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The rapidly increasing randomness and volatility of electrical power loads urge

computationally efficient and accurate short-term load forecasting methods

for ensuring the operational efficiency and reliability of the power system.

Focusing on the non-stationary and non-linear characteristics of load curves

that could easily compromise the forecasting accuracy, this paper proposes a

complete ensemble empirical mode decomposition with adaptive

noise–CatBoost–self-attention mechanism-integrated temporal

convolutional network (CEEMDAN-CatBoost-SATCN)-based short-term load

forecasting method, integrating time series decomposition and feature

selection. CEEMDAN decomposes the original load into some periodically

fluctuating components with different frequencies. With their fluctuation

patterns being evaluated with permutation entropy, these components with

close fluctuation patterns are further merged to improve computational

efficiency. Thereafter, a CatBoost-based recursive feature elimination

algorithm is applied to obtain the optimal feature subsets to the merged

components based on feature importance, which can effectively reduce the

dimension of input variables. On this basis, SATCN which consists of a

convolutional neural network and self-attention mechanism is proposed.

The case study shows that time series decomposition and feature selection

have a positive effect on improving forecasting accuracy. Compared with other

forecasting methods and evaluated with a mean absolute percentage error and

root mean square error, the proposed method outperforms in forecasting

accuracy.
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1 Introduction

Aiming for carbon neutrality, developing distributed

renewable energy-dominated energy systems has become an

inexorable trend (Rehman et al., 2021; Li C et al., 2022).

Together with the proliferation of electric vehicles and energy

storage systems, this development trend has considerably

increased the randomness and uncertainty of electrical loads,

which has greatly increased the difficulty of short-term load

forecasting (Deng et al., 2022). Therefore, developing accurate,

fast, and effective short-term load forecasting methods has

become an urgent demand for adapting to changes and

promoting the development of emerging power systems.

Traditional machine learningmethods represented by extreme

learning machine (ELM), support vector machine (SVM), BP

neural network, and random forest (RF) have been widely used

in short-term load forecasting (Aasim et al., 2021; Huang et al.,

2021; Xiao et al., 2022). With the rapid development of deep

learning in the fields of computer vision, natural language

processing, and speech recognition, recurrent neural networks

represented by long short-term memory (LSTM) neural

networks have been applied in the field of electrical load

forecasting (Tan et al., 2020; Ge et al., 2021; Li S et al., 2022).

Through time series modeling, electrical load statues over a period

of time can be effectively perceived, achieving accurate

identification of short-term load fluctuation patterns and long-

term load change trends. However, when dealing with the input of

an increasingly lengthening load time series, the dimension of the

input layer, the number of layers, and the neurons of each layer

continue to grow, resulting in difficulties in the training process

and the issue of slow convergence. Based on the idea of time series

modeling, the convolutional neural network (CNN) can be

transformed into the temporal convolutional network (TCN) by

making a node in the current layer which no longer depends on

nodes that represent the previous time steps in the same layer but

depends on those in the previous layer representing the previous

time steps. This enables parallelizing the computing tasks of nodes

that represent different time steps in the same layer. Independent

parallel computing of large-scale convolution kernels can be

realized, and the aforementioned problems can be effectively

avoided (Luo et al., 2021). Hu et al. (2022) propose a quantile

regression-integrated TCN to conduct electrical load forecasting.

This model uses intervals to describe the probability distribution of

future loads. Considering the influencing factors of load

forecasting, Bian et al. (2022) use the temporal convolutional

network to extract the potential association between time series

data and non-time series data, then build time series features, and

finally output the best load forecasts. Zhu et al. (2020) forecast the

wind power output with the temporal convolutional network and

compare the performance of LSTM and GRU. The result shows a

higher forecasting accuracy of TCN.

Considering that various periodic fluctuation components hide

in the original customer electrical load curves, time series

decomposition methods such as empirical mode decomposition

(EMD) and variational mode decomposition (VMD) can effectively

help improve the accuracy of short-term load forecasting (Bedi and

Toshniwal, 2018; Ye et al., 2022). However, some intrinsic mode

components obtained by decomposition may have similar

frequencies and fluctuation patterns. Exhaustively processing

them all may result in an extra computational burden.

Compared with the aforementioned methods, CEEMDAN can

effectively improve the decomposition efficiency by adding

auxiliary white noise to the original signal and solve the

problems of a large reconstruction error and poor decomposition

integrity of traditional methods (Zhang et al., 2017; Zhou et al.,

2019). There are a lot of possible influencing factors to short-term

load forecasting, but many of them are in fact redundant and

irrelevant. Filter-based feature selection methods, such as those

based on minimal redundancy maximal relevance (mRMR), can

effectively reduce the feature dimension (Duygu, 2020; Yuan and

Che, 2022) and thereby improve the efficiency of the subsequent

training tasks. However, the mainstream filter-based feature

selection methods merely assess the effect of individual features

but are unable to assess the comprehensive performance of feature

subsets. However, the CatBoost model uses combined category

features to make use of the relationship between features, which

greatly enriches feature dimensions, and it can realize the selection of

the optimal feature set (Hancock and Khoshgoftaar, 2020;

Mangalathu et al., 2020).

To this end, based on complete ensemble empirical mode

decomposition with adaptive noise (CEEMDAN), CatBoost, and

SATCN, this paper proposes a short-term load forecasting

model. The original load time series is first decomposed into

several intrinsic mode function (IMF) components and a residual

with CEEMDAN. Then, permutation entropy values of them are

calculated to determine which components should be merged for

balancing the forecasting accuracy and the computational

efficiency. The CatBoost-based recursive feature reduction

method is applied to optimize the input feature set of

individual components. A self-attention mechanism-integrated

temporal convolutional network (SATCN) model that integrates

CNN and the self-attention mechanism is then trained to output

forecasts corresponding to the components. At last, the forecasts

are combined to generate the short-term load forecast.

2 Decomposition of the load time
series

2.1 Complete ensemble empirical mode
decomposition with adaptive noise

CEEMDAN obtains IMF components by adding multiple

adaptive Gaussian white noise sequences and averaging the

decomposition results from EMD. The unique residual calculation

method of CEEMDAN endows integrity to the decomposition
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process, which not only mitigates the inherent mode-mixing

phenomenon of the existing EMD but also considerably reduces

the signal reconstruction error, making the reconstructed signal

almost identical to the original one (Chen et al., 2021).

This paper uses L(t) to denote the original load time series.

Ei(·) represents the ith IMF component obtained by EMD.Wi(t)
denotes the ith Gaussian white noise sequence that has the same

length as L(t). At the kth CEEMDAN decomposition stage, the

amplitude coefficient of wi(t) is set at εk. �Ik+1 is the k+1th

CEEMDAN IMF component.

The steps of the CEEMDAN algorithm are as follows:

Step 1. Randomly generate M Gaussian white noise sequences,

denoted as w1(t), w2(t),/, wM(t){ }, and then obtain the noise-

superimposed load time series, denoted as

L(t) + ε0w1(t), L(t) + ε0w2(t),/, L(t) + ε0wM(t){ }. Obtain

IMF components through EMD, and further obtain the first

CEEMDAN IMF component by calculating the mean value of

those IMF components as in Eq. 1:

�I1 � 1
M

∑M
i�1
Ii,1. (1)

Step 2. Calculate the residual sequence r1(t) after stage 1 as in

Eq. 2:

r1 t( ) � L t( ) − �I1. (2)

Step 3. Use EMD to decompose

r1(t) + ε1E1(wi(t)), i � 1, 2,/,M{ }. For each sequence, the

decomposition terminates when the first IMF component is

obtained. By averaging the M IMF components from the

aforementioned M sequences, the second CEEMDAN IMF

component �I2 can be calculated as in Eq. 3:

�I2 � 1
M

∑M
i�1
E1 r1 t( ) + ε1E1 wi t( )( )( ). (3)

Step 4. At the kth decomposition stage, calculate the residual

sequence rk(t) and the k+1th CEEMDAN IMF component �Ik+1
using Eqs 4, 5.

rk t( ) � rk−1 t( ) − �Ik, (4)
�Ik+1 � 1

M
∑M
i�1
E1 rk t( ) + εkEk wi t( )( )( ). (5)

Step 5. Repeat Step 4 until the number of extremums of the

residual sequence rk(t) is less than a certain threshold, which is

usually set at 2. Then, CEEMDAN terminates. So far, L(t) has
been decomposed into a series of IMF components �Ii and the

residual as in Eq. 6:

L t( ) � ∑K
i�1
�Ii + R t( ). (6)

2.2 Permutation entropy of the load time
series

The complexity of a time series can be measured by the time

series permutation entropy (Zhao et al., 2022), which will be used

as the basis for component merger and reorganization. For

enough a number of components, when their permutation

entropy values are close, the correspondingly indicated

fluctuation patterns of the load time series are similar.

Therefore, these components can be merged and reorganized

to reduce the computational burden for the subsequent

forecasting task. Considering a one-dimensional load time

series xLoad � xL
1 , x

L
2 , · · ·, xL

N{ }, it can be reconstructed into a

two-dimensional matrixXLoad as in Eq. 7, where R represents the

number of samples of row vectors and τ represents the sampling

interval.

XLoad �
xL
1 xL

1+τ / xL
1+ R−1( ) × τ

xL
2 xL

2+τ / xL
2+ R−1( ) × τ

/ / / /
xL
N− R−1( ) × τ xL

N−R × τ / xL
N

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎫⎪⎪⎪⎬⎪⎪⎪⎭. (7)

This paper first sorts the reconstructed row vectors in

XLoad in descending order, and the column indices of the

elements are written in a sorted row vector i as

(i, j1), (i, j2),/, (i, jL){ }, where XL
i,j1

≥XL
i,j2

≥/≥XL
i,jL

and L

represents the length of the sampling dimension. It is

worthwhile to mention that when two compared elements

in a row vector have the same value, the one with the larger

column index is sorted in the front.

For any row vector XLoad
i , a corresponding load fluctuation

pattern can be defined with the column index sequence after

being sorted. This paper uses Si � j1, j2,/, jL{ } to denote this

fluctuation pattern. Intuitively, in total, L! possible fluctuation

patterns exist. With the statistical occurrence probabilities of all

fluctuation patterns from XLoad, the permutation entropy of the

load time series can be defined as in Eq. 8, where P1, P2,/, PC{ }
represent the occurrence probabilities of C � L! possible

fluctuation patterns. The permutation entropy H can be

further normalized to [0, 1] with Eq. 9. A larger H, being

closer to 1, indicates more abundant fluctuation patterns, and

correspondingly, the closer the H is to 0, the more monotonous

the fluctuation patterns are.

H L( ) � −∑C
i�1
PiInPi, (8)

H � H L( )
In L!( ). (9)
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3 CEEMDAN-CatBoost-SATCN-
based ensemble forecasting method

3.1 Feature selection with CatBoost
algorithm

As one of the three mainstream machine learning

algorithms in the family of boosting algorithms (Jiang

et al., 2020), like XGBoost (Zhang et al., 2020) and light

gradient boosting machine (LightGBM) (Ma et al., 2018),

CatBoost is an improved gradient boosting decision tree

(GBDT)-based algorithm. Each time CatBoost builds a

regression tree, it uses the residual information of the

previous regression tree and builds in the direction of

gradient descent. However, different from GBDT, by

adopting oblivious trees as base predictors, CatBoost can

obtain an unbiased estimate of the gradient to avoid

overfitting. During the training process, CatBoost learns

and explores patterns from the samples generated by the

previous regression tree and changes the weights of the

subsequent regression tree, so that the regression tree with

a larger residual error has a higher weight. Finally, the idea of

ensemble learning is applied to combine multiple weak

learners to constitute a learner with a strong learning ability.

CatBoost assesses the feature importance during the

training process, with which a variety of feature selection

strategies can indeed be built. A prediction value change

(PVC) indicates the average fluctuation of the predicted

value from the CatBoost model responding to the unit

change of a feature. This is shown in Eqs 10 and 11, where

Wl and Vl denote the weight and the target value of the left

leaf, respectively; and Wr and Vr denote the weight and the

target value of the right leaf, respectively. The loss function

change (LFC), as in Eq. 12, indicates the value change of the

CatBoost model’s loss function with and without a certain

feature and reflects the effect of including a certain feature in

accelerating the model convergence. In Eq. 12, X represents

the input feature set that consists ofN features and Xi indicates

the set of remaining features with feature i being removed

from X. Naturally, it contains N-1 features. L(·) returns the
value of the loss function.

PVC � ∑
trees,leafs

Vl − avg( )2 ·Wl + Vr − avg( )2 ·Wr, (10)

avg � Vl ·Wl + Vr ·Wr

Wl +Wr
, (11)

LFC � L X( ) − L Xi( ). (12)

This paper selects the optimal features with a greedy strategy

in a recursive feature reduction process. The main idea is to

repeatedly construct CatBoost models and then identify and

remove the least important features. The detailed steps are as

follows:

Step 6. Initialization. Input load time series and associated

influencing features, X � x1, x2,/, xN{ }, as independent

variables. The forecasts Y � y1, y2,/, yM{ } are considered the

dependent variables.

Step 7. Building CatBoost models. This step contains two sub-

steps. The first sub-step is to generate a regression decision tree

based on the calculated optimal split points of different features

in the feature set and by selecting the features with the smallest

MSE. The second sub-step is to repeatedly construct new

regression trees in the direction of gradient descent of the

current regression tree and finally integrate multiple

regression trees to obtain the CatBoost gradient boosting tree.

Step 8. Feature removal. The importance of all features, denoted

as I1, I2,/, IN{ }, is evaluated first with Eq. 10, based on which

these features are further sorted in descending order. The sorted

features are denoted as xk1, xk2,/, xkN{ }, where

Ik1 ≥ Ik2 ≥/≥ IkN. Considering the current feature set of XN �
xN
k1
, xNk2 ,/, xN

kN
{ } and its corresponding prediction accuracy pn,

the feature with the lowest feature importance will be removed. If

FIGURE 1
Structure of the SATCN.
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the number of the remaining features is above 1, re-input these

remaining features to a new CatBoost model for learning and

training and go back to Step 7; otherwise, go to Step 9.

Step 9. Optimal feature subset selection. Sort the feature subsets

with different numbers of featureswith respect to their corresponding

load prediction accuracy in descending order. The one with the

highest prediction accuracy is the optimal feature subset.

3.2 Self-attention mechanism-integrated
TCN forecasting model

Learning from the attention and cognitive function of human

brains, the self-attention mechanism (Cao et al., 2021) selectively

focuses on learning and memorizing certain input information,

thereby solving the problem of information overload caused by a

large amount of input, effectively improving the training

efficiency, and enhancing the prediction performance. For an

input matrix Xd � [x1, x2, · · ·, xn], through linear

transformation, it can be mapped, respectively, to a query

matrix Q, the matrix of keys K, and the matrix of values V as

in Eqs 13, 14, 15. In Eqs 13, 14, 15, Wq, Wk, and Wv are,

respectively, the weight matrices for mapping toQ, K, and V. The

output matrix Yd � [y1, y2, · · ·, yn] can be calculated as in Eq. 16

based on the scaled dot-product attention mechanism, where Lk
denotes the matrix dimension.

Q � WqXd, (13)
K � WkXd, (14)
V � WvXd, (15)

Yd � Vsof tmax
KTQ��
Lk

√( ). (16)

TCN is mainly composed of two parts, namely, causal

convolution and dilated convolution, in which the former

accomplishes causal modeling relying on time dependency

and avoiding involving the information from the future and

the latter allows input sequences to have time intervals and

achieves exponential expansion of the receptive field with the

same number of convolution layers. Given the input sequence

and the convolution kernel, the output of the hidden layer at the

ith time step with the dilated convolution can be represented as

H i( ) � ∑K−1
j�0

f j( ) · xi−d·j, (17)

where K is the size of the convolution kernel, d is the dilation rate,

f(j) is the jth element in the convolution kernel, and xi-d·j is the
element in the input sequence that corresponds to the jth element

in the convolution kernel.

FIGURE 2
Flowchart of the ensemble forecasting method.
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In short-term load forecasting, by integrating the self-

attention mechanism into TCN, the correlation between the

load time series and influencing factors such as weather,

temperature, and climate can be effectively captured.

Moreover, the influence of key influencing factors is

highlighted, which helps improve the final forecasting

accuracy. Therefore, this paper further improves the

traditional TCN and proposes the SATCN as shown in Figure 1.

3.2.1 Temporal convolutional network layer
The first layer connected to the input layer is a TCN layer,

which takes the multi-dimensional time-correlated load time

series, XLD � x1, x2, · · ·, xT{ }, as the input, and outputs the

hidden states of multiple time steps utilizing TCN’s feature.

This paper denotes the hidden states of multiple time steps as

HLD � h1, h2, · · ·, hT{ }. For any time step t before the last time

step T, ht can be represented as in Eq. 18:

ht � F x1, x2, · · ·, xt( ). (18)

3.2.2 Convolutional neural network layer
The second layer is the CNN layer, which takes the hidden

states’ output by the previous layer of TCN as the input.

Leveraging the powerful feature compression and extraction

capability of CNN, this layer realizes the feature recognition

and extraction of the hidden states and finally outputs time series

patterns HC as in Eq. 19:

HC
i,j � ∑T

l�1
Hi,l · Cj,l, (19)

where the subscript i represents the ith convolution layer, the

subscript j represents the jth convolution kernel, and the

subscript l represents the lth position in the convolution kernel.

Cj,l is the output of the jth convolution kernel at position l.

3.2.3 Self-attention mechanism layer
The third layer is the self-attention mechanism layer. First,

applying the linear transformation as in Eqs 13, 14, 15, the time

series features extracted by the CNN layer can be mapped to

matrices Q, K, and V, and then the feature matrix Y can be

calculated with a scaled dot-product attention mechanism as in

Eq. 16. At last, the load forecast yt+1 for the t+1 time step is output

through a fully connected layer.

3.3 The proposed ensemble forecasting
method

This paper first adopts CEEMDAN to decompose the load

time series to obtain the mode components �I1, �I2, ..., �Ik and the

residual R. Based on their permutation entropy values, they are

merged to W1,W2,/,Wn, and then the CatBoost-based

recursive feature reduction method is applied to extract the

optimal subset of features with respect to each component Wi.

Thereafter, a SATCN load forecasting model is trained to output

the forecast to Wi for the next time step. The flowchart of the

ensemble forecasting method is shown in Figure 2.

4 Case study

4.1 Dataset

Real electrical load data from a certain area are adopted in this

paper. The dataset includes 90 days of electrical load data and related

data of influencing factors from 5 July 2004 to 2 October 2004. The

data granularity is hourly, i.e., 24 samples a day. Historical load, real-

time temperature, time, week, month, and holiday form the input

feature set as shown in Table 1. For categorical features, such as week

and month, they need to be quantified into numerical values to be

seamlessly input into the model. To this end, we represent hours

from 0:00 to 24:00 as integers {0, 1, .., 23}, Monday to Sunday as

integers {1, 2, .., 7}, and months from January to December as

integers {1, 2, .., 12}. Holidays are represented as binaries {0, 1},

where 1 means that the day is a holiday; otherwise, 0. For numerical

features such as load and temperature, this paper directly uses the

data. Considering that the components of the load time series

fluctuate periodically in days, the length of the historical load

should be a multiple of one day. In this paper, 7-day historical

TABLE 1 Input feature set.

Feature Name Description

LT-i Load (decomposed) Load value at i time steps before the forecast time

TT-j Temperature Temperature at j time steps before the forecast time

Hour Time The occurrence hour of a load sample

Weekday Week The occurrence weekday of a load sample

Month Month The occurrence month of a load sample

Holiday Holiday Whether the occurrence day is a holiday
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load is selected as the input. In addition, since the time effect of

temperature on the load is relatively obvious, this paper selected the

temperature data of the previous 6 hours as the input.

4.2 Performance evaluation

We use the mean absolute error (MAE), mean absolute

percentage error (MAPE), and root mean square error

(RMSE), as defined in Eqs 20, 21, 22, respectively, to evaluate

the short-term load forecasting accuracy. In Eqs 20, 21, 22, yi and

ŷi are the actual value and the forecast, respectively. n represents

the length of the forecasts, namely, time steps.

MAE � 1
n
∑n
i�1

yi − ŷi

∣∣∣∣ ∣∣∣∣, (20)

MAPE � 1
n
∑n
i�1

yi − ŷi

yi

∣∣∣∣∣∣∣∣ ∣∣∣∣∣∣∣∣, (21)

RMSE �

����������∑n
i�1

yi − ŷi( )2

n

√√
. (22)

MAPE can eliminate the absolute difference between

forecasting errors at different forecasting time steps by giving

them the same weight, which makes MAPE highly interpretable.

However, as the IMF component Wi obtained by decomposition

is close to a sinusoidal curve that periodically crosses zero, when

the actual value is zero or close to 0 at the forecasting time step,

the MAPE will have an extremely high value causing

overestimation of the forecasting error. This is because the

denominator in Eq. 21 is close to 0. To this end, in the

subsequent feature selection process with CatBoost, this paper

uses MAE and RMSE only to evaluate the forecasting error of

different feature subsets with different numbers of features.

4.3 Experimental results

4.3.1 Load time series decomposition with
CEEMDAN

In the load time series decomposition with CEEMDAN,

through multiple experiments, this paper sets the standard

deviation of the white noise at 0.25 and generates white noise

sequences 100 times. Themaximum number of iterations is set to

5,000, and the results are shown in Figure 3.

It can be seen from Figure 3 that 11 CEEMDAN IMF

components are obtained by CEEMDAN. The inherent mode

mixing of each IMF component is evaluated with permutation

entropy, and those close IMF components are merged and

reorganized. Through multiple experiments, we set τ at 1 and

L at 3. The permutation entropy value of each IMF component is

shown in Figure 4.

From Figure 4, permutation entropy values can be clustered into

three classes. The first class contains IMF components 1, 2, and 3,

whose permutation entropy values are all above 0.9. Their

maximum internal distance is only 0.08, while their lowest value

has a distance of 0.3 to the second class. The second class contains

IMFs 4–10. Their permutation entropy values are generally evenly

distributed, and the descent rate gradually decreases. The third class

only contains the residual component, and its permutation entropy

value is only 0.08, indicating that its fluctuation pattern is extremely

monotonous. This well matches the actual monotonically decreasing

pattern shown in Figure 3. As the second class contains more IMF

components than expected, in order to improve the overall

forecasting accuracy, we further divide this class into two classes.

Finally, the first divided class includes IMF components 4, 5, and 6,

and the internal distance is 0.1; the second divided class includes

IMF components 7, 8, 9, and 10, with an internal distance of 0.06.

The final CEEMDAN IMF component merger results are shown in

Table 2.

FIGURE 3
Results of CEEMDAN.
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Considering that the components of different fluctuation

frequencies have different requirements on the model fitting

ability, an appropriate network structure should be designed to

avoid overfitting or underfitting and effectively improve

forecasting accuracy.

4.3.2 Feature selection with CatBoost
The merged components Wi, the load combination LT-n,

temperature Tt-n, and date together constitute the original feature

set F, which is input into the CatBoost gradient boosting tree. The

CatBoost model is then trained. According to Eq. 10, the feature

importance of individual features in F is calculated, and then

these features are sorted in descending order with respect to their

importance. The number of features k, the feature set F, EMAE,

and ERMSE on the test set are recorded. Then, the feature with the

lowest importance is removed from F realizing the feature

reduction. This process is repeated until F becomes empty.

Thereafter, the mapping between the number of input features

in each component Wi and the forecasting errors, EMAE and

ERMSE, can be established. The results are shown in Figure 5. First,

the number of features corresponding to the minimum point of

the EMAE curve is selected as the optimal feature under the EMAE

index, as shown in the orange label in Figure 5; Second, the

number of features corresponding to the minimum point of the

ERMSE curve is selected as the optimal feature under the ERMSE

index, as shown in the blue label in Figure 5. Finally, in order to

improve the feature reduction rate and improve the forecasting

efficiency, in this paper, the smaller value of EMAE and ERMSE is

adopted to indicate the optimal feature subset.

It can be seen from Figure 5 that the numbers of features in

the optimal feature subsets for each component are, respectively,

35, 11, 22, and 95, and the corresponding feature reduction rates

are 80.3%, 93.8%, 87.6%, and 46.6%. Generally, with the increase

in the number of input features, the forecasting error first

decreases greatly. Then, it gradually stabilizes and fluctuates

within a small range.

The optimal value appears with a certain number of features,

indicating that there are key factors affecting load forecasting

accuracy. Therefore, as long as those key features are selected,

relatively high forecasting accuracy can be achieved. In addition,

it shows that feature selection can effectively identify the

importance of different features so that redundant features

FIGURE 4
Permutation entropy values of IMF components.

TABLE 2 CEEMDAN IMF component merger results.

Components after merging Merged component

W1 �I1 + �I2 + �I3

W2 �I4 + �I5 + �I6

W3 �I7 + �I8 + �I9 + �I10

W4 R
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and noise features can be removed to achieve dimension

reduction of the input as well as training efficiency

improvement. Indeed, for different components, more

adaptive forecasting algorithms, models, and input structures

can be designed to capture their fluctuation patterns, and the

TCNwith the self-attentionmechanism can be applied to capture

their change trends in a period of time.

4.3.3 Forecasting with the self-attention
mechanism-integrated temporal convolutional
network

After the optimal feature subset of each component Wi is

determined, selected features will be input into the SATCN

model. The optimal hyperparameters are determined with a

grid search. The dataset is randomly divided into Xtrain,

Xvalidation, and Xtest with the ratio of 8:1:1. Xtrain is input into

SATCN and processed sequentially by the input layer, the TCN

layer, the CNN layer, the self-attention layer, and the output

layer. Finally, the forecast Yp is output. The loss function value

Eloss of Yp and label YT are then calculated. This paper uses Adam

optimizer to realize backpropagation and update the weight W

and bias b in the SATCN. This process is repeated until the Eloss of

FIGURE 5
Forecasting errors with different numbers of input features for four components as examples including (A) Component 1, (B) Component 2, (C)
Component 3, and (D) Component 4.

TABLE 3 Forecasting results of CEEMDAN-CatBoost-SATCN.

Component Forecast error

MAE/kW RMSE/kW

W1 152.86 211.28

W2 217.51 276.99

W3 21.216 27.988

W4 6.1691 8.1480

W1+W2+W3+W4 254.48 336.08
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SATCN decreases slowly on Xtrain or ERMSE that no longer

decreases on Xvalidation, and this paper considers that SATCN

has converged. Forecasts Yp are obtained by inputting Xtest to the

trained SATCN. The summation of Yp over componentsWi gives

the final forecast. The corresponding errors, EMAPE and ERMSE,

are calculated with Eq. 20 and 21, respectively. The results are

shown in Table 3.

By setting the forecasting time steps at 24 consecutive hours

of a day, the forecasting performance of individual components

FIGURE 6
Forecasting performance of the proposed CEEMDAN-CatBoost-SATCNmethod with four components as examples including (A) Component
1, (B) Component 2, (C) Component 3, and (D) Component 4.

TABLE 4 Forecasting errors of different method combinations.

Method combination Forecasting error

RMSE/kW MAPE/%

B 543.5 2.25

C 425.7 1.89

D 344.8 1.58

A 336.1 1.48

FIGURE 7
Scatter chart of running time of (A) CEEMDAN-CatBoost-
SATCN, (B) SATCN, (C) CatBoost-SATCN, and (D) CEEMDAN-
SATCN methods.
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with the proposed CEEMDAN-CatBoost-SATCN-based method

is shown in Figure 6.

It can be seen from Table 3 and Figure 6 that for every

component, EMAE is lower than 65 KW and ERMSE is lower than

85 KW, which indicates a high accuracy in short-term load

forecasting.

4.3.4 Effectiveness of CEEMDAN and CatBoost
To verify the accuracy and efficiency of the proposed method

combination of CEEMDAN-CatBoost-SATCN (denoted as

method combination A), this paper compares it with SATCN

(method combination B), CatBoost-SATCN (method

combination C), and CEEMDAN-SATCN (method

combination D). The single-time step-forecasting errors,

RMSE and MAPE, are shown in Table 4, and the running

time scatter diagram is shown in Figure 7.

It can be seen from Table 4 that compared with method

combination B of direct load forecasting, method combination C

reduces RMSE by 21.6% and MAPE by 16%, indicating that the

feature selection method can effectively improve the subsequent

forecasting accuracy. CEEMDAN-based method combination D

reduces RMSE by 36.5% and MAPE by 29.7%, indicating that

CEEMDAN that decomposes the load time series and enables

separate forecasting on components can also improve the

forecasting accuracy. Compared with method combinations B, C,

and D, the proposed combination, namely, method combination A,

has the lowest RMSE and MAPE, which means the combination of

time series decomposition and feature selection has a positive effect

on improving the accuracy of short-term load forecasting.

It can be seen from Figure 7 that compared with method B,

CEEMDAN has increased the complexity of model calculation

and model running time due to time series decomposition, while

CatBoost reduces the number of input features through feature

optimization, which improves the computational efficiency. The

method used in this paper combines CEEMDAN, CatBoost, and

SATCN, and on the premise of significantly improving the

prediction accuracy, the additional running time cost is not large.

4.3.5 Effectiveness of CEEMDAN and CatBoost
To verify the effectiveness of the proposed method in this

paper, this paper compares it with BP, SVM, LSTM, GRU, and

TABLE 5 Single time step forecasting error of different methods.

Forecasting method Forecasting error

RMSE/kW MAPE/%

BP 579.2 2.62

SVM 574.5 2.88

LSTM 486.9 2.40

GRU 546.4 2.55

CBP 430.3 1.97

CLSTM 446.8 1.99

CCBP 392.2 1.76

CCLSTM 364.4 1.73

A 336.1 1.48

FIGURE 8
Forecasting error comparison of different forecasting methods.
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their combined methods including CEEMDAN-LSTM

(CLSTM), CEEMDAN-BP (CBP), CEEMDAN-CatBoost-BP

(CCBP), and CEEMDAN-CatBoost-LSTM (CCLSTM). Their

performances are evaluated with MAPE and RMSE. The

optimal hyperparameters of these methods are determined

through multiple experiments. The single time step-forecasting

errors, EMAPE and ERMSE, of the aforementioned models are

shown in Table 5, and their forecast errors of 24-hour

forecasting are shown in Figure 8.

It can be seen from Table 5 that CBP, which integrates the

CEEMDAN based on BP, reduces ERMSE and EMAPE,

respectively, by 25.7% and 24.8% compared with BP. CCBP

that integrates CEEMDAN and CatBoost further reduces

ERMSE and EMAPE by 8.8% and 10.6%, respectively,

compared with CBP. Similarly, on the basis of LSTM,

CLSTM reduces ERMSE and EMAPE by 8.2% and 17%,

respectively; and on the basis of CLSTM, CCLSTM reduces

ERMSE and EMAPE by 18.4% and 13.1%, respectively. This

shows that CEEMDAN and CatBoost are effective in

multiple forecasting models. Compared with CCBP and

CCLSTM, the forecasting errors of the method proposed in

this paper are smaller, which means SATCN proposed in this

paper has a better forecasting performance than LSTM and

BP. Moreover, compared with other forecasting methods, the

method proposed in this paper has the lowest ERMSE and

EMAPE. From Figure 8, it can be seen that in off peak load and

off valley load periods, namely, from 13:00 to 15:00, the

forecasting error of the proposed method is smaller

compared with that in other periods.

5 Conclusion

A short-term load forecasting model considering time

series decomposition and feature selection is proposed. The

experimental results show that the forecasting accuracy can

be effectively improved compared to traditional methods by

separately selecting optimal features, building forecasting

models, and finally combining the separate forecasting

results with respect to the obtained components through

CEEMDAN. The recursive feature selection method based on

the CatBoost gradient boosting regression tree can effectively

evaluate the importance of different features and remove

redundant and noise features. The SATCN, integrated with

the CNN and self-attention mechanism, has a strong ability

to capture load time series features and explore multi-

dimensional variable associations. Compared with other

forecasting methods, the proposed CEEMDAN-CatBoost-

SATCN-based forecasting model can accurately identify

the fluctuation pattern of the load and outperform in

terms of forecasting accuracy.
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