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The integration of renewable power generation introduces randomness and

uncertainties in power systems, and the reactive power optimization with

interval uncertainty (RPOIU) problem has been constructed to acquire the

voltage control strategy. However, the large amount of uncertain data and

the coexistence of discrete and continuous control variables increase the

difficulty of solving the RPOIU problem. This paper proposes a data-driven

hybrid interval reactive power optimization based on the security limits method

(SLM) and the improved particle swarm optimization (IPSO) to solve the RPOIU

problem. In this method, the large amount of historical uncertain data is

processed by data-driven to obtain the boundary of optimal uncertainty set.

The control variable optimization is decomposed into continuous variable

optimization and discrete variable optimization. The continuous variables are

optimized by applying the SLMwith the discrete variables fixed, and the discrete

variables are optimized by the IPSOwith the continuous variables fixed. The two

processes are applied alternately, and the values of the control variables

obtained by each method are used as the fixed variables of the other

method. Based on simulations carried out for the IEEE 30-bus system with

three optimization methods, we verified that the voltage control strategy

obtained by the data-driven hybrid optimization could ensure that the state

variable intervals satisfied the constraints. Meanwhile, the values of the real

power losses obtained by the proposed method were smaller than those

obtained by the SLM and IPSO. The simulation results demonstrated the

effectiveness and value of the proposed method.
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1 Introduction

Reactive power optimization is directly related to the security

and economy of a power system. There is inherent randomness

and volatility with renewable energy resources (RESs), including

wind and photovoltaic power, so that the data of the RES output

and the power load demand are generally uncertain in the power

system. There will be voltage security problems under the effects

of these uncertainties. Therefore, it is necessary to construct an

uncertain reactive power optimization (URPO) strategy to realize

voltage security control while handling the uncertainties. The

URPOmodel incorporates the general reactive power flow (RPF)

model with uncertain data, aiming at improving the voltage

profile and reducing the loss.

Some approaches have been proposed to solve the URPO

model, which is non-convex and non-linear. These approaches

mainly include probabilistic programming, robust programming,

and interval programming. The probabilistic approach acquires the

specific probability distribution of the uncertain data, because it

considers them to be random variables. This process represents the

RPO model as an expectation model or chance-constrained

programming model and obtains the results under a stated

confidence level (Arefifar and Mohamed, 2014; Liu et al., 2016).

Probabilistic programming requires a large amount of historical

data, while the amount of data is generally limited, causing a bias of

the empirical distribution. A data-driven modeling approach is

introduced to address the issue, and the model is formulated as a

two-stage problem, where the first-stage variables find the optimal

control for discrete reactive power compensation equipment and the

second-stage variables are adjusted to an uncertain probability

distribution (Ding et al., 2018). A scenario-based two-stage

stochastic optimization framework is also developed in (Saraswat

et al., 2020) to minimize the total real power losses in the

transmission network. To solve the URPO issue of two

conflicting objective functions, the active power loss and voltage

deviation are minimized simultaneously, and appropriate

probability distribution functions are considered to model the

stochastic behavior of wind and solar power generation with the

Monte Carlo simulation (MCS) technique (Keerio et al., 2020).

These probabilistic processes are quite time-consuming, and the

probability distribution of uncertainties is rough due to the

limited data.

In contrast, robust programming considers the uncertainties

to be from various sets, such as box, cone, or ellipsoid sets,

without assuming the probability distribution functions. A two-

stage distributed robust optimization model for optimal

operation is formulated considering wind-power-uncertainty-

based data-driven methods, where the polyhedra-based

linearization method is introduced to approximate the second-

order cone power flow constraints with a series of linear

constraints (Gao et al., 2021). To improve the computational

performance, a second-order cone relaxation and decomposition

algorithm is proposed to solve the multi-period reactive power

optimization problem (Liu et al., 2017). The processes obtain the

results with good robustness, while the accuracy of the robust

programmingmodel is low due to the linearization. Furthermore,

there will be infeasible solutions sometimes because robust

optimization is only applicable to convex models, while the

general URPO model is non-convex.

The development of interval programming has addressed the

issues of probabilistic and robust approaches. This approach

expresses the uncertain data as intervals and therefore establishes

the RPOIU problem in which the state variables are regarded as

intervals. Notably, the control variables include both continuous

(generator voltage) and discrete (transformer ratio and reactive

power compensation) variables. Interval programming can

ensure that the ranges of the state variables are completely

confined within the security constraints. The methods for

solving the RPOIU problem mainly include intelligent

algorithms and mathematical processing. To solve the RPOIU

model, the genetic algorithm (GA) is employed as the solution

algorithm, where the reliable power flow calculation is used to

judge the constraints of the model (Zhang et al., 2017). The

improved genetic algorithm (IGA) is proposed to solve the

problem that the simple GA is inefficient in the application of

power system reactive power optimization, where the coding

method, fitness function, initial population generation, and

crossover and mutation strategy are modified (Chang and

Zhang, 2017; Liu et al., 2022). Particle swarm optimization

(PSO) is also widely applied to solve this problem (Li et al.,

2017; Khan et al., 2020; Shri et al., 2021). An improved particle

swarm optimization and Pareto archive algorithm are combined

to solve the multi-objective reactive power optimization problem,

and it outperforms the non-dominated sorting genetic algorithm

II (NSGA-II) (Liu et al., 2021).

For the application of mathematical processing, the linear

approximation method is formulated using the interval Taylor

extension to help solve the RPOIU model (Jiang et al., 2014;

Zhang et al., 2018b). In order to improve the accuracy of the

approximation, the interval sequential quadratic programming

method (ISQPM), which employs a second-order interval Taylor

expansion, is proposed (Zhang et al., 2019). In addition, the

security limits method (SLM) is defined to solve the RPOIU

problem, and the model is switched to two deterministic reactive

power optimization models (Zhang et al., 2018a).

It is noted again that the coexistence of discrete and

continuous variables increases the difficulty of solving the

RPOIU problem, and the accuracy when solving the problem

by applying a single algorithm is generally low. Considering the

above interval approaches, mathematical processing can deal

with the continuous variables well, and intelligent algorithms are

better at handling discrete variables. Therefore, the problem of

mixed-variable processing can be addressed by a co-evolution

method, which adopts a mathematical method to deal with

continuous variables and an intelligent algorithm to deal with

discrete variables to solve the RPOIU problem.

Frontiers in Energy Research frontiersin.org02

Chen et al. 10.3389/fenrg.2022.1086577

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1086577


The present work establishes a hybrid interval reactive power

optimization algorithm considering the uncertainty of RESs. The

algorithm uses interval programming to deal with uncertainties

and decomposes the control variable optimization into two

subproblems: continuous variable optimization and discrete

variable optimization. Since the SLM can reduce the

conservation of the interval reactive power optimization

algorithm and has a better performance in searching for the

optimal solution than other mathematical methods, the SLM is

applied for continuous variable optimization. Since the PSO has

faster convergence rate and simpler processes, the improved PSO

(IPSO) is applied for discrete variable optimization. There are the

algorithm alternations between these processes.

The construction of the RPOIU problem is presented in

Section 2, followed by the hybrid optimization of the SLM and

IPSO for solving the RPOIU problem in Section 3. The

simulations employed to demonstrate the performance of the

proposed method are presented in Section 4. The conclusions

and contributions of this paper are given in Section 5.

2 Modeling of reactive power
optimization with interval uncertainty
(RPOIU) based on data-driven

As mentioned above, the large amount of historical uncertain

data is processed by data-driven to obtain the boundary value of

the uncertainties, and the input data of the power grid associated

with uncertainties can be described as intervals, including power

generation P̂Gi, active load demand P̂Li, and reactive load

demand Q̂Li, which are expressed as [PGi
min, PGi

max],
[PLi

min, PLi
max], and [QLi

min, QLi
max], respectively. The RPOIU

problem is modeled with the real power losses Ploss as the

objective function and power flow equations, security, and

operational limits as constraints:

minPloss � ∑
i∈S

∑
j∈S

ViVjGij cos θij (1)

s.t.

P̂Gi − PLi − Pi � 0, i ∈ S′G
QGi − QLi − Qi � 0, i ∈ S′G

{ (2)

−P̂Li − Pi � 0, i ∈ SL
QCi − Q̂Li − Qi � 0, i ∈ SL

{ (3)

PGi − PLi − Pi � 0, i ∈ SGs
QGi − QLi − Qi � 0, i ∈ SGs

{ (4)

QGi
min ≤QGi ≤QGi

max, i ∈ SG (5)
QCi

min ≤QCi ≤QCi
max, i ∈ SC (6)

Vi
min ≤Vi ≤Vi

max, i ∈ SG ∪ SL (7)
PGi

min ≤PGi ≤PGi
max, i ∈ SGs (8)

Tl
min ≤Tl ≤Tl

max, l ∈ ST (9)

Here

Pi � Vi ∑
j∈S

Vj Gij cos θij + Bij sin θij( ) (10)

Qi � Vi ∑
j∈S

Vj Gij sin θij − Bij cos θij( ) (11)

Moreover, S is the subset of whole system buses, SG is the set

of all generator buses, S′G is the set of renewable power generator

buses (except the slack bus), SGs is the slack bus, where there is

generally only one, SL is the set of load buses, SC is the index set of

load buses with compensators, and ST is the index set of

transformer branches. Eq. 1 is the objective function, where

Vi and θi are the voltage magnitude and bus angle at bus i,

respectively, θij � θi − θj, and Gij and Bij are the real and

imaginary parts of the admittance matrix, respectively. Eqs

2–4 are the power flow equations with interval uncertainties,

where PLi is the active load generation, PGi is the active power

generation of slack bus, QGi is the reactive power generation, QLi

is the reactive load generation, QCi is the reactive power

compensation of the capacitor, Pi (Eq 10) and Qi (Eq 11) are

the injected active and reactive power at bus i, respectively. Eqs

5–9 are the security and operational constraints, where Tl is the

tap position of the transformer. The lower and upper limits of the

variables are identified with the superscripts “min” and “max,”

respectively.

All the variables in the RPOIU model can be divided into

state variables and control variables. The state variables include

the voltage magnitudes of the load buses, bus angle, and reactive

power generation. The control variables include the generator

voltage, transformer ratio, and reactive power compensation.

Therefore, the formulation of the RPOIUmodel can be simplified

by expressing the vector of state variables as X and the set of

control variables as μ:

minf X, u( ) � fL, fU[ ]
s.t.

h X, u( ) � hL, hU[ ]
gmin ≤ g X, u( )≤ gmax{ (12)

where f(X, u) represents the real power losses of the RES power
system, which is an interval and can be expressed as [fL, fU],
[hL, hU] is the variation vector of the power input data in Eqs 2–4,
and hL � hU represent the deterministic input data. g(X, u)
represents all security and operational constraints, gmin and

gmax are the lower and upper limits, respectively.

To express the model more conveniently, the bus order of the

system is adjusted. Assuming that the slack bus is denoted by

index 1, the number of all system buses is n, the number of

generator buses is m (including the slack bus), the number of

buses with the reactive power capacitor is r, and the number of

transformers is k. The generator buses are denoted by index

numbers in the range from two to m, the load buses are denoted

by index numbers from m+1 to n, and the load buses with the

reactive power capacitor are denoted by index numbers from

Frontiers in Energy Research frontiersin.org03

Chen et al. 10.3389/fenrg.2022.1086577

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.1086577


m+1 tom + r. Therefore, the vectors of state and control variables

are expressed as X � [PG1QG1/QGmVm+1/Vnθ2/θn]T and

u � [V2/VmQCm+1/QCm+rT1/Tk]T, respectively.
It is noted that the output of the reactive power compensator

QCm+1/QCm+r and transformer ratios T1/Tk are discrete, and

the voltages of the generators V2/Vm are continuous for the

control variable vector u. There are interval variables within the

state variable vector X. Accordingly, the RPOIU problem is a

non-linear model that requires the hybrid processing of

continuous and discrete variables.

3 Hybrid optimization for solving the
RPOIU problem based on security
limits method (SLM) and improved
particle swarm optimization (IPSO)

The hybrid interval reactive power optimization algorithm

adopts the SLM and IPSO to process the RPOIU problem

alternately. The SLM is applied to deal with the continuous

variables in the model to improve the efficiency and

optimization effect of the model and ensure that the load

voltage is not off-limit in all scenarios. The IPSO is applied to

deal with the discrete variables in the model to avoid the

problem that the continuous rounding of discrete quantities

may lead to inaccurate or even infeasible solutions. It is noted

that the power flow equations with interval uncertainties are

solved by the optimizing-scenarios method (OSM) (Zhang

et al., 2018c).

3.1 SLM-based continuous variable
processing

The RPOIU model is solved by the SLM under the

condition that the discrete variables QCi and Tl are fixed at

stable values to obtain the optimal continuous variables

Vi(i ∈ S′G). The specific process of the SLM is to define the

determined security limits, and the interior point method

(IPM) is used to solve the deterministic RPO model, which

is modified by the security limits. Then, the optimal

continuous variable is acquired.

Since the inequality constraints (5)–(9) in the RPOIU model

are all univariate, the model can be expressed as follows:

min f X, u( ) � fL, fU[ ]
s.t.

h X, u( ) � hL, hU[ ]
X 1( )min ≤X 1( ) ≤X 1( )max

umin ≤ u≤ umax

⎧⎪⎪⎨⎪⎪⎩
(13)

where X(1) is a vector composed of the load bus voltage

magnitudes and reactive power generation of the generator

buses, and X(1)
max

and X(1)
min

are the upper and lower bounds,

respectively. The vector composed of bus angles and real power

generation of the slack bus is denoted as X(2). Then, the vector of
state variables is X � [XT

(1),X
T
(2)]T. umax and umin are the upper

and lower bounds of the vector of control variables u, respectively.
To obtain the maximum radii of the interval variables, a

vector consisting of the maximum radii of the state variables is

defined as ΔX(1), which is formulated as follows and can be

computed through the OSM and MCS (Zhang et al., 2018a):

ΔX 1( ),i � max
umin ≤ u≤ umax

ΔX 1( ),i h X, u( ) � hL, hU[ ]∣∣∣∣∣{ } (14)

where ΔX(1),i is the radius of the ith variable in X(1).
According to ΔX(1), the security limits of the RPOIU model

are defined as follows:

AX 1( )min � X 1( )min + 2ΔX 1( )
AX 1( )max � X 1( )max − 2ΔX 1( )

{ (15)

Apparently, (15) represents the worst-case security bounds,

while the difference between the security limit AX(1)min (or X(1)max )

and the original limit X(1)max (or X(1)min ) is close to ΔX(1). In order

to reduce the conservation of the proposed security limits, the

interval ratio kI is introduced to modify the definition of the

security limits, and it is expressed as follows assuming that the

control variables u are fixed at u0 � (umin + umax)/2:

kI � x0 − X0

X0 − X0
(16)

where x0 represents the state variables acquired by solving the

equations h(x, u0) � (hL + hU)/2, and X0 and X0 are the lower

and upper bounds of the state variable intervals obtained by

solving the equations h(X, u0) � [hL, hU].
Assuming that the interval ratio corresponding to X(1) is kI(1),

the security limits are modified as follows:

SX 1( )min � X 1( )min + 2kI1( )ΔX 1( )
SX 1( )max � X 1( )max − 2 1 − kI1( )( )ΔX 1( )

{ (17)

where 0≤ kI ≤ 1. It should be noted that there may be a violation

when applying the modified security limits (17), because the

interval ratio kI is defined at the midpoint of the control

variables, while the state variables are not usually obtained at

x0. Accordingly, the correction coefficients δu and δl are

introduced to avoid the violation, and the corrected security

limits are expressed as follows:

S′X 1( )min � SX 1( )min + δlX 1( )
S′X 1( )max � SX 1( )max − δuX 1( )

{ (18)

where δlX(1) is the extent that X(1) exceeds X(1)min, and δuX(1) is
the extent that X(1) exceeds X(1)max. If there is no violation,

δuX(1),i � 0 or δlX(1),i � 0.

Therefore, the RPOIU model can be transformed to a

deterministic RPO model through Eqs 15–18, expressed as

follows:
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min f x, u( )

s.t.

h x, u( ) � ξ

S′X 1( )min ≤ x 1( ) ≤ S′X 1( )max

umin ≤ u≤ umax

⎧⎪⎪⎨⎪⎪⎩
(19)

where ξ is any vector in the interval [hL, hU], and f(x, u) is the
predictive value of the real power losses at the midpoint

(hL + hU)/2. It is noted that if the state variables of

deterministic model (16) are restricted within the security

limits, the state variable intervals of the RPOIU model must

be within their limits.

3.2 IPSO-based discrete variable
processing

PSO is applied to deal with the discrete variables QCi and Tl

when solving the RPOIU model, and the continuous variables

Vi(i ∈ S′G) are fixed. Each variable in the population is regarded

as a particle in the PSO, and the position and speed of each

particle can be obtained. It should be noted that the values of the

state variables corresponding to the particles should satisfy the

constraint condition. Accordingly, the fitness value

corresponding to each particle can be acquired. The fitness

value is the midpoint of the real power losses, and the

corresponding fitness function has a penalty term.

The position of each particle in the search space is

represented as Xi � (x1, x2, . . . , xn), and the speed is

represented as Vi � (v1, v2, . . . , vn). The speed and position

updating rules are expressed respectively as follows:

Vi � ω × Vi + c1 × rand() × pBesti −Xi( )
+ c2 × rand() × gBest −Xi( ) (20)

Xi � Xi + Vi (21)
where c1 and c2 are the learning parameters, which are usually

taken as 2, rand() is a random number within [0, 1], pBesti is the
best solution of the ith particle, and gBest is the global best solution

of the whole population. ω is the inertia factor, which is formulated

as follows by the linearly decreasing weight (LDW) strategy:

ω t( ) � ωini − ωend( ) Gk − t( )/Gk + ωend (22)

where ωini is the initial inertia weight, ωend is the inertial weight at

the maximum iteration number, Gk is the maximum number of

iterations, and t is the current iteration time.

PSO is a global optimization method with a strong global

search ability. However, it cannot make full use of the

feedback information in the population, resulting in a poor

local optimization ability, and the optimal value in the

neighborhood of the pBesti is often ignored. In order to

address this issue, a local search around pBesti is added in

the PSO. The improvement of pBesti is determined as follows:

pbesti � pbesti + ω · step · rand(), rand< 0.5
pbesti − ω · step · rand(), else{ (23)

where step is the initial step length of the local search. The

relationship between the global and local optima is well balanced

through the improvement of pBesti, allowing the algorithm to

avoid falling into local optima and improving the accuracy of

the PSO.

The discrete variables are processed by a crossover

operation in the IPSO, including the crossover between the

particle and itself and the crossover between the particle and

optimal individuals. The crossover process can be expressed as

follows:

ui � cui
max

cui + 1 − c( )uj
{ (24)

where ui represents the discrete variables that require the

crossover operation, c is a random number in [0,1], uimax is

the maximum of the transformer ratio and reactive power

compensation, and uj represents the optimal individuals

including pBest and gBest.

FIGURE 1
Procedure of the hybrid processing based on security limits
method (SLM) and improved particle swarm optimization (IPSO)
for solving the reactive power optimization with interval
uncertainty (RPOIU) problem.
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3.3 Hybrid optimization based on SLM and
IPSO

The RPOIU problem is solved through the hybrid

optimization of SLM and IPSO. The values of the continuous

variables obtained by SLM are applied as fixed continuous

variable values in the IPSO, and the values of the discrete

variables obtained by the IPSO are applied as fixed discrete

variable values in the SLM. The two methods are applied to

solve the RPOIU model alternately, and the values of the control

variables are interactive. The final solution of the control

variables when solving the RPOIU problem is obtained when

the control variable values obtained by the two methods are

consistent. Because the discrete variable values obtained by the

IPSO are directly used by the SLM, the values of the continuous

variables are used for the termination criterion. For convenience,

in the example below, when the difference of the continuous

variable values between the two methods was less than 0.01, the

control variables values were considered to be approximately

consistent. Accordingly, the detailed procedure of the hybrid

optimization based on the SLM and IPSO is described as follows.

It is noted again that the intervals of the state variables are

obtained by using the OSM, and they should satisfy the

constraints. The flow chart of the proposed method is

presented in Figure 1.

The steps of the proposed algorithm are as follows:

Step (1) Input the power grid parameters and intervals of the

power data and set the parameters of SLM and IPSO.

Step (2) Generate the initial values V0
i , Q

0
Ci, and T

0
l randomly

in the feasible region of the control variables.

Step (3) Set Vf ix
i � V0

i and k � 1. Here, Vf ix
i is the fixed value

in the IPSO and k is the time of circulation.

Step (4) Keep Vf ix
i stable and apply the IPSO to solve the

RPOIUmodel to obtain the optimal discrete variablesQk
Ci andT

k
l .

Step (5) Set Qf ix
Ci � Qk

Ci and Tf ix
l � Tk

l , where Q
f ix
Ci and Tf ix

l are

the fixed values in the SLM, respectively.

Step (6) Keep Qf ix
Ci and Tf ix

l stable and apply the SLM to solve

the RPOIU model to obtain the optimal continuous variable Vk
i .

Step (7) Determine whether the difference between Vk
i and

Vk−1
i is less than 0.01. If it is, stop the iteration process and print

results. Otherwise, set Vf ix
i � Vk

i and k � k + 1, then return to

Step (4).

4 Simulation results

In this section, the simulations conducted for an IEEE 30-bus

system are discussed to demonstrate the effectiveness and

superiority of the hybrid optimization based on the SLM and

IPSO in solving the RPOIU model problem. The results obtained

by the proposed method are compared with those obtained by

the SLM and IPSO. All parameters in the simulations were

assigned values in a per-unit system, with 100 MV•A set as

the base power. All calculations were conducted using MATLAB

with a 2.9-GHz CPU and 8 GB of RAM.

The IEEE-30 bus system included six generators (five

renewable power generators), four transformers, and two

capacitors. The topology of IEEE 30-bus system is shown in

Figure 2. The active power generation and related variable ranges

of the generators are shown in Table 1. The settings of the

capacitors are shown in Table 2. The voltage magnitudes of the

load buses were limited to the range of [0.95, 1.05]. The

transformer ratios were limited to the range of [0.9, 1.1] with

a step of 0.05. The parameters of SLM and IPSO are set as follows.

The iteration precision ε � 10−4 in SLM. The number of

iterations Size � 100, the population size M = 50, the learning

factors c1 = c2 = 2, the initial inertia weight ωini � 0.9, and the

final inertia weight ωend � 0.1 in IPSO.

According to the settings specified in Tables 1, 2, the

proposed hybrid optimization strategy based on the SLM and

IPSO was used to solve the RPOIU model problem for the IEEE

30-bus system, and the results were compared with those

obtained by the SLM and IPSO. The results obtained by the

hybrid optimization, SLM, and IPSO for the IEEE 30-bus system

are presented inFigures 3, 4. Figure 3A; Figure 4A show the

voltage magnitude intervals acquired by the hybrid optimization,

SLM, and IPSO. The interval bounds were all within the voltage

limits. The boundary of state variable intervals obtained by the

SLM was closer to the security limits than the hybrid

optimization and IPSO. The intervals obtained by the hybrid

optimization were close to that obtained by IPSO. Figure 3B;

Figure 4B present the reactive power generation intervals

acquired by the hybrid optimization, SLM, and IPSO. The

interval bounds also were within the limits of the reactive

power generation and the interval results obtained by the

three methods were close for most of the buses. The results

FIGURE 2
Topology of IEEE 30-bus system.
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verified the effectiveness of the proposed method for solving the

RPOIU problems. The reasons for ensuring the interval results

within voltage limits or reactive power generation limits were

that the hybrid optimization and SLM both used the security

limits to ensure the feasibility of the control variables, and the

IPSO determined the feasibility of the control variables by

judging whether the state variable intervals satisfied the

constraints of the RPOIU model. Figure 5 presents the

iterative convergence process of the three algorithms, and the

results are shown in Table 3. The hybrid optimization achieved

the minimum real power loss, and the IPSO had a relatively

large loss of active power compared to the other algorithms.

This was because the hybrid optimization could obtain better

solutions for the continuous and discrete variables, in contrast

to the single optimization, which had difficulty dealing with

mixed control variables. It demonstrated that the proposed

method had higher accuracy than SLM and IPSO for solving

RPOIU models.

TABLE 1 Active power generation and related variable ranges of generators in IEEE 30-bus system (p.u.).

Bus number Active power generation Reactive power output Voltage magnitude

Lower bounds Upper bounds Lower bounds Upper bounds

1 — −0.2 1.5 0.9 1.1

2 0.8 −0.2 0.6 0.9 1.1

5 0.5 −0.15 0.63 0.9 1.1

8 0.2 −0.15 0.5 0.9 1.1

11 0.2 −0.1 0.4 0.9 1.1

13 0.2 −0.15 0.45 0.9 1.1

TABLE 2 Settings of capacitors in IEEE 30-bus system (p.u.).

Bus number Lower bounds Upper bounds Variation step

10 0 0.5 0.1

24 0 0.1 0.02

FIGURE 3
Results obtained by the hybrid optimization and SLM for the IEEE 30-bus system: (A) voltage magnitude and (B) reactive power generation.
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5 Conclusion

This paper proposed a data-driven hybrid interval

reactive power optimization based on SLM and IPSO for

solving the RPOIU problem to address the issue of dealing

with mixed control variables. The large amount of uncertain

data is expressed as intervals based on data-driven, and the

control variable optimization is decomposed into continuous

variable optimization and discrete variable optimization. For

reducing the conservation of the interval algorithm, the SLM is

applied for continuous variable optimization and the IPSO is

applied for discrete variable optimization. The two processes

are used to solve the RPOIU problem alternately and iteratively

until the control variables optimized by the two processes are

consistent.

The simulation results obtained by the proposed data-

driven hybrid interval reactive power optimization for the

IEEE 30-bus system were compared with those obtained by

the SLM and IPSO. The proposed data-driven hybrid interval

reactive power optimization acquired smaller real power losses

than the SLM and IPSO, and it ensured that the interval bounds

of the state variables remained within the constraints. The

simulation results verified the effectiveness and advantages of

the proposed method.
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