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The widely used intelligent measuring equipment not only makes the operation

of AC/DC hybrid transmission systemmore safe and reliable, but also inevitably

brings new problems and challenges such as the threats and hidden dangers of

cyber attacks. Given this, how to effectively and comprehensively assess the

inherent vulnerabilities of AC/DC hybrid transmission systems under the

coordinated physical-cyber attacks is of critical significance. In this paper, a

three-stage physical-cyber attack and defense risk assessment framework

based on dynamic game theory is proposed. In the framework, the dynamic

game process between attacker and defender is carried out for the power grid

risk, which is expressed as the product of the attacker’s success probability in

attacking the substation and the load loss caused by the attack. Regarding the

probability of a successful attack, it depends on the number of funds invested by

both attacker and defender sides considering the marginal effect, while the

corresponding load loss caused depends on the cyber attack vector and the

optimal load shedding scheme. For the solution of the proposed three-stage

dynamic game framework, it is converted into a bi-level mathematical

programming problem, in which the upper-level problem is solved by using

the backward induction method to get the subgame perfect Nash equilibrium,

and the lower-level problem is solved by using an improved particle swarm

optimization algorithm to get the optimal amount of load shedding. Finally, the

case study is performed on amodified IEEE 14-node AC/DC hybrid transmission

test system, and the inherent weaknesses of the power grid are identified based

on the risk assessment results, verifying the effectiveness of the proposed

framework and method.
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1 Introduction

With the continuous evolution and in-depth integration of

the physical power grid composed of practical equipment and the

advanced information communication system (ICS), a powerful

cyber physical power system (CPPS) has been gradually formed.

In particular, with the deep interaction between the physical

power grid and ICS, the high dependence of the power grid on

the measurement data will cause great damage to the power

system security and stability under cyber attacks that

compromise the availability, integrity, and confidentiality of

power grid data (Xu et al., 2021). Compared with physical

attacks, some cyber attacks, such as the false data injection

(FDI) and distributed denial of service (DDoS) attacks, are

highly stealthy, easy to implement, and difficult to defend

promptly. It is known that the blackout occurred in Ukraine

on 23 December 2015 was the first event in the world that was

considered as a malicious cyber attack on the power supply

system (Liang et al., 2016). In the blackout, a malware called

“Black Energy” attacked 60 substations roughly, resulting in

power outage of 1.4 million people in western Ukraine for

3–6 h. Thereafter, more and more cyber attacks have occurred

in power systems around the world, and have caused certain

system losses and social impact, such as the ransomware attack

on the Israeli national grid in 2016 and the satellite DoS attack on

a German wind farm in 2022. As a result, it is foreseeable that as

more and more intelligent devices are put into the modern AC/

DC hybrid transmission system, especially with the increasing

proportion of large-scale grid-connected clean energy and energy

storage system, once the power grid suffers from the coordinated

physical-cyber attacks, it will cause inestimable and severe

economic and social losses, affecting people’s normal life.

So far, a lot of research has been conducted on the risk

analysis of CPPS in the case of cyber attacks. Regarding the

interactions between cyber attackers and power grid defenders, a

bi-level optimization problem has been constructed to perform

vulnerability analysis (Yuan et al., 2011; Khanna et al., 2017), in

which the upper level problem mainly described the behavior of

the attacker, while the lower level problem mainly achieved the

power grid protection based on security-constrained economic

dispatch. In (Che et al., 2018), a cyber-secured corrective dispatch

scheme was proposed to protect the power grid from potential

data attacks. In (Chung et al., 2018), a coordinated cyber-physical

attack scheme was proposed to cause more serious consequences,

and a target selection criterion was designed to achieve higher

attack success rate. The bi-level optimization model built in the

above studies mainly focuses on the behavior of attackers and

defenders, ignoring the impact of resource deployment on attack

and defense, which can help attackers gain access to key

equipment through related vulnerabilities to achieve the

purpose of attack or help defenders detect attack behavior

through related defense facilities to ensure the security of the

power grid. In order to better describe the resource allocation

between attackers and defenders, many studies have used game

frameworks to model the strategic choices of attacks and

defenses, that is, the choice of various resource allocation

schemes (Ranjbar et al., 2019; Dai and Shi, 2020; Gao and

Shi, 2020; Hasan et al., 2020; Shan and Zhuang, 2020; Zhang

et al., 2021). In addition, different gamemodels have been used to

explain a variety of attack and defense scenarios according to the

research target and cyber attack methods. In Xiang et al. (2018), a

system adequacy evaluation framework incorporating cyber

attacks and physical failures was proposed to quantify the

influence of cyber attacks on the power supply adequacy, and

the static and Markov games were applied to model the

interactions between defenders and attackers. In Wang et al.

(2017), a Bayesian honeypot game strategy was introduced to

investigate the DDoS attack in the advanced metering

infrastructure network, and the interactions between the

defenders and the attackers were analyzed elaborately. In Liu

and Wang (2021), a FlipIt game model was established to

investigate the interactions between the defender, the attacker

and insider, and three types of insiders and their corresponding

impacts on the supervisory control and data acquisition system

were modeled and analyzed. In Lakshminarayana et al. (2021), a

zero-sum non-cooperative game model was proposed to find the

optimal placement of distributed flexible AC transmission

system as defense resource, so as to realize a moving target

defense strategy against the coordinated physical-cyber attack. In

order to study the interactions between defenders and attackers

more comprehensively, two game models, namely a Stackelberg

game and a hybrid satisfaction equilibrium-Nash equilibrium

game, were applied to study the impacts of data injection attacks

on the smart grid with multiple adversaries taken into account

(Sanjab and Saad, 2016). In Wei et al. (2016), a stochastic game-

theoretic approach was proposed to find the optimal strategy of

defender to protect the power grid against coordinated physical-

cyber attack. Although these game models mentioned above

explained the interaction of the resource allocation between

attackers and defenders in detail, the risks of power system,

usually quantified as the product of the attack success probability

and the corresponding consequences, still needs to be studied in-

depth. The classic three-stage defender-attacker-defender

dynamic game models with complete information were

proposed to assess the operation risks of transmission lines

(Gao and Shi, 2020) and feeder automation system (Dai and

Shi, 2020) under various physical-cyber attack scenarios. In

Zhang et al. (2021), a zero-sum multi-level Markovian

Stackelberg game was proposed to model the sequential attack

and defense actions on both cyber layer and physical layer,

aiming to mitigate the risks of power system. Moreover, some

studies also conducted risk analysis on CPPS system based on

game theory by considering the information asymmetry between

attackers and defenders (Gao et al., 2019; Wang et al., 2019; Shao

and Li, 2021; Tian et al., 2021). In the aforementioned existing

studies, almost all the studies are conducted for the AC
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transmission systems, and few studies investigate and discuss the

impact of cyber attacks on the AC/DC hybrid transmission

systems. In Amir et al. (2019), the impacts of the cyber-

attacks on the HVDC system and the effects on the dynamic

voltage stability were investigated to implement the cyber-

physical vulnerability and security evaluation of AC/DC

hybrid power grid. In Qiu et al. (2021), a HVDC ancillary

control strategy based on a hybrid data-driven technology was

proposed to effectively improve the controllability of the HVDC

intertie under the FDI attacks. Although the existing work on the

impact of cyber attacks on power grid operation and stability has

achieved fruitful research results using models and methods with

varying degrees of detail, the resource allocation of defenders and

attackers is relatively abstract, lacking some practical significance,

and the attack and defense strategies adopted are difficult to

reflect the actual operating conditions of the power grid studied.

Meanwhile, most of the existing work takes the implementation

conditions of the cyber attacks as the main factor affecting the

success probability of cyber attacks, such as whether the false data

can pass the bad data detection in the FDI attacks, lacking the

modeling of the specific process of cyber attacks, which obviously

will affect the success probability of attackers. In addition, most

of the existing research work mainly focuses on the AC

transmission systems, but the operation risk of the AC/DC

hybrid transmission system under the coordinated physical-

cyber attacks is rarely discussed. More intensive and specific

research work needs to be further carried out to model the

resource allocation of attackers and defenders, and the cyber

attack process and the corresponding risk assessment of AC/DC

hybrid system need to be explored and exploited in more detail.

In this paper, a three-stage dynamic game risk assessment

framework for an AC/DC hybrid transmission system under the

coordinated physical-cyber attacks is proposed, and then this

three-stage dynamic game framework is converted into a bi-level

mathematical optimization problem, which is solved by using the

backward induction (BI) method and an improved particle

swarm optimization (IPSO) algorithm. The main

contributions of this paper are summarized in the following

three-fold.

1) A three-stage physical-cyber attack and defense risk

assessment framework based on dynamic game theory is

proposed, aiming to effectively identify the inherent

vulnerability of the AC/DC hybrid transmission system

under the coordinated physical-cyber attacks.

2) The process of substation suffering from the cyber and

physical attacks is elaborately modeled to implement the

quantification of the actual success probability of the FDI

attack on the substation, which lays the foundation for the

risk assessment of the system.

3) A FDI attack model, targeting the AC/DC hybrid

transmission system, is carefully constructed based on AC

state estimation to bypass the bad data detector and effectively

realize more stealthy cyber attacks. In addition, an IPSO

algorithm is applied to solve the proposed FDI attack

model with highly non-linear characteristics.

The structure of the paper is organized as follows. In Section 2, a

three-stage physical-cyber attack and defense risk assessment

framework based on dynamic game theory is discussed. The

corresponding solution methodology based on the BI and an

IPSO algorithms is given in Section 3. The case study based on a

modified IEEE 14-node test system is performed in Section 4. Finally,

Section 5 concludes this paper and discusses possible future work.

2 Problem formulation

In this paper, a dynamic game framework is proposed to

conduct the risk assessment of coordinated physical-cyber attacks

in an AC/DC hybrid transmission system. In this dynamic game

framework, two players are involved, namely an attacker and a

defender. The attacker is assumed to be an attack team that consists

of hackers, mainly performing data monitoring and cyber attacks

against substations, and the FDI attacks are used as the main means

of cyber attacks. The defender is also assumed to be a defensive team

that consists of utility managers, substation inspectors, and cyber

security technicians. The defensive team aims at reducing the success

probability of cyber attacks on the transmission system by

improving inspection efforts and identifying network

vulnerabilities, and on the other hand, the defensive team will

also conduct optimal load shedding strategy after being attacked.

Based on game theory, and according to the action sequence of game

participants, this paper proposes a three-stage physical-cyber attack

and defense risk assessment framework for an AC/DC hybrid

transmission system. The corresponding dynamic game

equilibrium solution can not only obtain the optimal attack and

defense strategies, but also identify the inherent weaknesses of the

power grid according to the risk assessment results.

Figure 1 illustrates the game process of the three-stage

physical-cyber attack and defense. In stage 1, the defender

allocates limited defense funds to protect the cyber security

and physical security of the substation. In stage 2, the attacker

allocates limited attack funds to conduct cyber attacks on the

substation, and gains the right to tamper with power grid data by

performing FDI attacks. In stage 3, the defender adopts the

optimal load shedding scheme for the AC/DC hybrid

transmission system to minimize the power grid risk.

The following basic assumptions are listed in modeling the

proposed three-stage dynamic game framework.

1) The topology and all parameters of the power system are

accessible to the attacker.

2) The defense strategies employed by the defender, namely the

allocation of cyber defense and physical defense funds, are

exposed to the attacker.
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3) The attacker knows the optimal load shedding scheme that

the defender will take if the attacks succeed.

4) The defender will consider the strategies of attackers before

allocating defense funds.

Accordingly, the “defender-attacker-defender” three-stage

game model established in this paper is a dynamic game with

perfect information.

In order to further quantitatively evaluate the power grid risk

under the coordinated physical-cyber attacks, a power grid attack

risk index (GARI) is defined as follows, also representing the

payoffs to the attacker and defender.

min
d∈SD

max
a∈SA d( )

min
l∈SL d,a( )

GARI d, a, l( ) (1)

In this paper, the proposed GARI is computed as the product

of the vulnerability of the substation under coordinated physical-

cyber attacks and the corresponding consequences caused, which

is expressed as

GARI d, a, l( ) � V d, a( ) · C l( ) (2)

2.1 Stage 1: Deployment of defense funds

Regarding the cyber side, the defender can reduce the success

probability of cyber attacks against substations by upgrading

software, performing routine security checks, and purchasing

data monitoring equipment. Especially in view of the fact that

each substation improves its own communication network by

applying for funds from the utility, and that there is an upper

limit on these funds, a discrete allocation scheme of funds is

designed in this paper to represent the deployment of defense

funds, which is modeled as follows:

SCyd � Cydi{ }∑
i∈B

Cydi ≤ FCyd

⎧⎪⎨⎪⎩ ,Cydi ∈ 0,CydL1,CydL2{ },Cydi ≥ 0 (3)

Regarding the physical side, the defender needs to prevent

attacker from bribing substation staff and investigate the illegally

installed monitoring devices around the substation to be

attacked. Similarly, a discrete allocation scheme of defense

funds is given as follows:

SPhd � Phdi{ }∑
i∈B

Phdi ≤ FPhd

⎧⎪⎨⎪⎩ ,Phdi ∈ 0,PhdL1,PhdL2{ },Phdi ≥ 0 (4)

The set of defense fund deployment strategies for the

defender can be determined after considering the allocation of

funds for both cyber defense and physical security, which is given

as follows:

SD � d
∣∣∣∣d � SCyd , SPhd( ){ } (5)

FIGURE 1
Illustration of three-stage physical-cyber attack and defense in an AC/DC hybrid transmission system.
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2.2 Stage 2: Deployment of attack funds

As mentioned above, the main form of cyber attacks

launched by attackers on the cyber side is the FDI attacks.

In order to meet the conditions under which the FDI attacks can

be performed, the attack team must hire a certain number of

hackers to infiltrate the cyber network and falsify data. In this

paper, it is assumed that the attack team pays different hacking

service fees according to the skill level of the hired hackers. In

view of this, a discrete hacking service fee scheme is designed to

model the deployment of attack funds on cyber side, which is

expressed as

SCya � Cyai{ }∑
i∈A

Cyai ≤ FCya

⎧⎪⎨⎪⎩ ,Cyai ∈ CyaL1,CyaL2{ },Cyai > 0 (6)

To improve the success probability of performing FDI

attacks against the AC/DC hybrid transmission system, it is

essential to obtain some corresponding information of

power grid, such as network topology and power flow

data. More importantly, once the attack team obtains the

SSH port number and password of measuring equipment in

the target substations, it will be very easy to execute a

stealthy FDI attack. Therefore, the attack team will spend

certain funds to obtain power grid information by bribing

substation staff and illegally installing some monitoring

devices. Similarly, a discrete monitoring fee scheme is

designed to model the deployment of attack funds on the

physical side, which is expressed as

SPha � Phai{ }∑
i∈A

Phai ≤ FPha

⎧⎪⎨⎪⎩ ,Phai ∈ PhaL1,PhaL2{ },Phai > 0 (7)

The set of attack fund deployment strategies for the attacker

can be determined after considering the allocation of funds for

both cyber attacks and physical monitoring, which is given as

follows:

SA � a
∣∣∣∣a � SCya, SPha( ){ } (8)

Once two players, the defender and the attacker, have

deployed funds in sequential order, the probability of a

successful cyber attack can be determined. Regarding the

attack on the cyber side, the probability of an attacker

successfully attacking the ith substation consists of the

following two items:

pCy,i � pBAG,i · pcon,i (9)

In this paper, the probability pBAG,i can be calculated by using
a Bayesian attack graph model as shown in Figure 2, which can

clearly indicate the path of the cyber attack.

In Figure 2, the hackers exploit the vulnerabilities < SSH1,

2>, <log2,3>, and <DB 3,4>, respectively, and get the control

right of the substation, namely the right of User (4) in

accordance with the <1,2>, <2,3>, and <3,4 > connectivity

paths. The corresponding details of each vulnerability are

shown in Table 1, and the value of each vulnerability can be

calculated quantitatively based on the common vulnerability

scoring system (CVSS) (National institute of standards and

technology, 2022), which is a method used to provide

qualitative measure of severity. In addition, the CVSS also

provides a lot of information about each vulnerability, such

as impact, attack vector, weakness, or other relevant technical

information. The given information can help determine the

number from 0 to 10 as the CVSS score, and the larger the

number, the higher the severity of the vulnerability.

The final success probability of an attacker falsifying the data

of the ith substation can be obtained from the attack path given in

Figure 2, which is modeled as

pBAG,i � p SSH( ) · p Log( ) · p DB( ) (10)

In this paper, the CVSS score is divided by 10 to implement

the normalization as the success probability of a cyber attack, so

the p(SSH), p(Log), and p(DB) are defined as 8%, 55% and 78%,

respectively.

For the connectivity probability pcon,i, for simplicity, it can be

expressed as follows, in which it is assumed that the marginal

effect of the funds invested by both the attacker and defender is

taken into account:

pcon,i � 0.9e−
Cydi

μ+Cyai + 0.1 (11)

It should be noted that the value of μ is related to the number

of measurement devices installed in the substation.

Regarding the attack on the physical side, the attacker can not

only obtain the basic information of the power grid by

monitoring data or bribing staff, but also obtain SSH port

information and password of substation. Therefore, we

propose the following expression to model the probability of

obtaining SSH port and password by non-network intrusion

means pPh,i with the marginal effect taken into account:

pPh,i �
Phai

λ + Phai
· λ

λ + Phdi
(12)

It should be noted that the value of λ is related to the strength

of the substation security forces.

To sum up, the actual success probability of the FDI attack on

the ith substation can be expressed as

pi �
2arctan pCy,i + pPh,i · p DB( ) · pcon,i( )

π
(13)

More specifically, the success probability of the attacker’s FDI

attack on the AC/DC hybrid transmission system is the

cumulative product of the success probability of the attack on

all target substations, which can also be referred to the

vulnerability of the power grid under cyber attacks V(d, a)
given as follow:
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V d, a( ) � ∏
i∈A

pi (14)

2.3 Stage 3: Defender’s action

In the Stage 1 and Stage 2, once the deployment strategies of

defense and attack funds are determined, the vulnerability of the

substation attacked V(d, a) given in (Eq. 2) becomes a constant

term, and the aforementioned GARI can be rewritten as

GARI d′, a′, l( ) � V d′, a′( ) · C l( ) (15)

In this situation, the defender only needs to take some actions

in response to the consequence C(l) in Stage 3. In this paper, the

following max-min optimization problem is proposed to model

the consequence C(l):
C l( ) � max

ATK
min
DEF

∑
ΔPdL∈DEF

ΔPdL, l � ATK ,DEF( ) (16)

Since the target of FDI attacks in this paper is the AC/DC

hybrid transmission system, the attacker constructs the attack

vectors based on AC state estimation to bypass the bad data

detector in EMS system. Inspired by the existing FDI attack

modeling for AC state estimation (Rahman andMohsenian-Rad,

2013; Liu and Li, 2016), the corresponding FDI attack vector set

ATK is indicated as

ATK � ΔPdA,ΔQdA,ΔVmA,ΔθA( ) (17)

It should be noted that since the measurement devices in

substation cannot measure the phase angle, so the actual attack

vector does not contain ΔθA, which is listed here only to

indicate the integrity of the constraint variables. Moreover,

the number of attacked substations corresponding to the FDI

attack vector cannot exceed nATK max to ensure the invisibility

of FDI attacks.

To ensure that the FDI attack based on AC state estimation

can bypass the bad data detector, the attacker must obey the

following rules:

1) The voltage magnitude of the generator node cannot be

modified;

2) Only the voltage magnitude and phase angle of the zero-load

node can be modified;

3) The voltage magnitude and phase angle of the node adjacent

to non-attacked nodes (called edge nodes) cannot be

modified;

4) The variation of all tampered data should be within a certain

range;

5) The data of DC transmission lines cannot be tampered with.

Based on these rules described above, the FDI attack

constraints are indicated as follows:

FIGURE 2
Bayesian attack graph model of substation under cyber attack.

TABLE 1 Information on the vulnerabilities exploited during the
attack.

Vulnerability CVSS Description

<SSH, 1,2> 0.8 Get the port number for remote control

<Log,2,3> 5.5 Weak password authentication

<DB, 3,4> 7.8 Obtain read and write access to the database
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−τPd,i ≤ΔPdA,i ≤ τPd,i i ∈ A( )
−τQd,i ≤ΔQdA,i ≤ τQd,i i ∈ A( )
−τVm,i ≤ΔVmA,i ≤ τVm,i i ∈ A( )
−τθi ≤ΔθA,i ≤ τθi i ∈ A( )
ΔVmA,k � 0 k ∈ Ag( )
ΔPdA,k � 0 k ∈ A0( )
ΔQdA,k � 0 k ∈ A0( )
ΔVmA,k � 0 k ∈ Ae( )
ΔθA,k � 0 k ∈ Ae( )
PartLF Pd + ΔPdA,Qd + ΔQdA,Vm + ΔVmA, θ + ΔθA,PgA,QgA( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(18)

The corresponding PartLF constraints are specified as

Pi � Vm,i ∑nA
j�1

Vm,j gij cos θi − θj( ) + bij sin θi − θj( )[ ] i, j ∈ A( )
Qi � −Vm,i ∑nA

j�1
Vm,j bij cos θi − θj( ) − gij sin θi − θj( )[ ] i, j ∈ A( )

Pi � Pg,i − Pd,i − ΔPdA,i + Pleq,i i ∈ A( )
Qi � Qg ,i − Qd,i − ΔQdA,i + Qleq,i i ∈ A( )
Pleq,i � 0 i ∉ Ae( )
Qleq,i � 0 i ∉ Ae( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(19)

Similar to the FDI attack vector, the optimal load shedding

vector setDEF for the AC/DC hybrid transmission system can be

indicated as

DEF � ΔPdL,ΔQdL( ) (20)

Subject to the following constraints:

0≤ΔPdL,i ≤Pd,i i ∈ B( )
ΔQdL,i

∣∣∣∣ ∣∣∣∣≤ Qd,i

∣∣∣∣ ∣∣∣∣,ΔQdL,i · Qd,i ≥ 0 i ∈ B( )
Vmmin ,i ≤Vm,i ≤Vmmax ,i i ∈ B( )
θmin ,i ≤ θi ≤ θmax ,i i ∈ B( )
Sl,ij ≤ Slmax ,ij i, j ∈ B( )
Pgmin ,i ≤Pg,i ≤Pgmax ,i i ∈ B( )
Qgmin ,i ≤Qg,i ≤Qgmax ,i i ∈ B( )
LF Pd + ΔPdA − ΔPdL,Qd + ΔQdA − ΔQdL,Vm, θ,Pg ,Qg( ) � 0

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(21)

The corresponding LF constraints are specified as

Pi � Vm,i ∑nB
j�1

Vm,j gij cos θi − θj( ) + bij sin θi − θj( )[ ] i, j ∈ B( )
Qi � −Vm,i∑n

j�1
Vm,j bij cos θi − θj( ) − gij sin θi − θj( )[ ] i, j ∈ B( )

Pi � Pg,i − Pd,i − ΔPdA,i i ∈ A( )
Qi � Qg,i − Qd,i − ΔQdA,i i ∈ A( )
Pi � Pg,i − Pd,i i ∉ A( )
Qi � Qg,i − Qd,i i ∉ A( )

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(22)

In this paper, the line commutated converter (LCC) model as

shown in Figure 3 is applied to formulate the HVDC

transmission line, which is given as follows (Kundur and

Malik, 2022):

U ′
d �

3
�
2

√
π

n′U ′ cos α − 3
π
X′

CId Rectif ier( )

U″
d �

3
�
2

√
π

n″U″ cos γ − 3
π
X″

CId Inverter( )

cosφ′ � U ′
d

3
�
2

√
π

n′U ′
φ′ ∈ I Quadrant( )

cosφ″
∣∣∣∣ ∣∣∣∣ � U″

d

3
�
2

√
π

n″U″
φ″ ∈ II Quadrant( )

P′
d � U ′

dId > 0( ), Q′
d � P′

d tanφ′ > 0( )

P″
d � −U″

dId < 0( ) Q″
d � P″

d tanφ″
∣∣∣∣ ∣∣∣∣ > 0( )

θ′I � θ′U − φ′, θ″I � θ″U − φ″

I′ �
�
6

√
π

n′Id , I″ �
�
6

√
π

n″Id ,RdId � U ′
d − U″

d

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

By solving the optimization problem shown in (Eq. 16) under

the FDI attack vector constraints as given in (Eqs 18, 19) and the

load shedding vector constraints as given in (Eqs 21–23), the

optimal solutions, namely the optimal FDI attack vector set

ATK* and the optimal load shedding vector set DEF* can be

obtained. Once the system loss C(l) is determined, the GARI

shown in (Eq. 15) can be used to assess the risks of the AC/DC

hybrid transmission system under FDI cyber attacks.

3 Solution method

According to the modeling analysis of each stage in the

aforementioned three-stage dynamic game framework, the

framework can be converted into a bi-level mathematical

programming problem for solution. In this paper, firstly, an

IPSO algorithm is constructed to solve the lower-level

programming problem, aiming to obtain the optimal FDI

attack and the optimal load shedding vectors. Secondly, the

payoffs of the different attack and defense fund deployment

strategies can be calculated once the system loss is determined

based on the solution of the lower-level programming problem.
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For the solution of the upper-level programming problem, the

sub-game perfect Nash equilibrium is solved by using the BI

method (Aliprantis, 1999), and it is also helpful to calculate the

deployment of funds under the certain fund constraints. Finally,

the risk assessment analysis is carried out in accordance with the

Nash equilibrium obtained under various fund constraints.

3.1 Solution for the lower-level
programming problem

It should be noted that the FDI attack against the AC state

estimation system proposed in this paper is essentially a

reconstruction form of partial power flow. According to the

rules of generating FDI attack vectors described in Section 2.3,

the tampered data and other data in the attack area still meet the

power flow constraints, and only some inequality constraints

such as voltage magnitude and line capacity are violated in the

attack area. From the perspective of power grid dispatcher (the

defender), it can be considered that the load changes cause some

grid measurement data to exceed the limits. Therefore, the

tampered data can bypass the bad data detector and affect the

system state estimation.

As the tampered power grid data still meets the power

flow constraints, the potential attack selections can be

searched through the numerical relationship between

power system unknowns and equations. If the number of

unknowns in the set of all attacked target substations exceeds

the number of equations, the set is considered to be suitable

for FDI attacks, that is, a potential attack selection. On the

one hand, since the active power, reactive power, voltage

magnitude, and phase angle of each attacked target

substation node need to be calculated, the number of

unknowns Nx can be expressed as

Nx � 4N A( ) (24)

Moreover, based on the (Eq. 18) and (Eq. 19), as well as the

relationship between active power and reactive power of load, the

number of the equations Neq can be expressed as

Neq � 3N A( ) + N Ag( ) + N A0( ) + N Ae( ) (25)

In this paper, a depth-first search strategy (DFS) is leveraged

to search for the potential attack selections, and if the number of

all attacked target substation sets meets Nx >Neq, it should be

added to the potential attack selection set AP � A1, ...,Ai, ...,Ao{ }.
The FDI attack vectors can be constructed based on a given

potential attack selection. According to (Eq. 19) and the

relationship between active power and reactive power of load,

it can be seen that once the active power of each attacked target

substation is determined, the other three unknowns can be

calculated based on the active power data, and the attack

vectors can be represented by the following active power

injection vectors:

ΔPdA ~ ATK (26)

For a determined ATK*, the max-min optimization problem

described in (Eq. 16) can be converted into the following single-

level non-linear optimization problem.

C l( ) � min
DEF

∑
ΔPdL∈DEF,ΔPp

dA
∈ATKp

ΔPdL ΔPp
dA( ) (27)

Subject to Eqs 21–23.

In order to solve the aforementioned problem effectively, an

open-source non-linear optimization solver IPOPT (Wächter

and Biegler, 2006) is employed to obtain the optimal load

shedding strategy of the AC/DC hybrid transmission system.

The corresponding solution DEF represents the optimal load

shedding vector set corresponding to ATK*.

FIGURE 3
Schematic diagram of LCC-HVDC transmission model.
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Regarding the solution of the optimal attack vector, an IPSO

is applied owing to the non-convex nonlinear characteristics of

the optimization problem. It is known that the basic PSO

algorithm is quite suitable for dealing with non-convex

nonlinear optimization problems because of its simple

implementation process and no need for gradient information

(Nickabadi et al., 2011). In the PSO algorithm applied in this

paper, the particles are designed as the part of the active power

injection vectors ΔPdA. It should be noted that the number of

independent variables in this vector is Nx − Neq, which

corresponds to ΔPdA one by one, so the positions of particles

can be constructed as

Xi � ΔPdA,1,ΔPdA,2,/,ΔPdA,m( ),m � Nx − Neq (28)

As mentioned above, the load shedding amount of each

substation mainly depends on the attack vector, line capacity,

node voltage, and generator output under a malicious FDI attack

scenario. By analyzing the FDI attack vector, the following

characteristics can be found, that is, the node with the highest

amount of load shedding generally has the largest or the second

largest value of the active power attack vector, which can be used

to generate some specific attack vectors as initial particles to assist

the PSO algorithm to find the optimal solution and accelerate the

convergence speed. Considering these characteristics of the FDI

vectors, an IPSO algorithm with an initial particle generation

technology proposed in this paper is applied to accelerate the

convergence speed of the basic PSO algorithm. Moreover, these

specific attack vectors can be called auxiliary attack vectors

(AVVs). For attack selection Ai, the set of AVVs can be

calculated as

S AVV( ) � arg max CΔPdA,k + ∑
i ≠ k

ΔP2
dA,i

⎛⎝ ⎞⎠ 1
2⎛⎝ ⎞⎠, k ∈ Aj

⎧⎨⎩ ⎫⎬⎭,C � const≫ 0

(29)

Subject to (Eq. 18) and the relationship between active power

and reactive power of load.

Here, the AVV can be transformed into the positions of

particles, and the initial particle placed in these positions are

called auxiliary search particle (ASP). With the help of ASP, the
pseudocode of the IPSO algorithm for solving ATK and DEF is

described in Table 2.

3.2 Solution for the upper-level
programming problem

According to the load shedding results obtained by solving

the lower-level programming problem mentioned above, the

corresponding consequences caused by the coordinated

physical-cyber attacks can be determined. Since the number of

the attack and defense strategies under certain fund constraints is

limited, it is easy to calculate all the payoffs between the attacker

and the defender according to (Eq. 2), (Eqs 9–14). In this paper,

once the payoffs are determined, the solution of the upper-level

programming problem, namely the subgame perfect Nash

equilibrium, can be obtained by using the BI method.

Considering that the proposed three-stage dynamic game

framework is a zero-sum game problem, the payoff of the

attacker can be expressed as

ua di, aij( ) � GARI di, aij, l( ) � PAYOFFij ≥ 0,
di ∈ SD, aij ∈ SA di( ), 1≤ i≤ h, 1≤ j≤ q (30)

The payoff function of the defender can be expressed as

ud di, aij( ) � −ua di, aij( ) � −PAYOFFij (31)

Then the subgame perfect Nash equilibrium can be written as

ud d*, a*( )≥ ud di, aij( ),∀ di, aij( ) ∈ Ω (32)
where

Ω � di, aij( ) aij ∈ a* di( )∣∣∣∣{ }, a* di( ) � arg max
aij∈SA di( )

ua di, aij( ){ }
(33)

Strategy (d*, a*) denotes the subgame perfect Nash

equilibrium.

In order to obtain the subgame perfect Nash equilibrium, the

BI method is employed in this paper, which can be divided into

the following two steps. In the first step, the attacker’s strategy

under different defense strategy options is determined, which can

be formulated as

a* di( ) � arg max
aij∈SA di( )

ua di, aij( ){ } (34)

In the second step, the defender predicts the attack strategies,

so the second step can be formulated as

TABLE 2 Procedure of the proposed IPSO algorithm.
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d* � arg max
di∈SD

ud di, aij( ){ }, aij ∈ a* di( ) (35)

The solution process of the BI method for the subgame

perfect Nash equilibrium can be illustrated in Figure 4.

In Figure 4, the attacker first selects the corresponding

optimal attack strategy (marked by the dark red branch)

based on each possible defense strategy. Once the attack

strategy is determined, the payoff corresponding to the

defense strategy is also determined. For example, the payoff of

di is PAYOFFij as the optimal attack strategy is aij. Then, the
defender selects the optimal defense strategy di (marked by the

dark blue branch) according to the payoffs of the defense

strategies. After the optimal defense and attack strategies are

determined, the subgame perfect Nash equilibrium can be

obtained.

Once the subgame perfect Nash equilibrium is obtained, it

can be used to assess the power grid risk under the FDI attack

with certain fund constraints.

3.3 Power grid risk assessment

According to the Nash equilibrium solved in the previous

section, the probabilities of different strategies selected by the

attacker and defender can be obtained. Therefore, the mixed

attack and defense strategies can be expressed as

d* � di, p
i
d( ){ }, a* � aij, p

j
a · pid( ){ }, di � SCyd , SPhd( )i, aij � SCya, SPha( )ij

(36)

Based on the aforementioned probabilities and strategies,

the expectations of fund deployment with a certain amount of

fund constraints Fm � (FCyd , FPhd , FCya, FPha) can be

calculated as

ECyd d*( ) � ∑ pid · SiCyd
EPhd d*( ) � ∑ pid · SiPhd
ECya a*( ) � ∑ pid · pja · SjCya
EPha a*( ) � ∑ pid · pja · SjPhd

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(37)

Obviously, once the amount of funds changes, the

expectation of fund deployment will also change. Therefore,

the subgame perfect Nash equilibrium for various funds Fm

should be solved to obtain the deployment of funds under

different fund constraints. Finally, the overall expectations of

fund deployment on the cyber side and the physical side, that

is the power grid risk under the coordinated physical-cyber

attacks, can be calculated as

RiskCy � 1
N

∑N
m�1

ECyd d*( ) + ECya ap( )( )∣∣∣∣Fm

RiskPh � 1
N

∑N
m�1

EPhd d*( ) + EPha ap( )( )∣∣∣∣Fm

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩
(38)

FIGURE 4
Solution process of the BI method.
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Figure 5 illustrates the whole flow chart of the solutions for

the upper-level and lower-level programming problems.

4 Case study

In this paper, the case studies are performed on a modified

IEEE 14-node AC/DC hybrid transmission test system as shown

in Figure 6 to verify the validity and effectiveness of the proposed

model and algorithm. In the original IEEE 14-node system, the

original AC transmission line between node 1 and node 5 is

replaced by a ±500 kV HVDC transmission line to form an AC/

DC hybrid transmission test system (Lotfjou et al., 2009). The

corresponding system data including the parameters of the DC

transmission line can be found in supplementary material. All

simulations are performed under the Matlab™ environment, and

the hardware configuration is as follows: CPU: Intel i7-10875H 8-

Core, GPU: RTX 2060, RAM: 16 GB (8 GB × 2 GB) DDR4

3,200 MHz.

In this paper, the integer value of 1.25 times the rated

apparent power of each line is taken as the upper bound of

the capacity of the line. Meanwhile, nATK max is limited to 7, and

the maximum change percentage of data tampering under FDI

attack is set to τ � 0.5. In the following sections, the load

shedding analysis, DC line impact analysis, and system

security risk analysis are elaborately conducted under the

coordinated physical-cyber attacks.

4.1 Load shedding analysis under false
data injection attack

According to the derivation of the potential attack

selections discussed in Section 3.1, a total of 772 potential

attack selections can be found under the given FDI attack

constraints. However, after calculating the corresponding

consequences, 770 potential attack selections will only cause

the changes in power flow, and the remaining two potential

FIGURE 5
Flow chart of the converted bi-level programing model solution.

Frontiers in Energy Research frontiersin.org11

Liu and Shi 10.3389/fenrg.2022.1082442

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1082442


attack selections will lead to the load shedding. Therefore, these

two attack selections are specifically utilized for load shedding

analysis under FDI attack. As shown in Figure 6, there are two

attack selections, namely Attack Selection I and Attack

Selection II, in which the Attack Selection I contains five

target substations: 6, 9, 12, 13, and 14, and the Attack

Selection II contains seven target substations: 6, 9, 10, 11,

12, 13, and 14. By solving the lower programming problem

described in Section 3.1, the optimal attack vector set ATK and

the optimal load shedding vector set DEF corresponding to the

two attack selections mentioned above are shown in Table 3 and

Table 4, respectively.

From Tables 3, 4, it can be observed that under the

coordinated physical-cyber attack, the total load shedding

amount occurred in the Attack Selection I is 3.9511 MW, and

that in the Attack Selection II is 6.8962 MW. In addition, the

largest load shedding occurs at Substation 13 in the two attack

selections.

In order to further validate the effectiveness of the proposed

initial particle generation technology and the stability of the

IPSO algorithm, the corresponding simulation analysis is

carried out based on the ASP. Figure 7 shows the

comparison results of the total load shedding amount of the

IPSO algorithm with ASP, the basic PSO algorithm without

ASP and the Grey Wolf Optimizer (GWO) algorithm under

50 independent trials. The population size and the number of

iterations of all these algorithms are set to 30 and 20. According

to the simulation results shown in Table 5, the standard

deviation of the IPSO algorithm applied to the Attack

Selection II is 5.8695 × 10−4, which is much lower than that

of the basic PSO algorithm and the GWO algorithm, which

means that the proposed IPSO algorithm with ASP has good

stability. All algorithms are accelerated by parallel computing

technology with the help of the Parallel Computing Toolbox

provided by MATLAB™, and the running time is shown in

Table 5. Figure 8 demonstrates the corresponding convergence

curves of the three algorithms mentioned above, and it can be

seen that the IPSO algorithm with ASP shows a good

acceleration effect.

4.2 DC transmission line impact analysis

In order to explore and exploit the impact of DC

transmission line on system risk under the coordinated

physical-cyber attacks, the corresponding comparative analysis

is conducted between an AC transmission system and the AC/

DC hybrid transmission system as shown in Figure 6 under FDI

FIGURE 6
The modified IEEE14-node AC/DC hybrid transmission test system.
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attacks. Regarding the AC transmission system, an AC

transmission line consisting of three segments is introduced

between node 1 and node 5, and the corresponding line

parameters are given in Table 6. Table 7 shows the system

load shedding results for the two test systems mentioned

above under different attack selections. Moreover, the detailed

results of the AC transmission system are provided in

Supplementary Material.

It can be seen from Table 7 that when the attacker

performs Attack Selection I, the total load shedding

amount for the AC transmission system is 3.2388 MW,

while that for the AC/DC hybrid transmission system is

TABLE 3 Optimal ATK and DEF corresponding to the attack selection I.

Substation ATK DEF

ΔPdA (MW) ΔQdA (Mvar) ΔVmA (p.u.) ΔPdL (MW) ΔQdL (Mvar)

6 −1.8051 −1.2088 0 0 0

9 −0.8967 −0.5046 0 0 0

12 −3.0500 −0.8000 −0.0020 0 0

13 5.0726 2.1793 0.0036 3.9511 1.6975

14 0.6121 0.2054 0.0024 0 0

TABLE 4 Optimal ATK and DEF corresponding to the attack selection II.

Substation ATK DEF

ΔPdA (MW) ΔQdA (Mvar) ΔVmA (p.u.) ΔPdL (MW) ΔQdL (Mvar)

6 −1.6123 −1.0797 0 0 0

9 −5.9599 −3.3537 0 0 0

10 4.5000 2.9000 0.0026 1.4371 0.9261

11 −1.7500 −0.9000 −2.37 × 10−4 0 0

12 −3.0500 −0.8000 −0.0020 0 0

13 3.4670 1.4895 0.0035 5.4591 2.3454

14 4.2518 1.4268 0.0069 0 0

FIGURE 7
Comparison results of the total load shedding amount of three algorithms under 50 independent trials.
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3.9511 MW; when the attacker performs Attack Selection II,

the total load shedding amount for the AC transmission

system is 6.2373 MW, while that for the AC/DC hybrid

transmission system is 6.8962 MW. It can also be found

that when there is only a DC transmission line between

node 1 and node 5, the total load shedding amount of the

system caused by FDI attacks increases by 21.99% and 10.56%,

respectively, compared with that when there is only an AC

transmission line. Table 8 shows the operating conditions of

the DC transmission line before and after the FDI attacks.

It can be found from Table 8 that only the ignition angle

changes relatively after the attacker makes the Attack

Selection II, and the other measurement data of the DC

transmission line are basically not affected by the

coordinated physical-cyber attacks. Since the data of DC

transmission lines are considered to be untampered, the

impact of the corresponding coordinated physical-cyber

attack on the measurement data of the DC transmission

lines is not significant. Thus, if the attacker could not

directly tamper with the data of DC transmission lines, it is

difficult to cause the DC blocking.

To sum up, it can be concluded that even if the DC transmission

lines can be prevented from cyber attacks, the FDI attacks can still

pose threat to the AC/DC hybrid transmission system, so it is

necessary to conduct the security risk assessment.

TABLE 5 Simulation results of three algorithms under 50 independent trials.

Algorithm Standard deviation (Attack
Selection I)

Standard deviation (Attack
Selection II)

Running time

IPSO 1.3458 × 10−15 5.8695 × 10−4 128–151 s

Basic PSO 1.3450 × 10−15 3.9269 × 10−3 136–149 s

GWO 1.3457 × 10−15 0.33436 113–138 s

FIGURE 8
Convergence curves of three algorithms.

TABLE 6 Parameters of the AC transmission line (p.u.).

Segment R X B S

S1 0.05403 0.22304 0.0492 70MVA

S2 0.05403 0.22304 0.0492 70MVA

S3 0.05403 0.22304 0.0492 70MVA
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4.3 System security risk analysis

Based on the risk assessment framework described in Section 2,

the comprehensive system security risk is conducted in this section.

In (Eq. 11), the inherent risk value μ of substation communication

network is set to $3K, $6K, $4K, $8K, $7K, $6K, $5K, $2K, $7K, $5K,

$5K, $5K, $6K, and $5K in the order of substation numbers.

Considering that the deployment strength of substation security

forces is usually similar, the inherent risk value λ of substation

security forces in (Eq. 12) is set to $100K. For the defender,CydL1 is
set to $10K, CydL2 is set to $20K, PhdL1 is set to $50K, and PhdL2
is set to $100K. For the attacker, CyaL1 is set to $10K, CyaL2 is set
to $20K,PhaL1 is set to $50K, andPhaL2 is set to $100K. According
to themaximum amount of funds, the range of FCyd should be from

$70K to $100K, the range of FPhd should be from $250K to $400K,

the range of FCya should be from $70K to $100K, and the range of

FPha should be from $350K to $500K.

Based on the above parameter settings, the corresponding

system security risk analysis is carried out, and the following

simulation cases are analyzed and discussed elaborately.

1) Case 1: The relatively low budget of defense and attack funds,

that is, FCyd , FPhd , FCya, and FPha take relatively low values;

2) Case 2: The relatively high budget of defense and attack funds,

that is, FCyd , FPhd , FCya, and FPha take relatively high values;

3) Case 3: The budget of defense and attack funds is within a

certain range, that is, FCyd , FPhd , FCya, and FPha take the

specified range.

In case 1, FCyd , FPhd , FCya, and FPha are set to $70K, $250K,

$70K, and $350K, respectively. In this case, the total number of

defense strategies is 104538, and the total number of attack

strategies is 101. The corresponding subgame perfect Nash

equilibrium pertinent to the fund allocation of the attacker

and the defender is shown in Table 9.

From Table 9, it can be found that the attacker will choose the

attack strategies performed at Attack Selection I. The active power

loss expectation of the test system under the current funding

limitations is 1.5919 × 10−5 MW. From the analysis of attack and

defense funds on the cyber side, the total expectations of both sides of

the attack and defense deployment funds for the substation 9 are tied

for the highest, all of which are $40K. Accordingly, this substation is

considered to be the most risky substation on the cyber side, and

more attention should be paid to its communication network

vulnerabilities. Similarly, on the physical side, it is also found that

the substation 9 has the highest expectation for the total amount of

funds deployed by the attacker and the defender, which is $150K.

This means that the risk of this substation is also the highest, so

special attention should be paid to its guard force. To sum up, under

these fund constraints, the substations 9 is identified as the critical

substation of the test system in this case.Moreover, it can be observed

that the attacker tends to deploy more funds on the substation with

stronger defense on cyber side to increase the success probability of a

coordinated physical-cyber attack.

In case 2, FCyd , FPhd , FCya, and FPha are set to $80K, $300K,

$90K, and $400K, respectively. In this case, the total number of

defense strategies is 127,449, and the total number of attack

strategies is 197. The corresponding subgame perfect Nash

equilibrium pertinent to the fund allocation of the attacker

and the defender is shown in Table 10.

From Table 10, it can be found that the active power loss

expectation of the test system under the current funding limitations

is 1.9777 × 10−5 MW. From the analysis of attack and defense funds

on the cyber side, the total expectations of both sides of the attack

and defense deployment funds for substations 9, 12, and 14 are tied

for the highest, all of which are $40K. Accordingly, these three

substations are considered to be the most risky substations on the

cyber side, and more attention should be paid to their

communication network vulnerabilities. Similarly, on the physical

side, it is also found that the three substations have the highest

expectations for the total amount of funds deployed by the attacker

and the defender, which is $150K. This means that the risks of these

three substations are also the highest, so special attention should be

TABLE 7 System load shedding results.

System Attack
Selection I (MW)

Attack
Selection II (MW)

AC transmission system 3.2388 6.2373

AC/DC hybrid transmission system 3.9511 6.8962

TABLE 8 Operating conditions of the DC transmission line before and
after FDI attacks.

Before FDI attack

Rec α � 21.89° U ′
d � 500.84kV P′

d � 65.11kW Q′
d � 26.16kW

Inv γ � 18.00° U″
d � 500.25kV P″

d � −65.03kW Q″
d � 21.13kW

After FDI attack (Attack Selection I)

Rec α � 20.61° U ′
d � 501.47kV P′

d � 65.19kW Q′
d � 24.52kW

Inv γ � 18.00° U″
d � 500.89kV P″

d � −65.12kW Q″
d � 21.16kW

After FDI attack (Attack Selection II)

Rec α � 18.64° U ′
d � 502.08kV P′

d � 65.27kW Q′
d � 22.02kW

Inv γ � 18.00° U″
d � 501.50kV P″

d � −65.19kW Q″
d � 21.18kW
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TABLE 9 Subgame perfect Nash equilibrium under specific fund constraints.

Strategy Substation Fund on cyber side
($K)

Fund on physical side
($K)

Probability (%)

DEF #13842 {6,9,12,13,14} {20,20,10,10,10} {50,50,50,50,50} 50

--- ATK #100 {6,9,12,13,14} {20,20,10,10,10} {100,100,50,50,50} 100

DEF #36718 {6,9,12,13,14} {10,20,10,20,10} {50,50,50,50,50} 50

--- ATK #45 {6,9,12,13,14} {10,20,10,20,10} {50,100,50,100,50} 100

TABLE 10 Subgame perfect Nash equilibrium under specific fund constraints.

Strategy Substation Fund on cyber side
($K)

Fund on physical side
($K)

Probability (%)

DEF #90037 {6,9,12,13,14} {10,20,20,10,20} {50,50,100,50,50} 50

--- ATK #8 {6,9,12,13,14} {10,20,20,20,20} {100,100,50,50,100} 50

--- ATK #32 {6,9,12,13,14} {20,20,20,10,20} {50,100,50,100,100} 50

DEF #90067 {6,9,12,13,14} {10,20,20,10,20} {50,50,50,50,100} 50

--- ATK #10 {6,9,12,13,14} {10,20,20,20,20} {100,100,100,50,50} 50

--- ATK #34 {6,9,12,13,14} {20,20,20,10,20} {50,100,100,100,50} 50

TABLE 11 Overall expectations of the fund deployment of attacker and defender.

Substation BUS 6 BUS 9 BUS 12 BUS 13 BUS 14 Others

Funds on cyber side $33691.4 $31250.0 $35452.5 $34433.6 $35172.5 0

Funds on physical side $ 150048.8 $144335.9 $152311.2 $151123.0 $152181.0 0

FIGURE 9
The impact of changes in attack and defense funds on the risk expectations of the test system.
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paid to their guard forces. To sum up, under these fund constraints,

substations 9, 12, and 14 are identified as the critical substations of

the test system in this case. Moreover, it can be observed that the

attacker tends to deploy more funds on the substation with weaker

defense on physical side to increase the probability of a successful

coordinated physical-cyber attack.

In case 3, FCyd , FPhd , FCya, and FPha take the specified range

as mentioned above. After obtaining all the subgame perfect

Nash equilibriums of the defense and attack budget within a

certain range, and according to (Eq. 38), the overall expectations

of the fund deployment of the attacker and the defender can be

calculated as shown in Table 11.

From Table 11, it can be seen that the overall expectation of

the fund deployment on the cyber side pertinent to the substation

12 is the highest, which means that the cyber side of the

substation 12 is the most critical, and it is necessary to strictly

investigate the vulnerabilities in the communication network.

Meanwhile, the overall expectation of the fund deployment on

the physical side pertinent to the substation 12 is the highest,

which means that the physical side of the substation 12 is also the

most critical, and it is necessary to strictly control the personnel

entering and leaving the station, as well as to check the illegal

monitoring equipment regularly. To sum up, the substation 12 is

identified as the critical substation in the test system.

Figure 9 illustrates the impact of changes in attack and

defense funds on the risk expectations of the test system. It can

be found that from the attacker’s perspective, the more funds

invested in the attack, the higher the risk of the test system

caused by the attack. In particular, the more funds invested on

the cyber side, the more effective the attack. Similarly, from the

defender’s perspective, the more funds invested in the defense,

the lower the risk of the test system, and the more funds

invested on the cyber side, the better the defense effect,

which provides a significant reference for power grid

dispatcher to deploy the optimal defense funds.

5 Conclusion

This paper investigates the inherent vulnerability of AC/DC

hybrid transmission system under the physical-cyber coordinated

attacks, and a three-stage physical-cyber attack and defense risk

assessment framework based on dynamic game theory is proposed.

In the proposed framework, the corresponding deployment of

defense funds in stage 1, the deployment of attack funds in stage

2 including how to quantify the success probability of the FDI attack

on the substation, and the action of the defender including how to

model the FDI attack strategy based on AC state estimation, are

analyzed elaborately and carefully. Finally, the dynamic game risk

assessment framework is converted into a bi-level programming

problem, and the classic BI associated with an IPSO algorithm is

applied for the solution of the problem. The simulation results

performed on a modified IEEE 14-node AC/DC hybrid

transmission test system demonstrate that under the coordinated

physical-cyber attacks, the optimal ATK and DEF can be obtained,

leading to different load shedding amount in different attack

selections. In addition, the FDI attacks pose a greater threat to

the AC/DC hybrid transmission system compared with the AC

transmission system, and the inherent weakness of the AC/DC

hybrid transmission system can be effectively identified through

conducting the risk assessment with different budgets of defense and

attack funds.

In the near future, the impact of high proportion of grid-

connected clean energy on the system risk will be further

investigated under the coordinated physical-cyber attacks.
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Nomenclature

d, a, l Defense strategy, attack strategy, and system dispatching

strategy

SD Set of defense strategies in Stage 1

SA(d) Set of attack strategies in Stage 2, which is impacted by

defense strategy d

SL(d, a) Set of defender’s actions in Stage 3, which is dependent

on the strategy of both defender and attacker

V(d, a) Vulnerability of the substation under coordinated

physical-cyber attacks

C(l) Consequences caused by coordinated physical-cyber attacks
SCyd Allocation of funds for cyber defense security

Cydi Cyber security funds requested by the ith substation

B Set of all substations

FCyd Upper limit of defense funds deployed on the cyber side

CydL1 Maintenance fund for communication network

CydL2 Funds to upgrade the cyber equipment

SPhd Allocation of funds for physical security

Phdi Physical security funds requested by the ith substation

FPhd Upper limit of defense funds deployed on the physical side

PhdL1 Funds to hire security guards

PhdL2 Funds to hire a professional security team for the physical

security of the ith substation

SCya Allocation of funds for cyber attacks

Cyai Funds required to hire hackers for attacking the ith target

substation

A Set of all target substations

FCya Maximum amount of funds spent by the attack team to hire

hackers

CyaL1 Hacking service fees for hiring hackers with general skill

level

CyaL2 Hacking service fees for hiring hackers with high skill level

SPha Allocation of funds for physical monitoring

Phai Funds required to monitor the ith target substation

FPha Maximum amount of funds spent by the attack team for

bribery and monitoring

PhaL1 Funds spent on general monitoring

PhaL2 Funds spent on high intensity monitoring

pCy,i Probability of an attacker successfully attacking the ith

substation

pBAG,i Probability that the attacker uses the intelligent device to

tamper with data in the ith substation

pcon,i Connectivity probability for the attacker to achieve an

attack when the defender deploys cyber defense funds

pPh,i Probability of obtaining SSH port and password by non-

network intrusion

p(SSH) Probability of an attacker getting the right SSH port

number

p(Log) Success probability of an attacker cracking the

password

p(DB) Probability of an attacker obtaining the right to falsify

the data

μ Inherent risk of substation communication network

λ Inherent risk of substation security forces

d9 Determined defense strategies in the Stage 1

a9 Determined attack strategies in the Stage 2

ATK Set of attack vectors

DEF Set of load shedding vectors

ΔPdL Amount of load shedding

ΔPdA Active power attack vector

ΔQdA Reactive power attack vector

ΔVmA Voltage magnitude attack vector

ΔθA Voltage phase angle attack vector

nATK max Maximum number of attacked substations

τ Maximum percentage of data tampering changes

Pd,i Active load of the ith substation before the coordinated

physical-cyber attack

Qd,i Reactive load of the ith substation before the coordinated

physical-cyber attack

Vm,i Voltage magnitude of the ith substation before the

coordinated physical-cyber attack

θi Voltage phase angle of the ith substation before the

coordinated physical-cyber attack

A Set of target substations (nodes) attacked

Ag Set of generator nodes attacked

A0 Set of zero-load nodes attacked

Ae Set of edge nodes attacked

PgA Active powers of the generators connecting to target

substations attacked

QgA Reactive powers of the generators connecting to target

substations attacked

PartLF Power flow constraints of the attacked part of the

power grid

nA Number of the attacked nodes

Pi Active powers injected at the ith node

Qi Reactive powers injected at the ith node

gij Conductance between the ith node and the jth node

bij Susceptance between the ith node and the jth node
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Pg ,i Total active power output of the generators connecting to the

ith substation

Qg,i Total reactive power output of the generators connecting to

the ith substation

Pleq, Qleq Two equivalent injected power vectors, namely the

power flow on the line connected to the attacked node and the

non-attacked node

Vmmin ,i Lower bound of the voltage magnitude of the ith

substation

Vmmax ,i Upper bound of the voltage magnitude of the ith

substation

θmin ,i Lower bound of the voltage phase angle of the ith

substation

θmax ,i Upper bound of the voltage phase angle of the ith

substation

Sl,ij Apparent power of the line connecting to the ith substation

and the jth substation

Slmax ,ij Upper bound of the apparent power of the line

connecting to the ith substation and the jth substation

Pg min ,i Lower bound of the total active power output of the

generators connecting to the ith substation

Pg max ,i Upper bound of the total active power output of the

generators connecting to the ith substation

Qg min ,i Lower bound of the total reactive power output of the

generators connecting to the ith substation

Qg max ,i Upper bound of the total reactive power output of the

generators connecting to the ith substation

LF AC/DC power flow constraints

nBNumber of the substations in the AC/DC hybrid transmission

power system

U 9
d DC voltages of the rectifier

U 99
d DC voltages of the inverter

n9, n99 Equivalent tap ratios

X9
C , X

99
C Equivalent reactance

α Ignition angle

γ Extinction angle

Rd Equivalent resistance of the DC line

Id Current on the DC line

P9
d Active power from the rectifier to the inverter

P99
d Active power from the power grid to the inverter

Q9
d Reactive power consumed by the rectifier

Q99
d Reactive power consumed by the inverter

U9∠θ9U AC phase-to-phase voltage of the rectifier

U 99∠θ9U AC phase-to-phase voltage of the inverter

I9∠θ9I AC current of the rectifier

I99∠θ99I AC current of the inverter

Nx Number of unknowns

Neq Number of equations

N(•) Number of elements in the set •

o Number of the potential attack selections

AP Potential attack selection set

m Value of Nx − Neq

Xi Position of the ith particle

AVV Auxiliary attack vector

ASP Auxiliary search particle

M Number of iterations

N Population size

di The ith defense strategy based on (5)

aij The jth attack strategy based on (8) which is impacted by di in

Stage 1

PAYOFFij Value of the payoff when the defender selects the ith

defense strategy in Stage 1 and the attacker selects the jth attack

strategy in Stage 2

SA(di) Set of attack fund deployment strategies affected by the

defense fund deployment strategy di

h Number of defense strategies

q Number of attack strategies

a*(di) Optimal attack strategies based on the defense strategies

decided in Stage 1

(d*, a*) Subgame perfect Nash equilibrium

pid Probability of using defense strategy di

pja Probability of using attack strategy aij when the defender

decides to use the defense strategy di in the Stage 1

Fm Fund constraints

ECyd(d*) Expectation of the defense funds on the cyber side

EPhd(d*) Expectation of the defense funds on the physical side

ECya(a*) Expectation of the attack funds on the cyber side

EPha(a*) Expectation of the attack funds on the physical side

RiskCy Expectation of funds invested by the attacker and

defender on the cyber side

RiskPh Expectation of funds invested by the attacker and

defender on the physical side
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