents to protect privacy.

Although privacy protection in existing studies can protect users’

privacy to a certain degree, private data are still obtained by

neighbor we-energies. However, in the annular-directed

communication path of Figure 1C, privacy protection can

protect all data, including data between neighbor agents. In

the annular-directed communication path, all we-energies can

only get the summation of corresponding parameters before

them in the annular path so they do not know the parameter

values in every previous we-energy. Furthermore, we will

establish some fictitious parameter values to protect the

privacy of the first agent. By this method, all privacy will be

protected so there are not any neighbor agents. It is worth noting
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that the cyber information communicating path for the APDA is

a simple annular path. However, the energy transmitting path is

not the circle. The cyber information communicating path only

transmits information but not energy because if energies transmit

in a simple circle, the energy transmission cost will be very high.

After the running of the APDA, the balance of all energies will be

realized. Then, how to transmit corresponding energies to

corresponding we-energies will be an easy elementary math

problem that does not need any algorithms. So, this article

does not discuss the energy-transmitting path. However, the

equivalent gas producer does not have the gas limit because it

does not belong to the IES, although we regard it as a we-energy.

It can transmit gas to corresponding places directly.

3.2 Model adjusting

For some IESs with a strong ability for computation and

communication, adopting their model may be the best choice.

However, for some IESs with a weak ability for computation and

communication, the APDA needs to reduce the order of models

to reduce communication and computation by using the method

in Lai et al. (2017). We assume that the model order limit of the

IES is 2.

If the function f(x) is a polynomial function but the order is

too high, we can adopt Chebyshev approximation to reduce the

order, as shown below.

Herein, we introduce how one order can be reduced. If

several orders need to be reduced, the APDA will reduce the

order repeatedly until the order meets the standard. We assume

that there is only one independent variable in the function. If

there is more than one independent variable, the APDA will

handle them sequentially.

T0 x( ) � 1;
T1 x( ) � x;
T2 x( ) � 2x2 − 1;
. . . . . .

Tn+1 x( ) � 2xTn x( ) − Tn−1 x( )

(12)

P x( ) � f x( ) − a
2n−1

Tn x( ),

where f(x) represents the primitive function; P(x) represents the
new function; and a indicates the coefficient of the highest order

in f(x).
If the function f(x) is an exponential function or another

convex function that is not primitive, we can fit it into a primitive

function and handle it as a primitive function using the Lagrange

interpolation polynomial, as shown below.

FIGURE 1
(A). Traditional centralized IES (B). Traditional distributed IES (C). Annular-directed IES.

TABLE 4 Devices in each we-energy.

Communication and
computation

Sensitivity of one-point
breakdown

Privacy
protection

Compatibility with
the APDA

Traditional centralized
communication path

Small but centralized on the control
center

Sensitive Protect nothing No

Traditional distributed
communication path

Disperse to the hole system. However, the
total is large

Not sensitive Protect some data No

Annular directed
communication path

Disperse to the hole system and the total
is small

Not sensitive Protect all data Yes

Remark None None 1 None
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First, we select three points on f(x), and we use independent

variables to solve function variables. Subsequently, we solve

f(x) as

wk x( ) � ∏k−1
m�0

x − xm( ), (13)

Lk x( ) � ∑k
p�0

yp
wk+1 x( )

x − xp( )wk+1′ xk( ), (14)

where (xm, ym) represents a point on f(x); Lk(x) represents the
new polynomial function.

All theories about model adjusting can be found in Ma et al.

(2022). Additionally, model adjusting is rarely observed. In most

cases, models can satisfy the standard of the IES because the

APDA can substantially reduce the communication and

computational pressure.

Second, we solve the first-order partial differentials of the

cost functions of each type of energy (considering other energy

types as constants). Accordingly, we solve their inverse functions.

These functions are named as fw(x), (w ⊂ 1, 2, 3, . . .{ }). The

independent variables are the first-order partial differentials

and the dependent variables are energy values. There may be

more than one fw(x) in one device. The number of fw(x)
indicates the energy types in the devices. Moreover, some

devices do not have cost functions. Their operating conditions

are unchangeable. Therefore, they cannot solve first-order partial

differentials. The fw(x) values of such devices are constant

functions; the constant values represent their operating

conditions. Additionally, we do not consider the energy

transmission devices in this step. It is worth mentioning that

the APDA must first reduce orders before changing function

shapes. This is because if function shapes are changed before

reducing orders, the errors will be much larger. Furthermore, this

study shows only the circumstance that the order limit is 2.

However, in practice, the order limit can be any value owing to

the different performances of energy routers.

It is worth mentioning that if the order limit of C(x) is 2,
then the high-order differential of fw(x) will be 0. However, if

the order limit of C(x) is higher than 2, then the high-order

differential of fw(x) will not be 0. However, the independent

variable order of fw(x) will decrease with the increase of

differential order of fw(x). If the independent variable order

is less than –5, we can regard the high-order differential of

fw(x) as 0.

3.3 Main algorithm

The operations of the APDA are listed in Table 5; some

complex operations are in the remarks.

Remark 1: Here, jj denotes the price-changeable energy type.

In this article, jj is 2 because the power and heat price can be

changed; however, the gas price cannot be changed. We should

add some initialization values into Q and store Q into the control

center. The reason behind that will be introduced later.

Moreover, kk indicates the order limit. In this study, kk is 2.

The order limit analysis will be introduced in the proceeding

sections.

Remark 2: The rows of Q represent devices with each single

price-changeable energy. The model in this article comprises two

rows, which correspond to power and heat. The first column of Q

contains the function values of fw(x) corresponding to energy.

The second column of Q contains the first-order partial

differential of the corresponding independent variable in the

first column. The APDA will add corresponding energy and

corresponding partial into the corresponding place. It is worth

mentioning that two or more different values can be added into

one place. We can use the model in this study as an example.

Q+ � A A1

B B1
[ ], (15)

A � ∑
j⊂ 1,2,8,11,4,7{ }

x1
i,j, (16)

TABLE 5 APDA.

Step Operation Remark

1 Initialize a jj × kk matrix Q and store Q into the control center of the IES. Initialize energy price of all energy. i � 1, j � 1. Solve the price
limits of each we-energy

1

2 Enter the j th device of i th we-energy. Consider the energy price as the independent variable of the corresponding energy. Solve the
function values and their partial differential value and high-order partial differential values. Subsequently, add them to corresponding
elements of Q. Then, j � j + 1, repeat the process until all devices in that we-energy are handled

2

3 If i is not the last device of the we-energy, i � i + 1, j � 1, return to step 2. Else, continue Nothing

4 Settle Q. Then, adopt Q to establish several systems of partial differential equations. (if Q is out of the price limit of one we-energy, let the
we-energy operate at the limit, regard that we-energy as a device which cannot be dispatched and return to step 2). Determine a vector I.
Transmit I to each we-energy using the annular path

3

5 Adopt I to ensure the operating optimal conditions of all devices. For some price-unchangeable energy, including gas, if the energy
balance is mismatched, the IES needs to purchase them from other departments

4
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A1 � ∑
j⊂ 1,2,8,11,4,7{ }

z C( )
z x1

i,j( ), (17)

B � ∑
j⊂ 3,9,12,4,7{ }

x2
i,j, (18)

B2 � ∑
j⊂ 3.9,12,4,7{ }

z C( )
z x2

i,j( ), (19)

where Q− is the Q before step 2.

Remark 3: First, the Q in step 4 should be settled. There are

two Q s in the control center: first, we store an initialization Q in

the control center in step 1, which we named Q1; second, we use

the algorithm to compute a Q and transmit it to the control

center, which we named Q2.

Q � Q1 − Q2. (20)

Subsequently, we establish jj functions. These functions are

fww(x), (ww ⊂ 1, 2, 3, . . . , jj{ }). We establish a system of partial

differential equations as

zkk fww( )
z x( )kk � Q ww, kk + 1( ) kk≥ 0|{ }. (21)

Accordingly, all fww can be solved.

Subsequently, we should use these fww to ensure energy

balance. Because all function values of each fww denote the total

energy in the IES, if all fww values are 0, the energy balance is

reached. However, that is not the optimization condition because

the energy conversion is not considered. There are three

circumstances that could be considered in this article

Circumstance 1: One price-changeable energy a changes to

another price-changeable energy b.

Circumstance 2: One price-changeable energy a changes to

one price-unchangeable energy b.

Circumstance 3: One price-unchangeable energy b changes

to one price-changeable energy a.

In circumstance 1, we should solve these functions.

xa � xb, (22)
fww

a � −fww
b ≥ 0, (23)

where x indicates the independent variable of fww; fa
ww and fb

ww

are the fww of energy a and b, respectively.

In circumstance 2, we should solve the following functions.

xa � prb, (24)
fww

a ≥ 0, (25)

where prb indicates the energy price of b.

In circumstance 3, we are required to solve the following

functions.

xa � prb, (26)
fww

a ≤ 0. (27)

Other fww without energy transformation are all 0.

Accordingly, we can solve these functions to work out all x of

each fww and all conversion energies. We adopt each x of the

corresponding energy as the energy prices and divide the energy

conversion value to all energy transformation devices. We add all

energy prices and divided the conversion energy value into I.

Remark 4: The optimization operating condition of each

energy devices can be solved as

max W � ∑m
ww�1

xww
i,j,tk

prww − C, (28a)

where C represents the cost function and prww indicates the

energy price of the ww-th energy. Furthermore, all conditions of

conversion devices are in I.

Remarkably, the reason for placing a random initialized value

into Q in the first step is to protect privacy. In the APDA, each

device can only know the sum of the data; hence, they cannot

know the data of each device. However, the second device can

know the data of the first device because the total data are the data

of the first device. Accordingly, we place an initialized value into

Q in the first step to protect the data of the first device.

3.4 Demonstration of the proposed
algorithm

First, we should prove some propositions.

Proposition 1: The cost price of energy is the differential of its

cost function.

First, because all cost functions are convex, the energy cost

price is dynamic. The average energy cost price between x and x0

can be given as

pr � C x( ) − C x0( )
x − x0

(28b)

If for all positive values ε, |x0 − x|< ε, we can draw a

conclusion that

pr � C x( ) − C x0( )
x − x0

� C′ x( ) (29)

Accordingly, the cost price on x is the differential of C(x).
Proposition 2: If there is only one type of energy in the IES,

the best operating condition of each device is that all first-order

differentials are the same.

We assume another operating condition in the IES. Some

devices named condition 2 with less cost based on the condition

that all first-order differentials are the same, which is named

condition 1. The energy balances are satisfied in conditions

1 and 2.

There are some devices in condition 2 with more energy than

that in condition 1. To ensure energy balance, there are also some

devices in condition 3 with less energy than that in condition 1.

Accordingly, the devices with more energy consume more cost,
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and vice-versa. Conditions 2 and 3 collectively constitute another

operating condition of the IES.

For conditions 1 and 2, we assume x is energy in condition 1,

xn is energy in condition 2. n ⊆ 1, 2, . . . ,m{ }, and m indicates all

devices with more energy in condition 2. From the Lagrange

mean value theorem, we can draw a conclusion that

C′ x( )≤ C xn( ) − C x( )
xn − x

� C′
δ⊂ x,xn( )

δ( )≤C′ xn( ). (30)

The cost between condition 1 and condition 2 is

Cmore � ∑
n⊆ 1,2,...,m{ }

C xn( ) − C x( )

� ∑
n⊆ 1,2,...,m{ }

Cδ ⊂ x,xn( )′ δ( ) xn − x( ). (31)

We name all the energy as xx and the smallest Cδ ⊂ (x,xn)′(δ)
in n ⊆ 1, 2, . . . ,m{ } is C∇. Thus, we obtain

Cmore � ∑
n⊆ 1,2,...,m{ }

Cδ ⊂ x,xn( )′ δ( ) xn − x( )≥C∇ ∑
n⊆ 1,2,...,m{ }

xn − x( )

� C∇xx>C′ x( )xx.
(32)

For conditions 1 and 3, we assume x is energy in condition 1,

xk is energy in condition 3. k ⊆ 1, 2, . . . ,mm{ }, and mm indicates

all devices with more energy in condition 3. From the Lagrange

mean value theorem, we can draw a conclusion that

C′ xk( )≤ C x( ) − C xk( )
x − xk

� Cδ ⊂ x,xn( )′ ϕ( )≤C′ x( ). (33)

The lesser cost between condition 1 and condition 2 is

given as

Cless � ∑
k⊆ 1,2,...,mm{ }

C x( ) − C xk( )

� ∑
k⊆ 1,2,...,mm{ }

Cδ ⊂ xk,x( )′ ϕ( ) x − xk( ) (34)

We name all less energy as xxx, and the largest Cδ ⊂ (xk,x)′(ϕ)
in k ⊆ 1, 2, . . . , mm{ } is C∇∇. Thus, we obtain

Cless � ∑
k⊆ 1,2,...,mm{ }

Cϕ ⊂ xk,x( )′ ϕ( ) x − xk( )≤C∇∇ ∑
k⊆ 1,2,...,mm{ }

x − xk( )

� C∇∇xxx<C′ x( )xxx.
(35)

To ensure energy balance, xxx � xx, which yields

Cless<C′ x( )xxx � C′ x( )xx<Cmore. (36)

Thus, the best operating condition for all devices require that

all first-order differentials be the same. Proposition 2 stands

correct.

Similarly, if the price of energy a is the same as that of energy

b, the energy transformation is the optimal condition.

Accordingly, the optimization is proved.

Proposition 3: fww is a sum of fw.

fww � Q ww, 1( ) � fw1 + fw2 +/ + fwn

fww
′ � Q ww, 2( ) � fw1

′ + fw2
′ +/ + fwn

′

fww
nn � Q ww, nn + 1( ) � fw1

nn + fw2
nn +/ + fwn

nn

Accordingly, fww is a sum of fw.

Therefore, the value of fww is the energy mismatch.

Accordingly, the convergence is proved.

4 Simulation results

The simulation results of this study are divided into five

parts: 1) the running results of the APDA, 2) the running

results of the existing iterative algorithm and subsequent

comparison with the APDA (including the benchmark

functions test for the APDA and the existing iterative

algorithm), 3) the plug-and-play performance test of the

APDA, 4) emergency power dispatch of the APDA, and 5)

scalability of the APDA. We chose the iterative algorithm

presented in Chang et al. (2021) as a comparative

benchmark. To attain a more convincing comparison, the

simulation platform, all device types, arguments and

quantities, and loads of all energies are the same as those

depicted in the literature (Chang et al., 2021) (only gas-based

CHP is deleted because gas is very expensive currently;

therefore, it is inadvisable to adopt gas to produce other

energies. To make the comparison more convincing, gas-

based CHP is not only deleted from the simulation results of

the APDA but also from the simulation results of the existing

iterative algorithm presented in (Chang et al., 2021)). The

data are provided in the Supplementary Material. It is worth

noting that the data of the APDA and traditional algorithms

are kept the same for comparison. The integrated energy

system model of the APDA and that of the comparative

algorithm are shown in Figure 2. More details and data are

available in literature (Chang et al., 2021) and will not be

repeated here. It should be noted that the cyber information

communication path for the APDA is a simple annular path.

However, the energy transmission path is not circular. The

cyber information communication path only transmits

information but not energy because if energy is

transmitted in a simple circle, the energy transmission

cost will be very high. After running the APDA, the

balance of all energies was achieved. Then, how to

transmit corresponding energies to corresponding we-

energies will be an easy elementary mathematical problem

that does not require any algorithms. Therefore, this study

does not discuss the energy transmission path. Figure 2

shows an energy transmission black box that replaces the

energy transmission topology. In each we-energy, there is

one control center, one wind generator, one solar generator,
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one solar heat device, one coal-based CHP, one electric

boiler, one equivalent gas producer (only in we-energy 1),

one power storage device, one heat store device, one gas store

device, one power to gas device, and one electric boiler. All

data are in the Supplementary Material.

The simulation result of the APDA is shown in Figure 3

(because the APDA does not require iterations, there are no

convergence procedures for the APDA. It converges in one

iteration.). The abscissas 1–11 in Figure 3 represent the

power rate of the wind generator, power rate of the solar

generator, heat rate of the solar heat devices, gas rate of the

equivalent gas producer (if there is no equivalent gas

producer, that value is zero), power rate of the coal-based

CHP, heat rate of the coal-based CHP, power rate of the

power storage device, heat rate of the heat store device, gas

rate of the gas store device, power rate of the electric boiler,

and power rate of the power to gas device. The power, heat,

and gas prices were 11.2198 cents, 8.4393 cents, and

7.6237 cents, respectively, perkwh. Additionally, the

APDA requires only one iteration; thus, the algorithm is

exceedingly fast and communication and computation

burden is exceedingly low. Furthermore, the energy

supply demand mismatches of power, heat, and gas are

all 0. In addition, there were no parameters that were

difficult to adjust. For the existing iterative algorithm

(setting the price adjustment factor to 10−8), the

convergence procedure with iterations of power–heat–gas

prices and power–heat–gas supply demand mismatch are

shown in Figures 4–9, respectively (the Zeno coefficient is

defined in Tan and Li, (2022). Because the Zeno coefficient is

not related to the APDA and is only connected to a

traditional algorithm for contrast experiments, it is not

FIGURE 2
IES model.

FIGURE 3
Simulation results of the APDA.
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detailed here. The detail about the algorithm for contrast

experiments is in the Supplementary Material). The power,

heat, and gas prices were 11.1620 cents, 8.3847 cents, and

7.6237 cents, respectively, per kwh. Additionally, this

algorithm requires 50 iterations, which not only reduces

the speed of the algorithm considerably but also

significantly increases the communication and

computational burden. Furthermore, the energy supply-

demand mismatches of power, heat, and gas are

2,714 kwh less, 3,262 kwh less, and 0, respectively. In

addition, the algorithm is highly sensitive to suitable

factors. If we adjust the price adjustment factor to 10−6,
the power–heat–gas supply-demand mismatch will vibrate,

as shown in Figure 10, Figure 11, and Figure 12, and never

reach the energy balance.

In summary, both the APDA and traditional algorithm can

unify all prices of one energy in each device. According to the

theoretical demonstration presented in Section 3.4, if all prices of

one energy are unified, optimization can be achieved. Therefore,

both the APDA and traditional algorithm can be optimized.

FIGURE 4
Convergence procedure of power price.

FIGURE 5
Convergence procedure of heat price.

FIGURE 6
Convergence procedure of gas price.

FIGURE 7
Convergence procedure of power supply-demand
mismatch.
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However, the APDA can strictly realize the astringency of all

energy mismatches to 0, but the traditional algorithm can only

converge the power–heat–gas mismatch to 2,714 kwh less,

3,262 kwh less, and 0. Therefore, the APDA has better

astringency than the traditional algorithms. In addition,

because the APDA only requires one iteration, whereas the

traditional algorithm requires 50 iterations, the

communication and computational burden in the APDA is

much less than that in the traditional algorithm. Accordingly,

the APDA is much faster than the traditional algorithm;

therefore, it can avoid the time delay better than traditional

algorithms. Finally, the APDA is independent of suitable factors,

whereas traditional algorithms rely heavily on them.

To test the plug-and-play performance of the APDA, we

removed the last we-energy in the simulation platform. The

simulation results are shown in Figure 13. The abscissas 1–11 in

Figure 13 represent the same meaning as those presented in

Figure 3. Figure 13 shows that the APDA can operate normally

without we-energy; therefore, the plug-and-play performance of

the APDA is reliable.

It should be noted that the variations in power loads and

fluctuations experienced by power devices are usually in the

order of several seconds, while the heat and gas load variations in

the IES are usually hourly. Thus, based on the hourly dispatch of

all energies, an emergency strategy for power-only devices

(including power in CHP) is required for emergency power

scheduling. If power scheduling is required, the APDA

operates with power-only devices. We increased the 50,000 kw

power ratio to test emergency power scheduling. The simulation

result is presented in Figure 14. The abscissas 1–11 in Figure 14

represent the same values as those depicted in Figure 3. From

Figure 14, we can conclude that the emergency power scheduling

of the APDA is reliable.

As for testing the scalability of the IES, we have already

established a large-scale system by adding the we-energy number

from 5 to 15 to test the scalability of the proposed method. All

data are in the Supplementary Material. The simulation result is

in Figure 15. The abscissas 1–10 in Figure 15 represent the power

rate of the wind generator, power rate of the solar generator, heat

rate of the solar heat devices, power rate of the coal-based CHP,

heat rate of the coal-based CHP, power rate of the power storage

device, heat rate of the heat store device, gas rate of the gas store

device, power rate of the electric boiler, and power rate of the

power to gas device. The gas rate of the equivalent gas producer is

11,221,474 kwh. We do not put it into the figure because it is too

large. However, the equivalent gas producer is not limited by the

network limit because of the reason we have already introduced

in Section 2. From Figure 15, we can conclude that the emergency

power scheduling of the APDA is reliable.

FIGURE 8
Convergence procedure of heat supply-demand mismatch.

FIGURE 9
Convergence procedure of gas supply-demand mismatch.

FIGURE 10
Power mismatch with larger factor.
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5 Conclusion

In this study, an algorithm without iterations called the APDA

was introduced for use in future IES applications. By comparing the

currently proposed and traditional algorithms, we determine that the

APDA only requires one communication and computation iteration,

whereas the traditional algorithm requires 50 iterations. In addition,

theAPDAcan strictly realize the astringency of all energymismatches

to 0. However, the traditional algorithm can only reduce the

FIGURE 11
Heat mismatch with larger factor.

FIGURE 12
Gas mismatch with larger factor.

FIGURE 13
Plug-and-play performance.

FIGURE 14
Emergency power scheduling.

FIGURE 15
Scalability performance.
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power–heat–gas mismatch to 2,714 kwh less, 3,262 kwh less, and 0.

In addition, the APDA is independent of suitable factors, whereas

traditional algorithms rely heavily on them. However, the APDA

requires synchronous communication and large-scale

communication simultaneously. Some changeable IES applications

are unfit because they require frequent dispatches. In addition, the

APDA can only handle convex optimization; accordingly, an IESwith

non-convex devices is unsuitable for it. Therefore, asynchronous

communication without iteration and non-convex optimization in

an IES needs to be further studied.
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