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This research report investigates a novel optimization approach for the economic dispatch
problem (EDP) based on the weighted sum of generators’ costs under supply-demand
balance. Unlike conventional approaches, we present a distributed optimization approach
that ensures optimality using weighted incremental cost (IC) consensus and sign-
consensus error convergence. We can apply the optimization of a weighted sum of
generators’ costs to address several constraints, such as capacity and environmental
constraints, in addition to the supply-demand balance. The proposed distributed weighted
incremental cost consensus approach has been applied to the IEEE-30 bus and IEEE-118
bus systems over a communication topology. The results indicate the efficacy of weights to
address generation constraints and the convergence of weighted ICs under supply-
demand balance.
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INTRODUCTION

Technological progress and changes in ecological policies around the world are forcing the energy
markets to follow distributed generation models (El-Baz et al., 2019; Flore et al., 2019) and (Schubert
and Stadelmann, 2015). To this end, economic dispatch becomes a fundamental problem [see and
(Guozden et al., 2020; Mao et al., 2019)] in which total power generation cost of all distributed
generating units is minimized over a micro-grid (Chansareewittaya, 2018). Most of the existing
economic dispatch problem (EDP) algorithms use a centralized approach (Krishnamurthy et al.,
2017; McLarty et al., 2019), which however cannot be applied to distributed generation scenarios (Liu
et al., 2016; Zhang et al., 2019; Wang et al., 2020). Recently, a lot of work has been focused on solving
EDP problem in a distributed scenario. For example, the study in Guodong Liu et al. (2019)
developed a distributed energy management system for a public micro-grid to schedule distributed
energy resources and energy storage systems, based on price signals. Yun et al. (2019) resolved the
EDP in a distributed manner through a simple algorithm that required no particular initialization.
The work in Yi et al. (2020) proposed a distributed method for the economic multi-energy system by
considering numerous equality and inequality constraints for recurrent renewable generations. The
authors in Lü et al. (2020) developed a directed and distributed Lagrangian momentum algorithm
that joined the gradient-tracking technique with momentum terms by using nonuniform step-sizes.
It has been observed that machine learning and optimization methods have several engineering and
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biomedical applications, as observed in the recent studies (Rehan
and Hong, 2011; Ansari et al., 2019; Wu et al., 2019; Hou et al.,
2020; Zafar and Hong, 2020; Zhu et al., 2021). Such bioinspired
and learning schemes have their applications in artificial
intelligence and adaptive systems (Rehan et al., 2011; Iqbal
et al., 2018; Gomez-Tames et al., 2019; Ma et al., 2019;
Manzanera et al., 2019; Yang et al., 2019; Chiarelli et al., 2020;
Liu et al., 2020; Wei et al., 2020; Dalin Yang et al., 2020).

Recently, consensus algorithms have been applied to attain a
distributed EDP (Yun et al., 2019;Wang and Liu, 2020), which are
simple to realize and guarantee an optimal solution by respecting
various communication topologies in a micro-grid. A robust
consensus-based approach has been investigated in Zhang
et al. (2016) for studying the potentials of distributed methods
over environmental constraints, ramp-rate limit, prohibited
zones, and switching topologies, in addition to box and
equality constraints. An advanced concept of learning and
adaptation has been employed in Zhang et al. (2018) via a
two-layer and leader-based approach. In Chen et al. (2019),
the authors considered an economical distributed control
approach for the battery energy storage system under
frequency control, and an incremental cost (IC) consensus
algorithm was developed. Wang and Liu (2020) represented
two distributed IC consensus-based optimization algorithms to
answer EDPs without and with generation constraints via small
gain theorem. Chen et al. (2020) presented a distributed
consensus approach for cost-effective load dispatch under
frequency regulation. The works in Wang et al. (2019), Yu
et al. (2020), and Xing et al. (2019) proposed EDP methods
under random delay, for time-varying step-sizes, and
transmission losses. The role of control theories and Lyapunov
analysis (us Saqib et al., 2018; Tang and Li, 2019; Zhao et al., 2019;
Gao and Liu, 2020; Santos et al., 2020; Yao et al., 2020) can be
useful in attaining optimization issues. The stability analysis, as
observed in Dev and Sarkar (2019), Perng et al. (2020), Souza
et al. (2020), Xie et al. (2020), and Yin et al. (2020), can be applied
to attain coordination in generation systems.

The above-mentioned central, distributed, and IC consensus-
based distributed methods consider optimization of total cost of
generation, which is the sum of costs of all generating units. It
should be noted that rather than achieving optimal generation,
optimization of weighted sum of generations is more meaningful,
as it can be applied to comply with several constraints, such as
capacity constraints, environmental restraints, and other
auxiliary restrictions. The idea of inclusion of weights in
optimization is interesting, as it can provide freedom to
designers for appropriately minimizing the total generation
cost and to define and apply user-defined constraints as per
requirements of the generation system. However, the solution to
this problem is equally challenging for a distributed EDP
environment, as the conventional optimality conditions and
the conventional consensus methods cannot be applied in this
situation. Motivated by these concerns, the present work is a step
toward formulating and establishing conditions for distributed
EDP with weighted cost function under supply-demand
constraints, which can consider various generation constraints
as well. Specifically, the contributions in the paper are as follows.

• A new problem of distributed optimization in EDP has been
formulated to optimize the weighted costs of generators, for
which the conventional EDP can be written as a specific
case. To the best of our knowledge, a distributed
optimization approach for solving weighted EDP (Eq. 3)
has been provided for the first time. The proposed
optimization approach is also advantageous, as it can be
applied to attain several constraints in a simple manner by
adjusting weights.

• Two optimality conditions for the said problem are investigated:
The first condition provides the generic optimality condition,
based on Lagrangian methods, and it shows that the optimal
weighted EDP can be resolved by addressing weighted IC
consensus, rather than the conventional IC consensus. The
second condition investigates the optimality condition from a
distributed optimization point of view over a network, based on
sign-consensus error convergence, rather than applying the
conventional consensus error.

• A novel protocol for the distributed weighted EDP has been
provided. The condition on the protocol parameters for
attaining EDP’s optimal solution is provided by applying
graph theory and Lyapunov analysis. The proposed
weighted EDP has been applied to the IEEE-30 bus and
IEEE-118 bus systems, and the comparison of the proposed
method with the existing ones is studied.

• It is worth mentioning that the proposed approach supports
the signed graphs for the weighted cost optimization. The
signed graphs can arise between two generators due to
transmission of information via amplification through
inverting amplifiers.

• By the application of the recent results in Pourbabak et al.
(2020) for optimal power flow (OPF), a modified weighted
cost function-based approach is also provided to resolve a
more advanced and complicated problem, considering the
practical constraints in addition to the cost optimization.

PROBLEM FORMULATION

The neighborhood connections between generators can be
modeled by means of a bidirectional graph G � (V, E,A),
where V, E, and A represent sets of nodes, edges, and
adjacency matrix, respectively. The entries of A are
represented by aij to depict communication links between
generators. Consider the following equation (Krishnamurthy
et al., 2017):

Ci PGi( ) � αi + βiPGi t( ) + γiP
2
Gi

t( ), (1)
which represents the cost expression of ith power generator with
αi, βi and γi as coefficients. The weighted total cost can be
written as

Cwt PGi( ) � ∑N
i�1

wiCi PGi( ), (2)

where wi for i = 1, 2, . . . ,N are positive weights and Cwt shows the
weighted cost of generation. In relation (2), we have considered a
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modified cost function with weights for attaining the constraints.
The use of weights is interesting and has found applications in the
literature. For instance, weights have been considered in the cost
functions (Shadmand et al., 2019) for attaining multiple control
objectives for power electronic interfaces. Co-variance weighted
nonlinear least-square cost functions are presented in Pintelon
et al. (1997) for model identification applications. Time-delay
estimation over highly oscillatory objective functions, with
applications in sonar, as observed in Wu and Li (1998), has
been attained for Cramer–Rao bounds [see also Toh and Eng
(2008) for weighted least-square learning]. Even weights have also
been used in economic dispatch problem over multiple objective
functions of cost and environment (Dong and Wang, 2020),
which motivates us to use weights for attaining EDP constraints.

Remark 1. The total generation cost can be written as
Ct(PGi) � ∑N

i�1 Ci(PGi). Note that the minimization of
Cwt(PGi) can ensure reduction of Ct(PGi). If wi = 1, we have
Cwt(PGi) � Ct(PGi), that is, the weighted cost function reduces to
the conventional (nonweighted) cost function. The weights can be
selected such that 1

N ∑N
i�1 wi � 1. Here, the advantage is that these

weights can be selected for attaining user-defined requirements. For
instance, if a generator is likely to reach its upper generation constraint,
its weight can be adjusted to a higher value to give more weight
contribution to the minimization of the generator’s cost function. If a
generator (say generator 10) is environmental friendly, its weight w10

can be taken smaller for less weight on the optimization ofC10(PG10).
Hence, power generation PGi of a generator i can be reduced by
increasing its weight wi, and vice versa.

Consider the problem of minimization of weighted cost of
generators under supply-demand constraint for generator
capacity constraint, given by

minCwt PGi( ) � ∑N
i�1

wiCi PGi( ),
subjectto PD � ∑N

i�1
PGi,

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(3)

PGi ∈ Pm
Gi

PM
Gi

[ ]. (4)
The relation (Eq. 3) represents the proposed optimization

problem, aiming to minimize the weighted cost (Cwt) in such a
way that the power demand remains equal to summation of
generated power by all generators. Condition (Eq. 4) shows that
generated power should belong to maximum (PM

Gi
) and

minimum (Pm
Gi
) power of generator, called capacity constraint.

In the present work, we have considered the minimization of
weighted cost function Cwt(PGi) under the supply demand
equality constraint PD � ∑N

i�1 PGi. The box constraint of (Eq.
4) is not explicitly considered in the work. Rather, this constraint
is indirectly ensured via selection of weights wi and wj. Generally,
the power generation limits can be determined by the minimum
and maximum capacity of a generator, based on the design,
technology used, and type and amount of fuel applicable for a
distributed generator. These details are provided by the
manufacturers/vendors. It should be noted that the weights wi

cannot be unified in the objective function of (Eq. 3), because the

box constraint in (Eq. 3) cannot be considered a weighted supply-
demand constraint. The optimization problem (Eq. 3) becomes
complex owing to different formats of objective function
(weighted) and constraints (nonweighted) and due to
consideration of distributed as well as dynamic optimization
over a graph. Similar to He et al. (2019), the total power
generation mismatch (ΔP) is given by

ΔP � PD −∑N
i�1

PGi. (5)

If we take the derivative of Eq. 1 with respect to PGi, we obtain
the IC of ith unit as

ηi t( ) � dCi PGi( )
dPGi

� βi + 2γiPGi. (6)

MAIN RESULTS

Investigation of Optimality Condition
This subsection investigates the optimality conditions for the
proposed EDP problem in Eq. 3.

Lemma 1. The optimal solution Pp
Gi
for the weighted EDP in (Eq.

3) can be attained if

wi
dCi PGi( )
dPGi

� wj

dCj PGj( )
dPGj

,∀ i, j � 1, 2, . . . , N, (7)

PD � ∑N
i�1

PGi. (8)

Proof. Consider the Lagrangian function as

L PGi, λ( ) � ∑N
i�1

wiCi PGi( ) + λ PD −∑N
i�1

PGi
⎛⎝ ⎞⎠. (9)

Taking the derivative of L(PGi, λ) with respect to PGi and λ, we
obtain

zL PGi, λ( )
zPGi

� wi
zCi PGi( )
zPGi

− λ � 0. (10)

zL PGi, λ( )
zλ

� PD −∑N
i�1

PGi � 0. (11)

For optimality condition, we require
zL(PGi,λ)

zPGi
� 0 and

zL(PGi,λ)
zλ � 0, which lead from (Eq. 10)-(Eq. 11) that

wi
zCi PGi( )
zPGi

� λ. (12)

PD −∑N
i�1

PGi � 0. (13)

The conditions in Eqs 12 and 13 are equivalent to (Eqs 7, 8),
respectively, which completes the proof.
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Remark 2. Lemma 1 applies the Lagrangian function approach to
provide a generic optimality condition for (Eq. 3). It states that
the optimization of weighted EDP (Eq. 3) can be attained by
attaining weighted IC consensus (Eq. 7) and supply-demand
balance condition (Eq. 8). For wi = wj = 1 with i, j = 1, 2, . . . , N,
the conventional IC consensus scheme as in Chen et al. (2019)
and Yu et al. (2020) can be derived a specific result.

Now, we derive an optimality condition from distributed
optimization over a network point of view. Let us define the
weighted IC consensus error as

ei t( ) � wiηi t( ) − 1
N

∑N
j�1

wjηj t( ). (14)

Lemma 2. The optimal solution Pp
Gi
for the weighted EDP (Eq. 3)

can be attained if ei(t) � wiηi(t) − 1
N ∑N

j�1 wjηj(t) converges to
the zero and ∑N

i�1 PGi reaches at PD.

Proof. Let us define e(t) � [eT1 , eT2 , . . . , eTN]T,
η(t) � [ηT1 , ηT2 , . . . , ηTN], 1N = [1,1, . . . ,1]T ∈ RN, and
W � diag w1, w2, . . . , wN{ }, the condition (Eq. 14) gives

e t( ) � I − 1
N
1N1

T
N( )Wη t( ). (15)

It can be observed that zero is a simple eigenvalue of
(I − 1

N1N1
T
N), corresponding to right eigenvector IN. The

remaining eigenvalues are one with multiplicity N − 1. Hence,
e(t) = 0 if and only if wiηi(t) = wjηj(t), for all i, j = 1, 2, . . . , N.
Convergence of e(t) to zero ensures wiηi(t) = wjηj(t), which is
equivalent to (Eq. 7). The other condition is the same as (Eq. 8).

Remark 3. In Lemma 2, we define an error
ei(t) � wiηi(t) − 1

N ∑N
j�1 wjηj(t), the convergence of which

leads to an optimal solution of (Eq. 3). Conventionally, when
wi = wj = 1 with i, j = 1, 2, . . . , N, the error ei(t) � ηi(t) −
1
N ∑N

j�1 ηj(t) is applied for complete consensus in ICs; however,
the proposed weighted EDP does not require the complete
consensus, rather it needs a different sign-consensus treatment
between ICs of DGs, which means that the signs of ICs of DGs
should have a consensus. Thanks to the recently investigated
study on sign-consensus (Jiang et al., 2017), which can be applied
as a tool to achieve optimal solution in the present case.

Proposed Distributed Optimization
Approach
We take a balanced initial condition that can be achieved as seen
in Xing et al. (2019), Yu et al. (2020), and references therein.

∑N
i�1

PGi 0( ) � PD. (16)

Assumption 1. The bidirectional graph G is strongly connected.
The proposed optimization protocol has the form

_ηi t( ) � 2cγi ∑N
j�1

Hijaij wiηi t( ) − wjηj t( )( ),

Hij �
1
aij

, ifaij ≠ 0,

0, ifaij � 0,

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(17)

where c is a coupling weight and Hij is used to normalized the
entries aij. This normalization can be helpful for normalizing the
large or small strengths of connection between nodes.
Furthermore, we can have signed graphs with negative entries
of aij. Practically, signed graphs can appear due to transmitting
information with amplification through inverting amplifiers. In
such a case, gains Hij are necessary for normalizing the weights.
Owing to the modification of Hij, the presented approach can be
applied to signed graphs. Each generator i can update its IC, ηi(t),
by using its own weighted IC,wiηi(t), and the weighted IC, wjηj(t),
of neighboring generator.

Remark 4. The proposed distributed optimization protocol has
two distinctions compared to the existing methods (Xing et al.,
2019; Yu et al., 2020; Chen et al., 2019). First, the IC of a generator
can be updated based on local information of weighted IC (rather
than IC), which is applied to resolve weighted EDP (Eq. 3).
Second, we have introduced a normalization factor Hij, through
which the proposed approach can be applied to bidirectional
(even signed) graphs, while the existing studies are limited to the
conventional graphs. Note that in a realistic communication
scenario, two generators can share weighted ICs with different
strengths, leading to a bidirectional connection. The connection
strength can also be negative due to use of inverting amplifiers,
often used in signal transmissions.

The following theorem provides the optimal solution
of (Eq. 3).

Theorem 1. Consider the N generators satisfying Assumption 1
and validating (Eq. 16). The distributed protocol (Eq. 17) for c >
0 ensures convergence of PGi to the optimal solution PGi* for the
constrained weighted EDP (Eq. 3).

Proof. Selecting ϕ � ∑N
j�1 wjηj(t), we have

wiηi t( ) − wjηj t( ) � wiηi t( ) + ϕ − ϕ − wjηj t( )
� ei t( ) − ej t( ). (18)

Putting (Eq. 18) in (Eq. 17) obtains

_ηi t( ) � 2cγi ∑N
j�1

Hijaij ei t( ) − ej t( )( ). (19)

Taking the time-derivative of (Eq. 14) leads to

_ei t( ) � wi _ηi t( ) − 1
N

∑N
j�1

wj _ηj t( ). (20)

Using (Eq. 19) into (Eq. 20), we have
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_ei t( ) � 2cγiwi ∑N
j�1

Hijaij ei t( ) − ej t( )( )
− 2c
N

∑N
j�1

γjwj ∑N
i�1

Hjiaji ej t( ) − ei t( )( ). (21)

The last term of Eq. 21 can be evaluated as

∑N
j�1

γjwj ∑N
i�1

Hjiaji ej t( ) − ei t( )( ) � 0. (22)

Substituting (Eq. 22) into (Eq. 21) leads to

_ei t( ) � 2cγiwi ∑N
j�1

Hijaij ei t( ) − ej t( )( ). (23)

For a positive scalar p, consider a Lyapunov function as

V ei t( )( ) � 0.25∑N
i�1

γ−1i w−1
i e2i . (24)

Taking the time-derivative of (Eq. 24), we obtain

_V ei t( )( ) � 0.5∑N
i�1

γ−1i w−1
i ei _ei. (25)

From Eq. 23, Eq. 25 becomes

_V ei t( )( ) � c∑N
i�1

ei ∑N
j�1

Hijaij ei t( ) − ej t( )( ). (26)

Under Assumption 1, we have Hijaij = Hjiaji. Let us define a
symmetric matrix as ~L � [~lij]N×N, where

~lij �
−Hijaij, i ≠ j,

∑N
j�1

Hijaij, i � j.

⎧⎪⎪⎨⎪⎪⎩ (27)

Using the information of normalized Laplacian into (Eq. 26)
leads to

_V ei t( )( ) � −ceT t( ) ~Le t( )≤ − ceT t( )α ~L( )e t( )< 0. (28)
As _V(ei(t))< 0, the convergence of ei(t) to the origin is

attained, that is to say, the first condition in Lemma 2 holds.
To consider the second condition, we apply the analysis of (Eq.
17). Under �γ � ∑N

j−1 (2γj)−1, dividing Eq. 17 by �γ γi, we obtain

1
γi�γ

_ηi t( ) � c

�γ
∑N
j�1

Hijaij wiηi t( ) − wjηj t( )( ). (29)

Let us assign Ψ � ∑N
i�1

1
γi�γ
ηi(t), its derivative along (Eq. 29)

becomes

_Ψ � c

�γ
∑N
i�1

∑N
j�1

Hijaij wiηi t( ) − wjηj t( )( ). (30)

Note that ∑N
i�1 ∑N

j�1 Hijaij(wiηi(t) − wjηj(t)) � 0; therefore,
_Ψ � 0. It further implies that there exists a constant χ such that Ψ
= χ. Consequently, we have

∑N
i�1

1
γi�γ

ηi t( ) � χ. (31)

which by substituting (Eq. 6) implies

∑N
i�1

βi
2
+ PGi t( )( ) � 2�γχ. (32)

For investigating total generation from (Eq. 32), we have

∑N
i�1

PGi t( ) � 2�γχ − 1
2
∑N
i�1

βi � PD. (33)

It shows that the second condition of convergence of ∑N
i�1 PGi

to PD is also attained. By the application of Lemma 2, PGi will
converge to Pp

Gi
, which completes the proof.

Although the presented approach in Theorem 1 provides the
convergence condition, the rate of convergence has not been
investigated in the presented study. Here we provide guidelines to
improve the convergence rate. By selecting the larger control
parameter c in (Eq. 17), fast convergence of the proposed

FIGURE 1 | Flow chart of weighted IC consensus approach.
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approach can be attained. However, careful attention should be
accounted in selecting the larger gain, as it can cause sensitivity of
the algorithm against noises by amplifying their effects. The
convergence of the protocol (Eq. 17) can also be faster for the
large value of α( ~L), which can be increased by having more edges
(connections between nodes) in a graph topology.

The flowchart of the proposed weighted IC consensus
approach is shown in Figure 1. After initialization, the value
of IC at each node is calculated based on PGi at the previous
iteration. Subsequently, the nodes communicate their IC values to
the connected node, where the connections among nodes are
defined through an adjacencymatrix. A new value of IC and PGi is
calculated by the node based on the weighted ICs from the nodes.
Finally, a check is introduced to continuously monitor the
convergence of weighted ICs that will ensure the optimal
values of PGGi, i.e., Pp

Gi
. The algorithmic form of the

distributed optimization approach for weighted IC consensus
is also given in Algorithm 1.

Remark 5. Theorem 1 provides the main optimization results for
resolving the weighted EDP (Eq. 3). To the best of our knowledge,
a distributed optimization approach for solving weighted EDP
(Eq. 3) has been provided for the first time. The results are
attained by the application of a different sign-consensus theory
along with the generation and weighted IC dynamical analysis.
The proposed approach is also advantageous as it can be applied
to attain several constraints in a simple manner by adjusting
weights. The consensus control approaches like Sun et al. (2015)
consider the attainment of agents’ same behavior by applying
feedback. While the consensus-based optimization methods can
be considered the progress of these control approaches for a
distributed optimization, an objective function is optimized,
like the cost of generation is optimized, and constraints like
generation constraint.

Remark 6. In a network, electrical losses over transmission lines
can be a challenging problem, which should be considered for a
realistic EDP problem. Let PL be an estimate of the electrical
losses in the transmission lines, then we require
PD + PL −∑N

i�1 PGi � 0, instead of (Eq. 13). This condition
can be attained by simply using the modified initial
condition as ∑N

i�1 PGi(0) � PD + PL.

Remark 7. Recently, economic dispatch has been addressed in
Zhao et al. (2018) and Shi et al. (2020) for saving the
communication bandwidth through an even-triggering
mechanism. Another interesting study of Shi et al. (2021) has
developed an optimization protocol for exponential convergence.
Compared to these results, the presented approach considers an
optimization problem by considering a different weighted cost
function. Based on the studies Zhao et al. (2018) and Shi et al.
(2020), the present approach can be extended for event-triggered
communication, rather than the time-triggered approach, for the
efficient bandwidth utilization. Furthermore, the presented
approach can be extended for exponential rate of the
optimization, based on the results of Shi et al. (2021), for
controlling the convergence rate parameter.

EXTENSION TO OPF PROBLEM

OPF is an advanced optimization problem inmicro-grids, the aim
of which is to minimize the cost of generated power under EDP
constraints along with the practical constraints, like bus voltage
limits, bus power limits, and bus losses. Compared with EDP,
OPF considers the cost minimization along with implementation
aspects of power flow in a grid. Generally, OPF is a complex
problem due to 1) additional nonlinear constraints, 2) non-
convexity of the new constraints, 3) requirement of more

Algorithm 1 | Weighted IC Consensus Algorithm.
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computational resources, and 4) uncertain environment in large-
scale systems, as observed in Pourbabak et al. (2019). In addition,
attainment of a distributed OPF solution for a distributed
optimization issue further complicates this problem, as seen in
Pourbabak et al. (2019), Pourbabak et al. (2020), Liu et al. (2017),
Yun Liu et al. (2019), Linfeng Yang et al. (2020), and Wang et al.
(2017).

Here, we modify the proposed EDP approach in Theorem 1
for OPF by the application of the recent results in Pourbabak et al.
(2020) for the weighted cost function, based on weighted IC
consensus. Let Ndl, Ng, Nload, and Nb represent the sets of
distributed lines, generators, load lines, and all lines over a DC
micro-grid. For active generation PGi and demand PDi of ith
generator, the OPF problem can be represented as

minCwt PGi( ) � ∑N
i�1

wiCi PGi( ),
such that

∑N
i�1

PDi � ∑N
i�1

PGi,

Pnet,i � PGi − PDi, ∀i ∈ Ng +Nl( ),
0, ∀i ∉ Ng +Nl( ),

⎧⎨⎩
Pnet,i � ∑N

n∈ Nb−i( )
Pin,∀i ∈ Nb,

vmin
i ≤ vi ≤ vmax

i ,∀i ∈ Ng

Pin � Gin vivi − vivn( ),∀i, n ∈ Nb,
Pin ≤Pmax

in ,∀i, n ∈ Ndl,

(34)

where vi denotes the ith generator bus voltage with minimum and
maximum limits as vmin

i and vmax
i , respectively. Gin represents the

conductance of a line between buses i and n. Pnet,i shows the net
power injected in ith bus. The power flow between i and n buses is
represented by Pin with limit Pmax

in . The discretized first-order
approximation form of (Eq. 17) with sample time Ts is given as

ηi j, k + 1( ) � −ηi j, k( ) + 2cγiTs ∑N
j�1

Hijaij wiηi j, k( ) − wjηj j, k( )( ),

Hij �
1
aij

, ifaij ≠ 0,

0, ifaij � 0.

⎧⎪⎪⎪⎨⎪⎪⎪⎩

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
(35)

Upon convergence of ηi(j, k + 1) → ηc,i(j) from (Eq. 35), we
can determine the generations as

μi,mn j + 1( ) � μi,mn j( ) + s1ϑmn Pmn − Pmax
mn( ),

PGi j( ) � ηi j( ) − βi + μi,mn j( )
2γi

, i ∈ Ng,
(36)

where s1 is a small value and ϑmn shows sensitivity betweenm and
n buses. Here, μi,mn(j) is the state for controlling the power flow
limit between two buses. Let us assign Xin = vivn, the following
approach for small scalars s2 and s3 can be used for validating the
practical constraints through OPF (see details in Pourbabak et al.
(2020)):

Xin j + 1( ) � Xin j( ) + s2 Xii j( )Xnn j( ) −Xin j( )( ),
∀i ∈ Nb, n ∈ Nb − i{ }( ), (37)

Xii j + 1( ) � PGi j( ) − PDi + ∑N
n∈ Nb− i{ }( )

GinXin j( )⎛⎝ ⎞⎠ ∑N
n∈ Nb− i{ }( )

Gin
⎛⎝ ⎞⎠−1

, (38)

ηi j + 1, k( ) � ηc,i j( ) + s3

PGi j( ) − PDi j( ) − ∑N
n∈ Nb− i{ }( )

Gin Xii j( ) −Xin j( )( )⎛⎝ ⎞⎠,∀i ∈ Nb.

(39)
The OPF problem for minCwt(PGi) � ∑N

i�1 wiCi(PGi)
under (Eq. 34) can be resolved by the application of (Eqs
35–39) for a new weighted cost function. In the future, the
detailed analysis of such an algorithm along with the
practical model for OPF for analyzing the results can be
investigated.

Remark 8. The conventional EDP methods (Xing et al., 2019; Yu
et al., 2020; Chen et al., 2019) cannot be applied practically to
resolve the OPF issue in a distributed way. There are very limited
distributed methods, as seen in Pourbabak et al. (2019),
Pourbabak et al. (2020), Liu et al. (2017), Yun Liu et al.
(2019), Linfeng Yang et al. (2020), and Wang et al. (2017),
which deal with the OPF problem over a micro-grid using
distributed algorithms. It is worth mentioning that the

TABLE 1 | Parameters for IEEE-30 bus system.

i αi βi γi Pm
Gi

PM
Gi

1 0 2 0.003 75 50 200
2 0 1.75 0.017 5 20 80
3 0 1 0.062 5 15 50
4 0 3.25 0.008 34 10 35
5 0 3 0.025 10 30
6 0 3 0.025 12 40

FIGURE 2 | Six generators connected in IEEE-30 bus system.
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proposed approach in Theorem 1 has been extended for a
distributed OPF protocol by considering these exceptional works.

SIMULATION RESULTS

Here, we provide the simulation results of the proposed
optimization methodology for the IEEE-30 bus system and for
a large-scale IEEE-118 bus system. The IEEE-30 bus system is
selected to emphasize basic understanding of the proposed
technique and for the comparison of our approach with the
existing methods. The IEEE-118 bus system has been adapted to
test the application of the proposed approach to a complex system

and to investigate adjustment in the resultant method for the
application to a large-scale system.

Application to IEEE-30 Bus System
We consider IEEE-30 bus system (He et al., 2019) for testing the
proposed weighted EDP approach, which consists of six
distributed generators. The simulations are carried out in
MATLAB environment, motivated by the approaches of Wang
et al. (2021) andHu et al. (2021), by considering a total demand of
PD = 360 MW. The parameters are taken as αi = 0 for all
generators, βi are given by 2, 1.75, 1, 3.25, 3, and 3, and γi are
taken as 0.003 75, 0.017 5, 0.062 5, 0.008 34, 0.025, and 0.025, for
i = 1, 2, . . . , 6, respectively. The minimum and maximum
generation constraints are given by sets {50, 20, 15, 10, 10, 12}
and {200, 80, 50, 35, 30, 40}. All the cost coefficients of IEEE-30
bus system are shown in Table 1. The graph between DGs of
IEEE-30 bus system is shown in Figure 2 (Lewis et al., 2014). The
location of generators and the connection between DGs can be
represented via an adjacency matrix. The adjacency matrixA has
the form

A �

0 1 1 1 1 0
1 0 1 0 0 1
1 1 0 0 0 0
1 0 0 0 1 0
1 0 0 1 0 1
0 1 0 0 1 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (40)

All the simulations are carried out in MATLAB. The initial
conditions for the generation are taken as PG1(0) � 180 MW,
PG2(0) � 70 MW, PG3(0) � 40 MW, PG4(0) � 20 MW, PG5(0) �
20MW, and PG5(0) � 30MW. In the following, we first apply the
conventional approach by taking wi = 1 ∀ i = {1, 2, . . . , 6}.
Afterward, we show the effectiveness of appropriate weight
selection in dealing with the capacity and environmental

FIGURE 3 | Weighted ICs of individual generators versus time (sec)
under the conventional approach (unity weights).

FIGURE 4 | Power generations (MW) of individual generators versus
time (sec) under the conventional approach (unity weights).

FIGURE 5 |Weighted ICs of individual generators versus time (sec) using
the proposed approach (via weight selection), w1 = 1.1, w2 = w3 = w4 = w5 =
1.025 and w6 = 0.8.
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constraints. By solving Theorem 1 for unity weights, we have
selected c = 100.

Figure 3 shows the results of weighted ICs for a special case, in
which w1 = w2 = w3 = w4 = w5 = w6 = 1. This special scenario is
equivalent to the conventional IC consensus scenario depicted in
Xing et al. (2019), Yu et al. (2020), and Chen et al. (2019) without
generation constraints. The IC curves of all the generators
converge rapidly to a common value. For the unity weights,
the corresponding generation plots are shown in Figure 4. The
results are optimal for Ct(PGi); however, generator G1 crosses the
upper limit of 200 MW, violating the constraints in (Eq. 4). Also
note that the power generation ofG5 andG6 converges to 20 MW.
As mentioned earlier that the existing methods (Xing et al., 2019;
Yu et al., 2020; Chen et al., 2019) are special case of the proposed
approach in terms of weights, the same violation of the capacity
constraint while achieving IC consensus can be observed. In

addition, if G6 is environmental friendly, we cannot increase its
generation under reduced cost using the existing distributed
methods.

For the verification of the proposed method, we assume that
the generator G6 is environment friendly. Therefore, we increase
its generation in addition to (Eq. 4) for G1. For that, we can select
our weights wi (which is not possible in conventional
approaches). Let us choose w1 = 1.1, w2 = w3 = w4 = w5 =
1.025 and w6 = 0.8. The weight w1 is assigned a higher value to
reduce G1 generation below 200 MW. The smaller value of w6 is
assigned to increase the generation of G6 due to its environment
friendly nature. Under these weights, the results of the proposed
approach for weighted ICs and generations are demonstrated in
Figure 5 and Figure 6. Clearly, the weighted IC consensus has
been achieved as demonstrated in Figure 5. In addition, the
steady-state generation for G1 is around 192 MW, validating the
capacity constraint, and for G6, we are able to increase its
generation to around 34 MW by simply reducing the weight
to 0.8. Hence, the optimal solution to the proposed weighted EDP
(Eq. 3) can be achieved through the proposed methods for
validating additional constraints such as capacity and
environment constraints.

Here, we compare the proposed approach in Theorem 1 with
the existing methods of Krishnamurthy et al. (2017), McLarty
et al. (2019), and Yu et al. (2015). The conventional approaches
(Krishnamurthy et al., 2017) and (McLarty et al., 2019) are based
on the central methods, for which data sharing with dispatch
center is needed along with central computation. In contrast, the
proposed approach applies the distributed computation of the
optimal solution to attain a quick solution with several
processors, installed at the generator levels, without sharing
the data with a central unit. Hence, the distributed
computation applied in the proposed method has a simple
advantage over Krishnamurthy et al. (2017) and McLarty et al.
(2019) for fast computation using distributed processors, based
on first-order simple differential equations. In addition, the
proposed method also avoids data transmission delays caused
by data transmission from/to the central unit, and it ensures data
confidentiality as well. The comparison of the proposed method

FIGURE 6 | Power generations (MW) of individual generators versus
time (sec) using the proposed approach (via weight selection), w1 = 1.1, w2 =
w3 = w4 = w5 = 1.025 and w6 = 0.8.

TABLE 2 | Comparison of the proposed method with the existing study.

Quantities He et al. (2019) Theorem 1: w1 = 1.1 Theorem 1: w2 = 1

w2 = w3 = 1.025 w1 = w4 = 1.1

w4 = w5 = 1.025 w3 = w5 = 1

w6 = 0.8 w6 = 0.8

PG1 limits {50, 200} 219.8 MW 192.5 MW 197.2 MW
PG2 limits {20, 80} 54.25 MW 55.59 MW 59.34 MW
PG3 limits {15, 50} 21.19 MW 21.55 MW 22.62 MW
PG4 limits {10, 35} 38.87 MW 41.71 MW 28.7 MW
PG5 limits {10, 30} 12.97 MW 13.92 MW 16.53 MW
PG6 limits {12, 40} 12.97 MW 34.71 MW 35.66 MW
Weighted IC value (currency unit/MW) 3.648 3.788 3.827
Cost function used ∑N

i�1 Ci(PGi ) ∑N
i�1 wiCi(PGi ) ∑N

i�1 wiCi(PGi )
Optimal cost function (currency unit) 1,032 1,082 1,084
Total generation cost (currency unit) 1,032 1,046 1,048
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with Yu et al. (2015) [see also similar works (He et al., 2019; Xing
et al., 2019; Yu et al., 2020), and (Chen et al., 2019) without
weights] is provided in Table 2 for generations, cost functions,
incremental costs, and total cost. For this purpose, the total
demand is selected as PD = 360MW. First, we consider
weights as w1 = 1.1, w2 = w3 = w4 = w5 = 1.025, and w6 = 0.8
for the proposed method, as per the previous study. It can be
observed that the proposed method respects the generation
constraint of generator 1, as PG1 satisfies the generation limits
for the optimal solution. In addition, PG6 can be increased
through the proposed method for increasing the generation of
unit 6. Mainly, the proposed method has a different (weighted)
cost function compared to He et al. (2019), which is capable of
handling several generation constraints. The optimal solutions of

both cost functions are also provided herein. It should be noted
that the total cost has been increased from 1,032 to 1,046 units.
There is only 1.36% increase in the total generation cost, which is
quite minimal for attaining the benefits handling the capacity and
environmental constraints.

In the first experiment for weights w1 = 1.1, w2 = w3 = w4 = w5

= 1.025 and w6 = 0.8, the focus was on considering the generation
units 1 and 6, and their weights were considered to be different
from the rest of the units. For this weight selection, it can be
observed that the generation of unit 4 crosses the maximum limit,
which was also observed in the original approach of He et al.
(2019). To consider the capacity constraint for generator 4, we
have reconsidered the weights w2 = 1, w1 = w4 = 1.1, w3 = w5 = 1,

FIGURE 7 | IC consensus for unity weights of IEEE-118 bus system.

FIGURE 8 | Generation obtained under unity weights for IEEE-118 bus
system.

FIGURE 9 | Total generation under unity weights for IEEE-118 bus
system.

FIGURE 10 | Weighted IC consensus using the proposed approach for
IEEE-118 bus system.
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and w6 = 0.8. For the increased weight of unit 4, the capacity
constraint is also validated as observed in the last column of
Table 2 and as mentioned in Remark 1. It can be concluded that
the weights can play a critical role in handling the network
constraints. For further studies, we recommend a generation-
dependent weight selection via wi � ϒi(PGi), where the function
ϒi(PGi) can be taken as ϒi(PGi) � 1 in the normal operating
conditions, ϒi(PGi)> 1 can be accounted for reducing the
increase in generation, and ϒi(PGi)< 1 can be chosen to limit
the decrease in generation. Such a generation-dependent
selection of weights through functions ϒi(PGi) requires
rigorous analysis and investigation, which can be considered
in the future works.

Application to IEEE-118 Bus System
IEEE-118 bus system is a 54 unit, 24 h system with 118 buses and
94 loads (IIT-Power-Group, 2003). The generators in this system
are thermal units. It is a large-scale generation system and highly
complex model owing to the involvement of constraints on
several units. The values for parameters αi, βi, γi, and
minimum Pm

Gi
and maximum generation PM

Gi
capacity are

taken from IIT-Power-Group (2003). The range of values is
given as follows: αi ∈ [6.78 74.33], βi ∈ [8.339 1 37.696 8],
γi ∈ [0.002 4 0.069 7], Pm

Gi
∈ [20 150], and PM

Gi
∈ [5 420].

The system operates in three zones, and the parameters have
been calculated on the basis of 24 h system at a fuel price of
1 USD/MBtm. For our study, we consider the connections
between generators as random to accommodate the stochastic
nature of the algorithm, such that the graph remains undirected.
The approach has been tested for a demand of PD = 4,222.59 MW.
Each connection strength is taken as either zero or unity. The
initial generation conditions are also selected randomly based on
uniform distribution. Owing to a large-scale system, it is
challenging to design a distributed approach for such a
system, ensuring the generation constraints.

If we select wi = 1 similar to the methods (Yu et al., 2015) (see
also similar works (He et al., 2019; Xing et al., 2019; Yu et al.,
2020), and (Chen et al., 2019) without weights), the approach in
Theorem 1 provides the relevant graphs in Figure 7, Figure 8,
and Figure 9. Figure 7 shows that the IC consensus has been
achieved, and Figure 9 demonstrates that the required initial
demand does not alter. However, the diagram of Figure 8 reveals
that the generation values are beyond the upper or lower limits for
many generators. Such a solution cannot be employed for the
EDP. The existing methods suggest the saturation of generations
(limiting to PM

Gi
); however, it can reduce the total generation

without meeting the demand. The IEEE-118 bus system is a
complex system and the results for a distributed handling are not
easy for a real-world situation.

FIGURE 11 | Generation obtained using the proposed approach for
IEEE-118 bus system.

FIGURE 12 |Dynamic weights using the proposedmethod for IEEE-118
bus system.

FIGURE 13 | Total generation using the proposed approach for IEEE-
118 bus system.
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To handle this dilemma, we consider two approaches 1)
inclusion of weights wi and 2) updating weights wi dynamically.
The updating of weights can be more meaningful for a complex
system like IEEE-118 bus system. The weights are updated
dynamically such that if we are going close to the upper limit
of a generator, the corresponding weight can be increased, and vice
versa. The results obtained through these two modifications are
shown in Figures 10–13. The weighted IC consensus is achieved,
which is shown in Figure 10 in the case of dynamic weights. The
generations remain within the predefined ranges and updated for
an optimal solution (Figure 11). The profiles for weights for the
proposed modified approach are demonstrated in Figure 12, while
the total demand remains unchanged, as per Figure 13. Hence, the
use of weights can be more meaningful for a distributed EDP;
however, at the same time, it can require more efforts and
investigation to attain distributed EDP for complex systems,
such as IEEE-118 bus system.

CONCLUSION

In this paper, a distributed EDP has been solved under
bidirectional communication topology by incorporating
weight adjustment. Two optimality conditions are provided:
First condition encompasses a generic case and second
condition encompasses distributed optimization. A
distributed optimization protocol by using weighted ICs has
been provided to deal with several constraints. A coupling
weight selection approach for optimal solution of the
weighted EDP has been derived via the sign-consensus
method, supply-demand balance realization, proposed
protocol analysis, generation dynamics investigation, and
Lyapunov analysis. The proposed method has been applied to
IEEE-30 bus and IEEE-118 bus systems, and it was observed that

the proposed method can be applied to attain an
environmentally friendly solution of EDP. In addition, it can
be used for the validation of capacity constraints when
compared with the existing schemes. In the future, the
proposed study can be extended to deal with the
optimization of a more general objective function, containing
the environmental effects.
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