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In order to deal with the fluctuation and intermittency of photovoltaic (PV) cells, the
battery energy storage system (BESS) as a supplementary power source has been
widely concerned. In BESS, the unknown parameters of the battery can affect its output,
and its structure determines these parameters. Therefore, it is essential to establish the
battery model and extract the parameters accurately, and the existing methods cannot
effectively solve this problem. This study proposes an adaptive differential evolution
algorithm with the dynamic opposite learning strategy (DOLADE) to deal with the issue. In
DOLADE, the number of elite particles and particles with poor performance is expanded,
the population’s search area is increased, and the population’s exploration capability is
improved. The particles’ search area is dynamically changed to ensure the population has
a good exploitation capability. The dynamic opposite learning (DOL) strategy increases the
population’s diversity and improves the probability of obtaining the global optimum with
a considerable convergence rate. The various discharging experiments are performed,
the battery model parameters are identified, and the results are compared with the
existing well-established algorithms. The comprehensive results indicate that DOLADE
has excellent performance and could deal with similar problems.

Keywords: parameter identification, battery model, dynamic opposite learning, differential evolution, battery
energy storage system

1 INTRODUCTION

Nowadays, energy has become a vital driving force in social development and progress, and
fossil fuels could bring greenhouse effects and environmental pollution, so the application
of renewable energy is becoming more and more widespread (Bullich-Massagué et al., 2020;
Maghyereh and Abdoh, 2021). Globally, solar energy is the third largest clean resource in addition
to wind energy and tidal energy, whose volatility and intermittent nature will limit its further
development (Siecker et al., 2017; Zhou et al., 2021a). The battery energy storage system (BESS)
can be used as a supplementary power source to alleviate the volatility and intermittency of
photovoltaic (PV) cells, providing a new possibility to make the system stable (Farhadi et al., 2019).
The complementary working mode of PV cells and BESS can improve the solar utilization efficiency
(Cheng et al., 2021) to deal with the imbalance of power output in different environments such as the
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wide range of light intensity change and the large temperature
difference between day and night. The application of the
system accelerates the pace of clean energy replacing traditional
energy and can effectively alleviate the energy crisis (Xia and
Xiang, 2020).

Lithium-ion batteries are the best devices for supplementing
the power supply due to their sufficient life span and
power/energy density (Li et al., 2021). In recent years, with
the deepening of the research, in order to make the output
power of PV cells stable at the maximum power point, BESS
requires frequent charging and discharging to the PV cell system
according to the actual situation. Accurate monitoring of BESS’s
working state is significant, reducing the fault tolerance of the
system and improving work efficiency. A critical factor reflecting
the working condition of BESS is the battery output, which can
be determined by the battery’s internal parameters, so obtaining
the battery’s internal parameters is of decisive significance for
detecting the working state of BESS. Extracting the battery
parameters in BESS effectively and accurately is an urgent
problem, which will help analyze the system and construct
the open circuit voltage (OCV) state of charge (SOC) curve
(Yang et al., 2020). The practical application is mainly divided
into the deterministic andmetaheuristic algorithms, whichmake
the identified parameters different in accuracy, computational
efficiency, and resource utilization (Alam et al., 2015). Looking
for a more balancedmethod to solve parameter identification has
attracted more and more research and attention in recent years
and has become a hot topic.

Through the deterministic algorithm calculated by
mathematical regulations, the choice of initial value has
remarkable individual aspiration, directly affecting the
efficiency of solving problems and the persuasion of results
(Chen et al., 2018). Metaheuristic algorithms do not rely on
specific mathematical rules but usually combine with defined
rules and randomness (Ikeda and Ooka, 2019), which have been
employed and utilized to tackle many complex issues as effective
solvers due to their simplicity and easy implementation process
(Heidari et al., 2019). In recent years, metaheuristic algorithms
have been applied to solve parameter identification problems,
promoting their development. Tan et al. (2021) pointed out
that the real-time SOC of the battery is very important in
practice as the indexes ensure the battery’s stable operation.
The OCV–SOC relationship was conducted on different time
scales based on the second-order RC equivalent circuit model.
A dynamic identification algorithm was studied, which got more
accurate results and stronger robustness than other algorithms.
Zhou et al. (2021b) pointed out that a realistic model and precise
model parameters are significant for the safety of electric vehicles
and the efficiency of batteries. The traditional solution method
has a problem of the limited number of search solutions, leading
to insufficient accuracy. Therefore, a coupled hybrid adaptive
particle swarm optimization–hybrid simulated annealing (HA-
PSO) algorithm was adopted, and further exploration was made.
The results concluded that themethod could be used as one of the
tools to solve the parameter identification of the battery model.
In El-Sehiemy et al. (2020), a new model identification method
was presented: using the state–space equation of the battery in

the equivalent circuit. Then, the parameter identification process
was transformed into a nonlinear problem for optimization. A
new enhanced sunflower optimization algorithm (ESFOA) has an
outstanding performance. Choi et al. (2020) established a subset
to store the model parameters to be identified, and a steady-state
model was established. The genetic algorithm was applied to the
parameter estimation of the model. The parameters determined
by the informationmatrix-basedmethodwere comparedwith the
experimental results under different conditions, and the average
relative error between them is less than 1.9%.

In addition to identifying the battery parameters in BESS,
many existing methods have been designed to extract PV cells’
parameters and have achieved excellent results (Qais et al., 2019).
In Zhang et al. (2020), the differential vectors are added to
the intelligent algorithm to form a new backtracking search
algorithm (BSARDV), which has attracted attention due to its
low requirements for initial parameters. In Liang et al. (2020),
a multi-structure optimization algorithm (SGEMTO) was
proposed to improve the acquisition of useful information in
the population. By enhancing the information exchange among
the populations, the information transfer between different tasks
was realized, so the quality and efficiency of the solution were
improved. Lin andWu (2020) explained that it has great practical
significance to determine the parameters of the PV model,
especially in predicting the output of the PV array and tracking
the maximum power point. They also proposed a niche-based
particle swarm optimization in parallel computing architecture
(NPSOPC) algorithm to identify the parameters of the PV
models.

Although the aforementioned methods have achieved good
results, these methods often need to introduce more computing
resources to maintain the accuracy of the products and are
sensitive to the changes of the specific parameters, which lead
to some methods not being popular. The common shortcoming
of most metaheuristic algorithms is that if some parameters are
set improperly, the desired results will not be obtained. Another
disadvantage is that the metaheuristic algorithm may not always
converge to the global optimum. If the parameters are adjusted
improperly, it is easy for the particles to reach a local optimum,
or the particle ability is insufficient. Hence, in order to solve
these shortcomings of metaheuristic algorithms, in addition to
the extensive research on the efficiency, performance, and results
of the traditional algorithm, in recent years, new optimizers
with excellent characteristics and new strategies with balanced
performance in many aspects have emerged, providing many
possibilities for resolving all kinds of complex problems in a
variety of different fields.

In this study, a dynamic opposite learning (DOL) strategy
is presented and applied to the differential evolution (DE)
(Storn and Price, 1997) algorithm to improve DE’s performance
in terms of convergence speed and optimization to obtain
faster convergence speed and avoid falling into local optimum
(Jiang et al., 2013). An adaptive differential evolution algorithm
with a dynamic opposite learning strategy (DOLADE) was
proposed, which can be used as a potential optimizer for
extracting the batterymodel parameters efficiently and accurately
in BESS. In DOLADE, a dynamic opposite learning process
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is carried out for the particles in the population to increase
the population’s diversity and overcome the trap of falling
into local optimum and premature convergence. The new
population comprises the successfully selected individuals and
poorly performing individuals, which is produced by merging
two of them into a new set (population). Endowing particles with
opposite learning behavior aims to enhance their own exploration
(diversification) ability to find those areas with optimal solutions
in the early phase and reduce the resource consumption of the
particles in the later exploitation phase. By dynamically changing
the area to be explored by particles, the particle’s exploitation
(intensification) ability can be enhanced, and the exploitation can
be carried out in the area of the early potential optimal solution
to obtain the global optimum quickly.TheDOL strategy balances
the individuals’ exploration capability and exploitation capability
in theDE algorithmwell, whichmakes theDE algorithmnot only
obtain the global optimumbut also have a fast convergence speed,
improving the disadvantages. The performance of DOLADE
and the effect of the DOL strategy have been tested in the
parameter identification of BESS, and excellent results have been
obtained.

The main contributions of this article are as follows:

1) An adaptive differential evolution algorithm with a dynamic
opposite learning strategy is proposed. To the best of our
knowledge, the DOL strategy is the first attempt to identify
the parameters of the battery model in BESS.

2) The particles’ exploration and exploitation capabilities are
significantly improved, leading to the speed of acquiring the
global optimum considerably, preventing individuals from
converging to the local optimal value.

3) According to the large amount of data obtained in the
experiment, the parameter identification of the battery
model is researched and demonstrated.

4) In order to highlight the effectiveness and competitiveness
of DOLADE, the results are compared with several well-
established algorithms.

The organization of the rest of this article is arranged as
follows: In Section 2, the battery mathematical model in BESS is
introduced to determine the objective function and extract the
parameters. Section 3 generally presents the basic concepts of
an adaptive DE algorithm. In Section 4, the DOLADE algorithm
is proposed in detail. The experimental results are analyzed and

compared with some algorithms in Section 5. Finally, Section 6
is a summary based on the whole article.

2 MODEL AND PROBLEM DESCRIPTION

A suitable model can accurately simulate the operational
characteristics of the battery. The battery model is essential for
the SOC estimation and the collaborative work with PV cells
(Wang et al., 2017). The primary purpose of building the battery
model is to obtain the mathematical relationship between the
internal parameters of the battery and the external characteristics
and then establish an effective equation to estimate the output
voltage of BESS.

2.1 Battery Model in BESS
Accurate SOC estimation requires a precise battery model (Liu
andZhang, 2021).There aremainly three types of batterymodels:
the electrochemical model, the mathematical model, and the
equivalent circuit model. Among them, the electrochemical
model has high accuracy, but the model is complex. The
mathematical model is not affected by the external volt–ampere
characteristics of the battery, and the model is uncertain
due to significant errors. The equivalent circuit model can
better simulate the external characteristics of the battery. The
equivalent circuit model is mainly divided into the Thevenin
model, the second-order RC equivalent circuit model (SECM),
and the PNGV model (Bruch et al., 2021). They are shown in
Figure 1. For PNGV: In September 1993, USCAR announced
the Partnership for a New Generation of Vehicles (PNGVs).
The PNGV standard equivalent circuit model was proposed in
the PNGV Battery Test Manual published in 2001. A standard
method for parameter identification of the model was proposed
in the FreedomCAR Battery Test Manual published in 2003. In
this research, SECM is employed, which could be used to simulate
the external characteristics of the battery. Two RC networks
are used to simulate the two dynamic processes of the battery’s
electrochemical polarization characteristics and concentration
polarization characteristics. While considering the influence
of internal ohmic resistance, the internal ohmic resistance is
connected in series in the circuit. The electromotive force adopts
a controlled voltage source, and the electromotive force and
SOC maintain a relatively stable monotonic relationship under

FIGURE 1 | Battery model. (A) Thevenin model. (B) SECM. (C) PNGV.
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a specific condition; the electromotive force can be controlled by
SOC (Wang et al., 2020).

For the SECM, according to Kirchhoff ’s law of voltage and
current, the equation could be known asEq. 1 (Xiong et al., 2012;
Bruen and Marco, 2016).

{{{{{{{{
{{{{{{{{
{

UL = UOCV −U0 −UP −Ud

IL =
Up
Rp
+Cp ∗

dUp

dt

IL =
Ud
Rd
+Cd ∗

dUd
dt

IL =
U0
R0

(1)

where UL is the terminal voltage of the BESS output; UOCV is
the open circuit voltage; U0 is R0’s voltage; Up and Ud express
the terminal voltages of the two RC networks, respectively;
Rp represents the resistance of electrochemical polarization;
Cp denotes the capacitance of electrochemical polarization; Rd
and Cd are the resistance and the capacitance of concentration
polarization, respectively; Rp, Cp, Rd, and Cd constitute two RC
parallel loops used to simulate polarization effects; R0 is the
internal resistance; and IL is the load current. There are five
unknown parameters (Rp, Cp, Rd, Cd, and R0) that could be
calculated to observe the actual behavior of BESS.

2.2 Relation Curve Between OCV and SOC
The parameter identification of resistance and capacitance in
the battery model requires the value of open circuit voltage
(OCV), so OCV is measured first. The identification of OCV is
actually carried out to calibrate the relationship curve between
OCV and SOC (Wang et al., 2018). The experimental data can
depict the OCV–SOC curve, and the functional relationship
between them can be obtained (Kang et al., 2012). According
to the experimental principle, the practical steps of the static
experiment are as follows: first, use the standard chargingmethod
to charge the battery fully, let it stand for 1 h, and measure
the OCV at SOC = 1. Then, discharge the battery with 6A
current for 20 min each time. Finally, let the battery stand for
1 h, and approximate the sampled voltage obtained at this time
as the OCV value. There will be a specific difference in the final
curve after the still standing time is different. The discharge
data of SOC and OCV measured by the experiment are shown
in Table 1. Data fitting is performed on the aforementioned
experimental data to obtain the functional relationship between
OCV and SOC. Considering the two factors of accuracy and
computational complexity, a fourth-order polynomial function is

TABLE 1 | OCV−SOC experimental data.

SOC OCV (V) SOC OCV (V)

1 3.375 0.4 3.293
0.9 3.334 0.3 3.283
0.8 3.332 0.2 3.257
0.7 3.315 0.1 3.212
0.6 3.303 0 3.116
0.5 3.296

selected to fit the experimental data.The fitting result is shown in
Eq. 2.

UOCV = −0.925263∗ SOC4 + 2.671602∗ SOC3−
2.614026∗ SOC2 + 1.118892∗ SOC + 3.118363 (2)

2.3 Objective Function
After determining the structure of the battery model, it is
necessary to extract the unknown parameters of the battery.
The experimental data will be compared with the extracted
data.Therefore, choosing an appropriate objective function could
minimize the error between the OCV and SOC. A continuous
discharging experiment is used for the battery, and the sampling
time T = 1s. According to Eq. 1, the differential equation of
the battery model can be calculated by Eq. 3. Since sampling
of battery discharge data in the experiment is not continuous
but at a fixed time interval, the differential equation of Eq. 3
can be rewritten as a discrete differential equation, as shown
in Eq. 4, where Up(k) and Ud(k) represent the kth discrete
voltage value of the two RC networks, respectively, UL(k)
denotes the kth discrete output voltage value of the battery,
and τ1 and τ2 are the time constants of the two RC networks,
respectively.

In the calculation process of the metaheuristic algorithm, the
particles are saved according to their own objective function
value, so the choice of the objective function is crucial. For
the battery model parameter identification in BESS, the current
data are obtained through the identified parameters, that is, the
error between the calculated data and the experimental data is
as small as possible. Eq. 5 is used to express the error function
between the experimental and measured data for the SECM
(Tong et al., 2018), where T is the sampling time; here, T = 1.

{{{{{{{{{{{{{
{{{{{{{{{{{{{
{

UOCV = f (SOC)
•
Up =

dUp

dt
= − 1

Rp ∗Cp
∗Up +

1
Cp
∗ IL

•
Ud =

dUd
dt
= − 1

Rd ∗Cd
∗Ud +

1
Cd
∗ IL

UL = UOCV −Up −Ud −R0 ∗ IL

(3)

{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{
{

Up (k) = exp(−
T
τ1
)∗Up (k − 1) − [1− exp(−

T
τ1
)]

∗Rp ∗ IL (k − 1)

Ud (k) = exp(−
T
τ2
)∗Ud (k − 1) − [1− exp(−

T
τ2
)]

∗Rd ∗ IL (k − 1)
UL (k) = UOCV (SOC (k)) −Up (k) −Ud (k)

−R0 ∗ IL (k − 1)
τ1 = Rp ∗Cp
τ2 = Rd ∗Cd

(4)
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{{{{{{{{{{{{{{{{{
{{{{{{{{{{{{{{{{{
{

fk (UL, IL,SOC,X) = UOCV (SOC (k))−

exp(− T
Rp ∗Cp
)∗Up (k − 1)−

[1− exp(− T
Rp ∗Cp
)]∗Rp ∗ IL (k − 1)−

exp(− T
Rd ∗Cd
)∗Ud (k − 1)−

[1− exp(− T
Rd ∗Cd
)]∗Rd ∗ IL (k − 1)−

R0 ∗ IL (k − 1) −UL

X = {Rp,Cp,Rd,Cd,R0}

(5)

In this research, the rootmean square error (RMSE) represents
the overall difference between the experimental and estimated
data. RMSE is defined by Eq. 6.

RMSE (X) = √ 1
N

N

∑
k=1

fk (UL, IL,X)2 , (6)

where X represents the solution vector consisting of unknown
parameters, N denotes the number of experimental data, and k =
1, …., N.

3 JADE ALGORITHM

Differential evolution (DE) algorithm is an efficient intelligent
optimization algorithm. It is a metaheuristic search algorithm
based on a group, and each individual in the group corresponds to
a solution vector (Brest et al., 2020). The evolution process of DE
is very similar to the genetic algorithm, but the specific definition
of these operations is different from the genetic algorithm
(Gao et al., 2021). The three stages of mutation, crossover, and
selection are the basic phases of DE. The parameters about
these stages need to be set before the start of each phase, and
they have the same fixed value during the whole evolutionary
process. Adaptive differential evolution with an optional external
archive algorithm (JADE) is based on the DE algorithm
(Zhang and Sanderson, 2009). JADE adopts a new mutation
strategy: “DE/current-to-pbest/1” (with archive A), as shown
in Eq. 7 (Peng et al., 2009). The greedy strategy ensures better
performance of the particles.

vi,g = xi,g + Fi ∗ (x
p
best,g − xi,g) + Fi ∗ (xr1,g − ̃xr2,g) (7)

Fi = randci (μF,0.1) (8)

where xi,g and xr1,g are acquired from Np, xpbest,g randomly
chosen from the top 100p % (p ∈ 0,1). The mutation factor Fi is
determined by xi, and Fi is updated in the process by introducing
Eq. 8. ̃xr2,g is the individual randomly chosen from P∪A. Here,
P represents the current population which saves individuals close
to the optimal value, and the external archive A converses poor
performance individuals.

The parameter adaption strategy is used for the mutation
probability Fi. Fi is independently generated according to the
Cauchy distribution with a location parameter μF = 0.5, and the

scale parameter is 0.1. If Fi ≥ 1, it truncates to be 1; if Fi ≤ 0, it
regenerated 1. SF is the set that saves every successful mutation
probability in each iteration. μF is initialized to be 0.5 and then
updated in Eq. 9.

μF = μF ∗ (1− c) +mean (SF) ∗ c (9)

where Eq. 10 can calculate mean (SF).

mean (SF) =
∑

F∈SF
F2

∑
F∈SF

F
(10)

The parameter adaption strategy is not only used for the
mutation probability Fi but also for the crossover factorCRi. Each
individual xi’s crossover factor CRi is independently generated
according to the normal distribution. μCR is the mean value, and
the standard deviation is 0.1, as shown in Eq. 11.

CRi = randni (μCR,0.1) (11)

The range of CRi is limited to [0, 1].The SCR is a set of CRi with
a good performance.The initial value of μCR is 0.5, which is then
regenerated using Eq. 12 (Peng et al., 2009).

μCR = μCR∗ (1− c) +mean(SCR) ∗ c (12)

where c is a constant in the range of [0,1], andmean(SCR) is the
average value.

4 A NOVEL DE ALGORITHM—DOLADE

4.1 Dynamic Opposite Learning
There are many successful learning strategies in the algorithm
field, and these strategies have provided a significant contribution
to the progress of algorithms. The opposition-based learning
strategy has a considerable influence on enhancing the
searchability of the algorithm itself (Tizhoosh, 2005), but these
strategies also have some shortcomings. For example, the
QOBL (Rahnamayan et al., 2007) andQRBL (Laquai et al., 2011)
approaches are based on deterministic strategies for potential
relative points, making the exploitation ability of particles
lacking. In the DOL strategy, the current particle works in the
new search area. The area is dynamically extended from the
current to the opposite, which is explained in Figure 2. P is the
current point, P0 denotes the opposite point, Ps represents the
existing point in the new area, and a and b are the boundaries of
the area. The individuals can obtain a larger area for movement
to increase the probability of being close to the optimal value and
enhance their exploration capability. However, the search area of
individuals inevitably converges to the local optimum so that the
particle’s exploitation capability is insufficient.
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FIGURE 2 | Symmetric area between the current point and the opposite point.

FIGURE 3 | DOL asymmetric dynamic search area when PR0 ∈ (a,b).

A random opposite point (PR0) is introduced to avoid the
solution falling into the local optimum, improving the particle’s
capability; PR0 = rand∗P0, rand ∈ [0,1]. When PR0 replaces P0,
the symmetric search area in Figure 2 can be transformed into
asymmetric search areas, which have a characteristic of dynamic
adjusting along with PR0. In Figures 3, 4, the novel search areas
are demonstrated. According to the relative position of PR0 to P
andP0, three categories of the asymmetric search areas are formed
in Figure 3 when PR0 ∈ [a,b]. Case 1 is the scenario of the search

area when PR0 is between P and P0, case 2 illustrates the project of
the search area when P0 is smaller than PR0, and when P is larger
than PR0, the search area is represented in case 3.The strategy can
be formulated by randomly generating a DOL point PD0 from
P to PR0 and PD0 = P+ rand(PR0 − P). In addition, the condition
that PR0 is out of the area boundaries [a,b] cannot be ignored,
such as case 4 and case 5, which is depicted in Figure 4. The
boundaries need to be limited: if PD0 = P+ rand(PR0 − P) ∈ [a,b],
and PD0 is equal to PD0 = P+ rand(PR0 − P). Otherwise,
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FIGURE 4 | DOL asymmetric dynamic search area when PR0 ∉ (a,b).

PD0 should be regenerated as a random number between
a and b.

Although PR0 can diversify the search area, the search area
may shrink as the iteration progresses so that the particles’
exploration and exploitation capabilities cannot be fully utilized
to the maximum. In order to prevent particles from being
too large or too weak to be unbalanced in their exploration
and exploitation capabilities, a weighting factor (ω) is used to
improve this problem, which could help the particle arrive at
the best region. Therefore, the DOL strategy is redefined as
PDOL = P+ω∗(PR0 − P), where ω is a constant and ω > 0. Finally,
DOL can be calculated by the formula with these foundations.
The search area is expanded to a symmetric region so that the
probability that is closer to the best solution is enhanced. The
dynamic characteristics of the search area make the population
become diverse and enhance the particle’s exploration and
exploitation capabilities.

4.2 Mathematical Expression of DOL
In this subsection, the DOL strategy will be described by
mathematical formulas.

• Dynamic opposite point. P (P ∈ [a,b]) is defined as a point.
The dynamic opposite point PD0 is defined in Eq. 13, where
a is the lower boundary, b is the upper boundary, and rand ∈
(0,1) is a random number. Moreover, Eq. 13 applied the
weighting factor ω (ω > 0) into DOL. P0 is the opposite
number, as shown by Eq. 14.
• DOL-based optimization.Assume P = (P1,P2,…,PD) in the

D− dimensional area. Pj,…,PD ∈ [aj,bj], where aj and bj
are boundaries of the current searching area. P0

j is the
opposite point defined in Eq. 15. PD0

j = (P
D0
1 ,P

D0
2 ,…,P

D0
D )

is the dynamic opposite point, updated by Pj according
to Eq. 16. PD0

j will replace Pj when the fitness value
of PD0

j is better than Pj; otherwise, PD0
j will not be
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saved. Note that PD0
j ,…,P

D0
D is limited within [aj,bj]. If

PD0
j ∉ [aj,bj], PD0

j should be redefined as a random in
[aj,bj].

PD0 = P +ω∗ rand ∗ (rand ∗ P0 − P) (13)

P0 = a+ b− P (14)

P0
j = aj + bj − Pj, j = 1 ∶ D (15)

PD0
j = Pj +ω∗ rand ∗ (rand ∗ P

0
j − Pj) , j = 1 ∶ D (16)

4.3 DOLADE Algorithm Steps

4.3.1 Population Initialization
oPD0 is randomly generated by the initial DOL strategy, which
may obtain better knowledge than the original individual
to a certain extent. At the beginning of generation, the
population size is set as Np (for any individual i, i = 1,2,…,Np),
and D represents dimension of problems (for any problem
j, j = 1,2,…,D). Eq. 17 can calculate the initialization
process.

oPD0
i,j = oPi,j + r1i ∗ (r2i ∗ (aj + bj − oPi,j) − oPi,j) (17)

Boundaries should be checked according to Eq. 18, which
could improve the DOL effectiveness.

oPD0
i,j = rand (aj,bj) , if ∶ oP

D0
i,j < aj ∥ oP

D0
i,j > bj (18)

where [aj,bj] is the range of the search area, r1i and r2i
are random values among (0,1), and the weight factor ω is set
as constant: 10. Then, fittest individuals Np are selected from
{oP∪ oPD0}.

4.3.2 DOL Generation Jumping
The jumping rate Jr is introduced to control DOL to update the
population. If rand < Jr, the DOL jumping process would be
performed by Eq. 19.

PD0
i,j = Pi,j +ω∗ r3i ∗ (r4i ∗ (aj + bj − Pi,j) − Pi,j) (19)

Meanwhile, the boundaries should be checked by Eq. 18.
Remarkably, the new candidates are locked within a shrunken
search area by dynamically updating the interval boundaries
[aj,bj] as follows (Wang et al., 2011):

aj =min(Pi,j)
bj =max(Pi,j)

(20)

When the DOL jumping step is finished, the best individual
Np is selected from {oP∪ oPD0}.

4.3.3 DOLADE Algorithm Steps
By employing the DOL strategy to JADE, an adaptive
differential evolution algorithm with a dynamic opposite
learning strategy is generated, namely, DOLADE. In
order to make DOLADE convenient and simple to
deal with problems, the pseudo-code is described in
Algorithm 1, and the flowchart of DOLADE is exhibited in
Figure 5.

FIGURE 5 | Flowchart of DOLADE.
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Algorithm 1: Pseudo-code of DOLADE.

5 EXPERIMENTAL RESULTS AND
ANALYSIS

In this section, through the various data of the battery measured
experimentally, the DOLADE algorithm is used to carry
out the parameter identification experiment of the battery
model. The efficiency and performance of the DOLADE
algorithm are evaluated in solving such problems through

TABLE 2 | Parameter range of the SECM.

Parameter Lower bound Upper bound

Rp(Ω) 0.00213 0.28017
Cp(F) 6.32838 70.87500
Rd(Ω) 0.00541 0.00865
Cd(F) 27.58706 225.25246
R0(Ω) 0.01268 0.01414

TABLE 3 | Parameters of the involved algorithms.

Algorithm Parameters

DOLADE NP = 30, ω = 10, p = 0.1
JAYA NP = 30
GWO NP = 30, a = 2 ∼0
MFO NP = 30
ETLBO NP = 30
cfPSO NP = 30

various performance indicators. Continuous current discharging
experiments under different current are implemented, the
battery’s internal parameters are identified and verified
using measured experimental data, and the parameter
values identified under different conditions are displayed
in table. Therefore, all these data are obtained under the
same experimental conditions. Among them, the unknown
model parameters Rp, Cp, Rd, Cd, and R0 are shown in
Table 2, which lists the lower and upper values of these
parameters.

Some well-established algorithms, including JAYA
(Venkata Rao, 2016), GWO (Mirjalili et al., 2014), MFO
(Mirjalili, 2015), ETLBO (Rao and Patel, 2012), and cfPSO
(Pathak and Singh, 2017) are compared to prove the effectiveness
of the DOLADE algorithm. All of the data are obtained
and compared under the same experimental conditions:
the maximum number of function evaluations (MaxFEs)
is 50 in each operation under different currents, and each
algorithm runs 30 times independently to minimize statistical
errors. The optimal values are taken out and listed in table,
and the OCV and SOC are calculated according to the
optimal value. The comparison result of each algorithm is to
take the optimal value under the aforementioned operating
conditions. Table 3 lists some specific parameter configurations
that need to be prepared in advance for each algorithm
adopted.

5.1 SECM Model Identification Results
Table 4 lists the values of Rp,Cp,Rd,Cd, and R0 extracted by the
six algorithms under various currents. The RMSE value is also
listed in the table, and the best value is highlighted in bold.
RMSE represents the difference between the parameters extracted
by the algorithm and the experimental data and represents
the accuracy of the result. The smaller the value, the more
accurate the result. It can be concluded that when the DOLADE
algorithm is used, the result is the best, and the RMSE value
is the smallest. The parameter values of the battery model
identified by the DOLADE, JAYA, GWO, MFO, ETLBO, and
cfPSO algorithms are different, and even the parameter values
extracted by these algorithms under the same current are also
different. This indicates that the internal parameter values of
the battery are not constant in actual operation, but changes as
a dynamic process in changing, and there must be an optimal
value among these values.The evaluation standard of this optimal
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TABLE 4 | Comparison among six algorithms on the SECM under different currents.

Current (A) Algorithm Rp(Ω) Cp(F) Rd(Ω) Cd(F) R0(Ω) RMSE

4 DOLADE 0.00213017679 69.90178729 0.00768949442 224.2956046 0.01270131803 9.00277960447401E-03
JAYA 0.00213000000 40.70816164 0.00710227925 195.6715474 0.01320692054 9.38146471788928E-03
GWO 0.00316646278 53.28854845 0.00618805504 48.77001447 0.01292532647 9.40495879771805E-03
MFO 0.00379783345 39.63209269 0.00555106688 148.4883831 0.01292709912 9.69624084066968E-03
ETLBO 0.00213093435 25.50123547 0.00602343721 67.76233266 0.01412627898 9.36080986852247E-03
cfPSO 0.00240572691 29.01658835 0.00739552334 115.5035527 0.01393209178 9.36919323645419E-03

8 DOLADE 0.00217215521 29.00671053 0.00759045499 225.2524600 0.01273007838 1.00127568954371E-02
JAYA 0.00286251443 37.24044335 0.00620165334 100.7567042 0.01314485295 1.08926527570402E-02
GWO 0.00260864414 48.43932668 0.00608994639 196.6067671 0.01323861824 1.04955842163707E-02
MFO 0.00314184819 20.22789870 0.00574272277 219.6596206 0.01305792888 1.09525251141804E-02
ETLBO 0.00385667147 10.38598492 0.00541129247 207.1599653 0.01268810344 1.03028634384998E-02
cfPSO 0.00234713324 58.83236247 0.00809682112 175.3286103 0.01282388588 1.04204138120596E-02

12 DOLADE 0.00214077987 48.22895464 0.00754835546 225.2495094 0.01277344320 1.23099262791689E-02
JAYA 0.00213000000 51.68677991 0.00753646182 48.31473917 0.01288689266 1.48888363128724E-02
GWO 0.00233032446 12.51821569 0.00730037899 135.6281089 0.01283946011 1.27334738838063E-02
MFO 0.00257471495 54.66464669 0.00675589635 151.7628191 0.01313488003 1.30504524516649E-02
ETLBO 0.00377397122 70.87498203 0.00541000084 106.2625695 0.01327375790 1.33534583734524E-02
cfPSO 0.00268628932 40.46273046 0.00739490953 107.2711433 0.01333371679 1.53456916921213E-02

16 DOLADE 0.00214888678 68.53428364 0.00771400503 225.2524600 0.01268277122 1.27107978725237E-02
JAYA 0.00213000000 53.46779207 0.00718673028 175.8853941 0.01340384063 1.46004575003135E-02
GWO 0.00219926472 21.91028041 0.00729014442 108.4375470 0.01303618217 1.35813315682300E-02
MFO 0.00228451738 63.02478699 0.00700702596 153.0145416 0.01323787499 1.32171333107309E-02
ETLBO 0.00391104851 70.56217444 0.00541029493 140.1968253 0.01321387794 1.42900697621894E-02
cfPSO 0.00359569973 53.05733164 0.00662651301 137.3150545 0.01329562068 1.36495909452741E-02

value is determined by the value of RMSE. The algorithm that
affects the best in terms of extracted parameters is DOLADE.
The parameter values extracted by DOLADE are substituted into
the equation to calculate the OCV value. The experimentally
measured voltage value and the calculated voltage value curve
are shown in Figure 6. Here, AE represents the experiment
current, and AS represents the calculated current. The estimated
OCV curves coincide well with the experimental OCV curves.

Whether it is a high-current discharging experiment or a low-
current discharging experiment, the relationship between the
two is in line with expectations, and the error of OCV in the
figure is within a tiny field, which could satisfy the practical
needs.

Furthermore, the relationship of OCV–SOC is depicted
in Figure 7. The figure shows that the estimated OCV can
replace the experimentally measured OCV to calculate SOC.

FIGURE 6 | Experimental and estimated OCV data comparison under different currents.
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FIGURE 7 | OCV–SOC curve diagram.

In the range of SOC from 0 to 1, the computed value
always maintains a reasonable range with the actual value
and the changes of the two are consistent. The output voltage
calculated using the identified parameters is the same as the
actual voltage, which can correspond to the battery’s SOC. In
other words, the voltage value obtained from the parameters
identified by DOLADE could be used to calculate the value
of SOC.

5.2 Statistical and Convergence Results
In the section 5.1, the parameters were extracted and RMSE
values by the DOLADE algorithm are demonstrated, and these
results are compared with the results of other algorithms. Then,
the estimated OCV and the OCV–SOC relationship curves are
described. This subsection clearly compares the statistical values
of the DOLADE algorithm operation results with the other
algorithms. Comparisons inmany aspects verify the effectiveness

TABLE 5 | Statistical results of RMSE for six algorithms under different currents.

Current (A) Algorithm RMSE

Min Max Mean SD

4 DOLADE 9.002779604474E-03 9.003036924617E-03 9.002900438728E-03 4.0085440807E-07
JAYA 9.381464717889E-03 1.248375845678E-02 1.0061516166523E-02 2.7360440588E-03
GWO 9.404958797718E-03 1.272236168406E-02 1.0496140634186E-02 3.7135546654E-03
MFO 9.696240840670E-03 1.239799339603E-02 1.0907584146048E-02 2.7914947868E-03
ETLBO 9.360809868522E-03 1.253619568585E-02 1.0716641473875E-02 3.3960578471E-03
cfPSO 9.369193236454E-03 1.293643767615E-02 1.0340315076050E-02 3.3818424672E-03

8 DOLADE 1.001275689544E-02 1.001472477164E-02 1.001310251552E-02 1.9240576126E-06
JAYA 1.089265275704E-02 1.398963354066E-02 1.217063058029E-02 3.3163154120E-03
GWO 1.049558421637E-02 1.416023243213E-02 1.230147096075E-02 4.0859148179E-03
MFO 1.095252511418E-02 1.39398712214E-02 1.248013430019E-02 3.0134578055E-03
ETLBO 1.030286343850E-02 1.298322545988E-02 1.140655701609E-02 2.8231964951E-03
cfPSO 1.042041381206E-02 1.348205049525E-02 1.171551763142E-02 3.1958857126E-03

12 DOLADE 1.230992627917E-02 1.230992670458E-02 1.230992940061E-02 1.2057888928E-08
JAYA 1.488883631287E-02 2.047012014682E-02 1.674145194711E-02 5.3988957502E-03
GWO 1.273347388381E-02 2.003350064990E-02 1.446686085325E-02 7.5483356836E-03
MFO 1.305045245166E-02 2.255298141265E-02 1.595985213139E-02 1.0870695028E-02
ETLBO 1.335345837345E-02 2.260783718486E-02 1.647466474546E-02 8.0596580374E-03
cfPSO 1.534569169212E-02 1.941982082972E-02 1.715229998765E-02 4.7247962405E-03

16 DOLADE 1.271079787252E-02 1.271300579296E-02 1.271147766604E-02 2.1680060963E-06
JAYA 1.460045750031E-02 1.940613349739E-02 1.695675224236E-02 5.2194996489E-03
GWO 1.358133156823E-02 1.918546631544E-02 1.583551650674E-02 6.2422604240E-03
MFO 1.321713331073E-02 1.838186001229E-02 1.429187641740E-02 4.6580291525E-03
ETLBO 1.429006976219E-02 2.044814378224E-02 1.643003079588E-02 6.3255093371E-03
cfPSO 1.364959094527E-02 1.952808863702E-02 1.531984831305E-02 5.3307481357E-03
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FIGURE 8 | Best RMSE boxplot in 30 runs of six algorithms under different currents.

FIGURE 9 | Convergence curves of six algorithms under different currents.
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TABLE 6 | Statistical results of RMSE for different sets under different currents.

Current (A) Algorithm RMSE

Min Max Mean SD

4 DOLADE 9.002779604474E-03 9.003036924617E-03 9.002900438728E-03 4.0085440807E-07
DOLADE-P 9.006873642750E-03 9.208613137926E-03 9.059873373755E-03 2.0301615695E-04
DOLADE-A 9.003909498853E-03 9.340338840274E-03 9.080590003377E-03 3.6390649543E-04

8 DOLADE 1.001275689544E-02 1.001472477164E-02 1.001310251552E-02 1.9240576126E-06
DOLADE-P 1.004285214575E-02 1.079385060983E-02 1.019450328621E-02 6.4687995847E-04
DOLADE-A 1.005437508360E-02 1.229197189748E-02 1.030825889359E-02 2.0923814950E-03

12 DOLADE 1.230992627917E-02 1.230992670458E-02 1.230992940061E-02 1.2057888928E-08
DOLADE-P 1.233039003441E-02 1.292689237338E-02 1.247640096522E-02 5.4748932388E-04
DOLADE-A 1.232212259000E-02 1.241616262287E-02 1.235961177111E-02 9.6878474133E-05

16 DOLADE 1.27(4)1079787252E-02 1.271300579296E-02 1.271147766604E-02 2.1680060963E-06
DOLADE-P 1.272895421090E-02 1.315425056924E-02 1.292100419026E-02 3.8106791039E-04
DOLADE-A 1.271100984529E-02 1.294206960349E-02 1.275907011799E-02 2.1255567559E-04

of the DOL strategy, and it reflects the convergence speed and
stability of theDOLADE algorithm.The comprehensive results of
all algorithms after 30 independent runs are listed in Table 5. In
addition to the minimum error, the table also lists the maximum
error, the average value of the error, and the standard deviation
reflecting the error distribution. For each current, the overall best
results among the six algorithms are highlighted in bold.

Among the statistical results listed in Table 5, the six
algorithms under different conditions and the performance
indicators of the DOLADE algorithm all show strong
competitiveness. In all the statistical results, the difference
between the maximum and minimum values of the DOLADE
algorithm is also the smallest, which indicates that the DOLADE
algorithm perfectly performs the particles’ exploration and
exploration capabilities through the DOL strategy when
solving problems. On the average of all results, the average
value of the DOLADE algorithm is close to the global
optimal value, which shows the reliability and stability of the
DOLADE algorithm in solving problems without excessive
waste of resources. Finally, the standard deviation further
verifies the aforementioned findings from this side, providing
strong evidence for the DOLADE algorithm to be more
convincing.

In Figure 8, the boxplot shows the distribution of the
results of the aforementioned six different algorithms under
30 independent executions, demonstrating the dispersion
of the statistical results of all algorithms under different
currents. As can be seen from the boxplot, the DOLADE
algorithm results are stable and have a superior performance
by comparing with the other five algorithms, and the
advantages are very obvious. It is verified once again that the
DOLADE algorithm is superior to other algorithms in terms
of accuracy and reliability, has an outstanding performance
in enhancing particle capabilities, and can be trusted as an
optimizer.

Figure 9 demonstrates the convergence curves of the six
algorithms under different discharging currents in the SECM.

The figures depict the convergence graph when different
algorithms run independently 30 times, where the number of
runs of each algorithm is 50. It is not difficult to obtain from
the figure that the speed of converging to the optimal value using
the DOLADE algorithm is very considerable. Compared with the
other five algorithms, DOLADE has a wonderful optimization
process, fewer times of iteration when the algorithm converges
to the optimal value, and the initial value of the optimization
is closest to the global optimum, which is highly competitive.
Therefore, it could be concluded that DOLADE has an excellent
performance in solving the parameter identification of the battery
model in BESS, which provides a new choice for solving this kind
of problem.

5.3 Effectiveness Evaluation in Different
Sets
TheDOL strategy is applied to the population P (elite individuals)
that the individuals’ performance well and the external archive A
(general individuals) that conserves the eliminated individuals,
respectively. The excellent performance of DOL strategy in DE
algorithm is verified by experimental results. The elite dynamic
opposite learning for the elite particles in the population and the
general dynamic opposite learning for the ordinary particles are
used, and then the results are compared with the existing results
of the combination of the two, that is, elite dynamic opposite
learning and general dynamic opposite learning.The comparison
results are shown in Table 6, and the best results are highlighted
in bold. As can be seen from the data in the table, when the elite
or general individuals in the population perform the dynamic
opposite learning, the effect is not as good as when both the elite
and general individuals are allowed to conduct dynamic opposite
learning at the same time.These can be reflected from the data in
the table, including minimum, maximum, mean, and standard
deviation. Therefore, removing the DOL strategy from any set
will not yield the best results. Only when the strategy is applied
to both elite and general individuals, the following optimization
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process can satisfy the need of generating global optimal
solutions.

6 CONCLUSION

In this study, a new method to solve the problem of identifying
battery model parameters in BESS is proposed. This method
can accurately obtain the internal parameters of the battery
model, which is of great significance for the coordination work
of PV-BESS. As a variant of the DE algorithm, the DOLADE
algorithm introduces the DOL strategy to expand the number
of particles in the population and improve the exploration
and exploitation capability, achieving a faster convergence rate,
accurately obtaining the global optimum and avoiding falling
into the local optimum. First, based on the battery equivalent
circuit model in BESS, the relationship between OCV and SOC
is studied, and the parameters that need to be identified, the
objective function, and the evaluation function are determined.
Then, the parameters under various discharging currents are
extracted, and the battery’s OCV is estimated according to the
identified parameters. Finally, the estimated OCV is compared
with the experimental OCV, and the experimental voltage-
estimated voltage curve and the OCV–SOC curve are plotted.
It can be known from the aforementioned figures that all the
parameters and indicators are in line with the expected values
and within a reasonable and acceptable range, which further
verifies the effectiveness and accuracy of theDOLADEalgorithm.
Furthermore, compared with the well-established algorithm, the
boxplot and the convergence curves of the algorithms are plotted,
which shows that the advantages of the DOLADE algorithm
are available. In general, the DOL strategy can significantly
improve the diversity of the population and enhance the search
efficiency of particles by endowing new searching abilities to
individuals in the population. Therefore, DOLADE is one of the

ideal methods to identify unknown parameters of the battery
model. In future plans, research to address this type of problem
will continue, and improvements will be made to the DOLADE
algorithm to explore its potential for solving more complex
problems.
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GLOSSARY

AE experiment current

AS calculated current

BESS battery energy storage system

Cd concentration polarization capacitance (C)

Cp electrochemical polarization capacitance (C)

cfPSO constriction factor particle swarm optimization

D dimension of problem

DE differential evolution

DOL dynamic opposite learning

DOLADE adaptive differential evolution algorithm with a dynamic
opposite learning strategy

ETLBO elitist teaching–learning-based optimization

Gmax maximal number of generation

GWO grey wolf optimizer

IL load current (A)

JADE adaptive differential evolution algorithm with an optional external
archive

Max maximum value

Mean average value

MFO moth-flame optimization

Min minimum value

N number of experimental data

Np population size

OCV open circuit voltage

P population

PV photovoltaic

R0 internal resistance (Ω)

Rd concentration polarization resistance (Ω)

Rp electrochemical polarization resistance (Ω)

RMSE root mean square error

rand random numbers in (0, 1)

SD standard deviation

SECM second-order RC equivalent circuit model

SOC state of charge

T sampling time (s)

U0 resistance voltage (V)

Ud second RC network’s voltage (V)

UL terminal voltage (V)

UOCV open circuit voltage (V)

Up first RC network’s voltage (V)

μCR crossover factor

μF mutation factor
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