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The SiC MOSFET has lower conduction loss and switching loss than the Si IGBT,

which helps to improve the efficiency and power density of the converter,

especially for those having strict requirements for volume and weight, for

example, electrical vehicles (EVs), on-board chargers (OBCs), and traction

drive systems (TDS). However, the faster switching speed will cause

overshoot and oscillation problems, which will affect the efficiency and

security of the SiC devices and power electronic systems. For the SiC

MOSFET to be better used, combining a theoretical analysis, the double-

pulse test platform is built. The controllable principles of SiC MOSFETs are

validated. The turn-on and turn-off delay, switching delay, switching di/dt,

switching du/dt, switching overshoot, and switching loss of SiC MOSFETs under

different driving and parasitic parameters are explored. Finally, some valuable

suggestions for designing are proposed for a better application of the SiC

MOSFET.
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1 Introduction

The SiC MOSFET is a typical wide-bandgap power semiconductor device (Zeng and

Li, 2018). Compared with the Si IGBT, the SiC MOSFET has lower conduction loss and

switching loss, which means the efficiency of the converter can be improved, especially in

high-frequency applications. At the same time, the operation temperature of the SiC

MOSFET is higher than that of the Si IGBT, which reduces the size of the heat sink, so the

power density of the converter can be improved too. Therefore, the SiC MOSFET is

considered to have potential in electric vehicles, photovoltaic power generation, and high-

frequency power supplies (Camacho et al., 2017; Xie et al., 2021). However, due to the high

switching speed of the SiC MOSFET, the current and voltage overshoot would reduce the

electromagnetic compatibility of the converter. In addition, the overshoots and

oscillations will accelerate the aging of the device and eventually cause its failure (Sun

et al., 2021).

Various literature works studied the overshoots and oscillations of the SiC MOSFET

during the switching transients. The influence of the source inductance and drain

inductance on the overshoots is reported in Li et al. (2016) and Yang et al. (2022).
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Considering different parasitic parameters, Bonyadi et al. (2015),

Wang et al. (2019), and Talesara et al. (2020) provided the

behavior model of the half bridge applying SiC MOSFETs,

and the simulation and experiment results show that the

overshoots and oscillations are mainly caused by the parasitic

inductance in the loop, which should be reduced as much as

possible. The analytical model is proposed in Stark et al. (2021) to

characterize the switching behaviors of the SiC MOSFET. Riccio

et al. (2018) confirmed that the gate driving resistor can damp the

oscillation of the SiC MOSFET. However, comprehensive

research about the influence of driving parameters and

parasitic parameters on the switching behaviors of the SiC

MOSFET is lacking among the existing studies, and there is

no conductive guidance about designing the gate driver.

In this study, comprehensive research about the influence of

driving parameters and parasitic parameters on the switching

behaviors of the SiC MOSFET is carried out, which includes the

gate resistance Rg, the gate–source capacitance Cgs, the gate–drain

capacitance Cgd, the drain–source Cds, the gate inductance Lg, the

source inductance Ls, and the loop inductance Lloop. The

measured results show that the switching behavior of the SiC

MOSFET is controlled by these parameters from different aspects

and should be given special attention during the designing

period.

This paper is organized as follows. In Section 2, the switching

behavior of the SiC MOSFET is studied. The dynamic

characteristics of the SiC MOSFET with different driving and

parasitic parameters are explained in Section 3. Finally, the

conclusion is drawn in Section 4.

2 Switching behavior

2.1 Comparison between SiC and Si
devices

The SiC MOSFET is considered a good substitute for the Si

IGBT because better static and dynamic characteristics can be

TABLE 1 Comparison of key parameters between the SiC MOSFET and
Si IGBT.

SiC MOSFET Si IGBT

Name C2M0080120D IXGH20N120B

Breakdown voltage 1,200 V 1,200 V

Continuous current 36 A 40 A

On-state characteristics 80 mΩ 2.9 V

Gate charge 62 nC 72 nC

Input capacitance 950 pF 1,700 pF

Turn-on loss 265 μJ 2,100 μJ

Turn-off loss 135 μJ 3,500 μJ

TABLE 2 Influences of circuit parameters on the switching behaviors.

(di/dt)on (dv/dt)on (di/dt)off (dv/dt)off Eon Eoff

Rg↑ ↓ ↓ ↓ ↑
Cgs ↑ ↓ - ↓ - ↑ ↑
Cgd ↑ - ↓ - ↓ ↑ ↑
Cds ↑ - ↓ - ↓ ↑ ↑
Lloop ↑ ↑ - ↑ - ↑
Ls ↑ ↓ - ↓ - ↑ ↑

FIGURE 1
Double pulse test setting.

FIGURE 2
Switching behavior of the SiC MOSFET.
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achieved in the SiC MOSFET. Table 1 shows the comparison of

the key parameters between the SiC MOSFET and the Si IGBT.

The Si IGBT (IXGH20N120B) and SiC MOSFET

(C2M0080120D) are selected in the comparison because the

power levels of the two devices are similar. In terms of the

static characteristic, the on-state resistance of the SiCMOSFET is

80 mΩ, while the on-state voltage drop of the Si IGBT is 2.9 V, so

the conduction loss of the SiC MOSFET is lower than that of the

Si IGBT when the continuous conducting current is lower than

36.25 A. In terms of the dynamic characteristic, the gate charge

and input capacitance of the SiC MOSFET are 62 nC and 950 pF,

respectively, while those parameters of the Si IGBT are 72 nC and

1,700 pF, respectively. The lower gate charge and input

capacitance of the SiC MOSFET mean that the SiC MOSFET

can switch at a higher speed and frequency than those of the Si

IGBT. It can be seen in Table 1 that the turn-on and turn-off

switching losses of the SiCMOSFET are lower than those of the Si

IGBT due to the high switching speed of the SiC MOSFET.

The high switching speed of the SiC MOSFET will cause

overshoots, oscillations, and EMI during the ns-level switching

transient. The driving parameters will influence the charging

speed of the input capacitance, and the parasitic parameters will

form resonant networks. In order to investigate the dynamic

characteristics of the SiC MOSFET in detail, the double pulse test

is carried out as follows.

2.2 Double pulse test

The dynamic characteristics of the power device are

usually tested on the double pulse test (DPT) platform,

which is built into PSpice software. The DPT setting is

shown in Figure 1, where VBUS is the bus voltage, CBUS is

the bus capacitor, Lload is the load inductor, Df is the body

diode of the SiC MOSFET, Lloop is the parasitic inductance in

the loop, Lg is the inductance in the gate loop, Ls is the source

inductance of the device, Cgs is the gate–source capacitance,

FIGURE 3
DPT prototype.

FIGURE 4
Influence of Rg on the switching behavior of the SiC MOSFET. (A) Turn-on id. (B) Turn-off id. (C) Turn-on uds. (D) Turn-off uds.
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FIGURE 5
Dynamic characteristics of the SiC MOSFET with different Rg. (A) Switching delay. (B) Switching di/dt. (C) Switching du/dt. (D) Switching
overshoot. (E) Switching loss.

FIGURE 6
Influence of Cgs on the switching behavior of the SiC MOSFET. (A) Turn-on id. (B) Turn-off id. (C) Turn-on uds. (D) Turn-off uds.
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FIGURE 7
Dynamic characteristics of the SiC MOSFET with different Cgs. (A) Switching delay. (B) Switching di/dt. (C) Switching du/dt. (D) Switching
overshoot. (E) Switching loss.

FIGURE 8
Influence of Cgd on the switching behavior of the SiC MOSFET. (A) Turn-on id. (B) Turn-off id. (C) Turn-on uds. (D) Turn-off uds.
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Cgd is the gate–drain capacitance, Cds is the drain–source

capacitance, Rg is the driving resistance, Vg is the positive

driving voltage, and Ve is the negative driving voltage (Duan

et al., 2018; Qin et al., 2018). The first driving pulse is used to

establish the load current by turning on the SiC MOSFET, and

the second pulse is used to observe the dynamic characteristics

of the SiC MOSFET. It should be noted that Rg, Cgs, Cgd, and

Cds are changeable, and the parasitic inductances Lloop, Lg, and

Ls are controllable during the design period.

2.3 Switching behaviors

The switching behavior of the SiC MOSFET can be

represented by the waveforms of the gate–source voltage

ugs, the drain–source voltage uds, and the drain current id
(Li et al., 2017; Huang et al., 2021; Xiong et al., 2022a). The

key waveforms of the SiC MOSFET are shown in Figure 2.

It can be seen from Figure 2 that the turn-on behavior and

turn-off behavior of the SiC MOSFET have the similar and

symmetrical relationship. Both the turn-on and turn-off

periods have five typical transients, namely, the delay period,

the di/dt period, the du/dt period, the overshoot and oscillation

period, and the state period (As detailed in Appendix A). The

slew rate of the drain current is the cause of the overshoot for id
and uds. In the turn-on transient, the reverse recovery of the body

diode will cause the current overshoot, and it has

Ipeak �
������
2Qrr

did
dt

S + 1

√
, (1)

where Ipeak is the peak value of id, Qrr is the reverse recovery

charge of the body diode, and S is the snappiness factor of the

body diode. In the turn-off transient, the parasitic inductance in

the loop will cause an obvious overshoot in uds (Wu et al., 2020;

Zhao et al., 2020a; Qi et al., 2021), and it has

Vpeak � Lloop
did
dt

+ VBUS. (2)

The slew rate of the drain–source voltage uds is the cause for

the crosstalk phenomena. When the SiC MOSFET switches at

FIGURE 9
Dynamic characteristics of the SiC MOSFET with different Cgd. (A) Switching delay. (B) Switching di/dt. (C) Switching du/dt. (D) Switching
overshoot. (E) Switching loss.
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FIGURE 10
Influence of Cds on the switching behavior of the SiC MOSFET. (A) Turn-on id. (B) Turn-off id. (C) Turn-on uds. (D) Turn-off uds.

FIGURE 11
Dynamic characteristics of the SiC MOSFET with different Cds. (A) Switching delay. (B) Switching di/dt. (C) Switching du/dt. (D) Switching
overshoot. (E) Switching loss.
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high switch, the displacement current through Cgd will cause the

false turn-on of the synchronization device (Roy and Basu, 2021),

and the displacement current igd can be expressed as follows:

igd � Cgd
duds

dt
. (3)

The switching behavior of the SiCMOSFET is directly related

to the reliability of the device (Chen et al., 2021; Rashid et al.,

2021). Therefore, it is important to carry out the comprehensive

research about the influence of driving parameters and parasitic

parameters on the switching behaviors of the SiC MOSFET.

3 Experiment results

The DPT prototype is applied to investigate the dynamic

characteristics of the SiC MOSFET, as shown in Figure 3. The

load inductance Lload is equal to 200 μH, the tested device is

C2M0080120D of CREE, the bus voltage is equal to 400 V,

and the load current is 20 A. The oscilloscope is DPO3054

(500 MHz), the current probe is TCP305 A (30 MHz), and

the voltage probe is P6139 A (500 MHz). The bandwidth of

the probe is enough for measuring the transients of uds
and id.

FIGURE 12
Influence of Lg on the switching behavior of the SiC MOSFET. (A) Turn-on and Turn-off of id. (B) Turn-off uds.

FIGURE 13
Influence of Lloop on the switching behavior of the SiC MOSFET. (A) Turn-on id. (B) Turn-off id. (C) Turn-on uds. (D) Turn-off uds.
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3.1 Influence of Rg

The gate driving Rg can be selected during the designing

period. Figure 4 shows the waveforms of id and uds with

different Rg, and Figure 5 presents the dynamic

characteristics of the SiC MOSFET with different Rg. It is

obvious that with the increase in Rg, the turn-on and turn-off

delay of the device will increase because the charging time of

the input capacitance increases. The slew rate of id and uds
decreases with the increase of Rg, so the overshoot decreases

and the device can operate at a slower speed. It is evident that

both turn-on and turn-off losses increase with a larger Rg.

Therefore, the worst efficiency of the converter occurs when a

relatively large Rg is selected.

3.2 Influence of Cgs

The gate–source capacitance Cgs determines the delay time

and the value of di/dt. As shown in Figure 6 and Figure 7, the

influence of Cgs on the dynamic characteristics of the SiC

MOSFET is similar to that of Rg. The switching speed will

decrease if a larger Cgs is selected. It should be noted that the

value of Cgs has no significant influence on the slew rate of uds.

FIGURE 14
Dynamic characteristics of the SiC MOSFET with different Lloop. (A) Switching overshoot. (B) Switching loss.

FIGURE 15
Influence of Ls on the switching behavior of the SiC MOSFET. (A) Turn-on id. (B) Turn-off id. (C) Turn-on uds. (D) Turn-off uds.
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3.3 Influence of Cgd

The gate–drain capacitance Cgd determines the value of

du/dt, which is also called the “Miller capacitance.” The value

of Cgd is far lower than the value of Cgs and Cds, and a little

change in Cgd will cause a significant change in the value of du/

dt. Figure 8 shows the waveforms of id and uds with different

Cgd, and Figure 9 presents the dynamic characteristics of the

SiC MOSFET with different Cgd. It can be seen that delay and

di/dt have no obvious relationship with the value of Cgd.

However, du/dt will decrease with the increase of Cgd,

which will cause an increase in switching losses in turn. It

should be noted that though the value of du/dt decreases with

a larger Cgd, no significant optimization of overshoot occurs,

and the risk of false turn-on will increase.

3.4 Influence of Cds

The drain–source capacitance Cds can influence the value

of du/dt, and there is no necessary relationship between Cds,

delay, and di/dt. The additional Cds is applied to achieve the

soft turn-off by increasing Cds. As shown in Figure 10 and

Figure 11, both turn-on and turn-off du/dt will decrease with

the increase of Cds, and the turn-off loss and turn-off voltage

overshoot will decrease as a result. However, the energy stored

in Cds during the turn-off period will cause a significant

current overshoot during the turn-on period, which means

an obvious increase in the turn-on loss.

3.5 Influence of Lg

The gate inductance Lg is caused by the PCB trace of the gate

loop. As shown in Figure 12, the value of Lg has a minor influence

on the dynamic characteristics of the SiC MOSFET. However, Lg
should be reduced as much as possible because Lg will result in

the overshoot of ugs, which risks the reliability of the gate.

3.6 Influence of Lloop

The gate inductance Lloop is caused by the PCB trace of the

power loop. It is different to cancel the Lloop, even though the

relatively short PCB trace is designed. The most significant

drawback brought by Lloop is the larger voltage overshoot, which

will cause the device to breakdown. As shown in Figure 13 and

Figure 14, the value of Lloop only influences the oscillation frequency

and the voltage overshoot. In order to enhance the reliability of the

SiCMOSFET, Lloop should be reduced as much as possible. It should

be noted that a larger Lloop will result in lower turn-on loss because

the drain–source voltage will drop during the di/dt period. At the

same time, the turn-off loss will increase with the larger Lloop due to

the additional loss from the voltage overshoot.

3.7 Influence of Ls

The source inductance Ls exists in the gate loop and the power

loop. As shown in Figure 15 and Figure 16, when the drain current id
changes sharply, the induced voltage on Ls will slow down the

switching speed as a negative feedback effect. Therefore, the larger Ls
will cause lower di/dt during the switching transients. In order to

reduce the switching losses, new type packages are provided by

manufacturers, such as TO-247-4 and TO-263-7.

4 Conclusion

The SiCMOSFET is widely used in high-frequency and high-

temperature applications, which helps to improve the efficiency

and power density of the converter. However, the parasitic

parameters will inevitably cause overshoot and oscillation of id
and uds, which reduce the reliability of the SiC MOSFET. In this

study, comprehensive research about the influence of driving

parameters and parasitic parameters on the switching behaviors

of the SiCMOSFET is carried out, and some valuable conclusions

drawn are as follows:

FIGURE 16
Dynamic characteristics of the SiC MOSFET with different Ls. (A) Switching di/dt. (B) Switching loss.
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1) The parasitic inductance should be reduced as much as

possible by optimizing PCB traces and applying advanced

packages

2) Different driving parameters will cause different dynamic

responses of the SiC MOSFET, which should be

considered according to special applications, respectively

3) The increase in Cgd is not recommended due to the higher risk

of crosstalk

The influences of circuit parameters on the switching

behaviors of the SiC MOSFET are listed as shown in Table 2.
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Appendix A:

The turn-on current oscillation and the turn-off voltage

oscillation are two critical phenomena when describing the

switching behaviors of the SiC MOSFET (Li et al., 2020). The

turn-on current resonance angle frequency and the resonance

damping of the SiC MOSFET can be expressed as follows:

ωon � 1�������������
Lloop Coss + CL( )√ , (4)

ξon � Rds on Coss + CL( )
2ωon

. (5)

The turn-off voltage resonance angle frequency and the

resonance damping of the SiC MOSFET can be expressed as

follows (Liu et al., 2016; Mukunoki et al., 2018):

ωoff � 1�������������
Lloop Coss + CL( )√ , (6)

ξoff � RF

2
1

ωoffLloop
� RF

2

�������
CF + CL

Lloop

√
, (7)

where CL is the output capacitance of the freewheeling diode

and RL is the equivalent on-state resistance of the freewheeling

diode.
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