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The rapid development of renewable energy improves the requirements of renewable
energy output simulation. The clustering characteristics and correlation of renewable
energy would improve the accuracy of power output simulation. To clarify the typical power
output process of a large-scale wind power base, a novel method is proposed for wind
power output scene simulation in this paper. Firstly, the genetic algorithm (GA) Kmeans is
used to divide the wind farm clusters. The wind power output of each cluster is calculated
by the wind turbine model. Then, the Copula principle is used to describe the correlation
characteristic of wind farm clusters. Finally, the power output scenes are simulated by the
Markov chain Monte Carlo (MCMC) method. To verify the effectiveness of proposed
method, the wind power base in the downstream Yalong River basin is taken as the case
study. The results show that the 65 wind farms should be divided into 6 clusters. The five
typical power output scenes in winter–spring and summer–autumn seasons are simulated
respectively based on the clustering characteristics and correlation of wind farms. This
study provides a valuable reference for other large-scale renewable power bases all over
the world.

Keywords: output scene simulation, GA-Kmeansmethod, Copula principle, large-scalewind power base, renewable
energy

INTRODUCTION

An energy structure with fossil energy as its main source brings many problems, such as
environmental pollution, climate change, and energy depletion crisis, which seriously restrict
the development of the social economy (Zhang et al., 2018; Wang et al., 2018). Since the 21st
century, energy structure transformation has become the focus of countries worldwide (Hou
et al., 2019). Under the guidance of the concept of energy structure transformation, the
development of the global renewable energy industry has been accelerating, and the installed
capacity of renewable energy has increased from 812 GW in 2004 to about 3,089 GW in 2021.
However, the high randomness, intermittency, and uncontrollability of renewable energy result
in large-scale wind and photovoltaic (PV) power generation presenting large challenges for
integration into a power grid (Wang et al., 2019; Wang et al., 2019; Liu et al., 2020). Therefore,
clarifying the characteristics of large-scale renewable energy and simulating the power output
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scene is of great significance for renewable energy
development (Kim et al., 2020; Zhang et al., 2020).

Currently, numerous studies focus on the analysis of the
spatial and temporal distribution of renewable energy, as well
as the evaluation of complementary characteristics of various
clean energy power stations. De Blasis et al. (2021) applied a high-
order multivariate Markov model to clarify the cross- and auto-
correlation characteristics between wind speed and direction.
Almeida et al. (2021) proposed a Monte Carlo-based multi-
area reliability assessment method to represent the relevant
features and intermittency of variable renewable energy
resources. Xu et al. (2017) constructed the relation function of
the marginal cumulative distribution function of the intensity of
wind speed and light irradiance through the Copula function and
used the Kendall rank correlation coefficient to describe the
spatial and temporal characteristics of wind and PV indirectly.
Huang et al. (2021) used the Copula method to analyze the
uncertainties of wind and solar power for quantifying the risk of
wind–solar–hydro complementary system. Cantao et al. (2017)
used hydro–wind correlation maps to analyze the wind and
hydropower complementarity, which are quantitative and
more intuitive. Based on the variable-structure Copula
function, Wang et al. (2020) proposed a novel method to
describe the correlation and complementarity of distributed
wind power and load for optimizing the planning capacity of
distributed wind power. Antunes Campos et al. (2020) assessed
the complementary nature between wind with the Pearson’s
correlation coefficient and PV power and optimized energy
storage capacity in the utility-scale hybrid power plants.
However, the research on the combination of temporal–spatial
distribution characteristics of renewable energy and output
simulation or prediction is still insufficient.

Based on the complementary characteristics of new energy
such as wind energy and solar energy, there have been many
scholars who have studied the clustering characteristics of new
energy in different regions. Dai et al., 2017 proposed an
evaluation method of cluster output smoothness and
quantified the contribution of wind power clustering to reduce
the fluctuation of wind power output. Yesilbudak (2016) adopted
the Kmeans clustering method with Squared Euclidean, City-
Block, Cosine, and Pearson Correlation distance measures to
analyze the clustering characteristics of 75 provinces’ wind speed
in Turkey. According to the aggregate effect of wind and solar
power plants, Liu et al. (2020) aggregated all the power plants of
study area into a virtual wind power plant and a virtual solar
power plant. Chidean et al. (2018) presented the Second-Order
Data-Coupled Clustering (SODCC) algorithm to analyze the
wind power resource in the Iberian Peninsula. Yan et al.
(2020) proposed a scenario generation method and established
the planning model of renewable energy based on cluster
partition. Nevertheless, there is less research focused on the
correlation of multiple renewable energy clusters.

To develop and utilize large-scale renewable energy and
reduce the adverse impact of renewable energy uncertainty,
many scholars have conducted research on renewable energy
scene simulation and power forecasting. Renewable power output
scene simulation aims to fully tap the overall characteristics and

statistical laws of renewable energy, generate typical power output
scenes, and provide basis for renewable power system planning
(Densing and Wan, 2022). In the previous literature, Deng et al.
(2018) used a typical scenario simulation method of renewable
power output calculating the renewable energy accommodation
capability. Ding et al. (2016) proposed a short-term stochastic
simulation method based on the renewable power output error
and used the method for a real power grid in Northwest China.
Compared with renewable power output scene simulation,
renewable energy prediction provides a basis for making
power system generation plan and power grid dispatching
operation (Zhang et al., 2020). Renewable energy forecast
generally uses the statistical regression methods and machine
learning technologies to estimate the future power output
process. Wang et al. (2020) proposed a hybrid wind power
forecasting approach based on Bayesian model averaging and
Ensemble learning. Neshat et al. (2021) proposed a novel three
stages’ composite deep learning-based evolutionary approach to
forecast the power output in wind-turbine farms with the chaotic
characteristics of wind speed series. Singh et al. (2021)
represented the short-term wind power forecasting accuracy of
five machine learning methods, such as k-nearest neighbor
(kNN), decision-tree, extra tree regression, random forest, and
gradient boosting machine (GBM). However, most of the existing
research ignores the characteristic differences between different
wind farms, and there are only a few studies on wind power
simulating or forecasting of large-scale wind power bases based
on the clustering method.

At present, research on the characteristics of new energy
resources, cluster division, and renewable power output
forecasting and simulating has achieved phased results, but
there are still some deficiencies. In the planning and designing
stage of the renewable energy system, the simulation scenes of
renewable power output would be frequently used. However, the
unreasonable wind power output scenes would seriously affect
the development and management of the renewable energy
system. In particular, previous research on renewable energy
simulation assumes that the power output should be
consistent in the whole area. The power output scenes of a
representative wind farm would be usually used to describe all
wind farms in the region. However, for large-scale wind power
bases, there are certain differences in wind power output
characteristics in the region. Ignoring the correlation and
complementarity of wind farm clusters will lead to a large
deviation in the simulation results of the wind power output.
Consequently, researching on power output scene simulation of
large-scale wind power base considering the power station cluster
division and power output correlation of adjacent clusters is very
necessary and urgent.

In order to fill this gap and obtain the accurate power output
scenes of large-scale wind power bases, this paper proposed a
power output scene simulationmethod considering power station
clustering and cluster correlation. Firstly, the wind farm clusters
are divided by the genetic algorithm (GA)-Kmeans method with
similar distances. Secondly, based on the conversion relationship
of wind speed and electric power, the wind power output physical
model is used to calculate the wind power output of each wind
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farm cluster. Then, using the joint and conditional distribution
functions of Copula, the correlation between different clusters is
analyzed. Finally, the Markov chain Monte Carlo (MCMC)
method is used to simulate the power output scenes of large-
scale wind bases. The wind power base of the downstream Yalong
River basin is taken as an example to verify the validity and
rationality of the new method.

METHODOLOGY

The methods to be used for simulating the power output scene of
large-scale wind power mainly consists of four parts. The
technical route of the large-scale wind power base output
simulating method with the correlation is shown in Figure 1.
The nomenclature table of abbreviations, variables, and constants
is shown in Table 1.

Wind Farm Cluster Division With the
GA-Kmeans Method
The GA-Kmeans method was performed to divide the wind farm
clusters. The uncertainty caused by the clustering number K and
clustering center {c1, c2, . . . , ck} is difficult to solve using the
conventional Kmeans method. The GA, which has a fast
computing speed, a stable operation, and a strong global
searching ability, was combined with the Kmeans method in

this article. The GA-Kmeans method can reduce the influence of
the initial cluster number and the selection of cluster center on the
resulting cluster effectively. Besides, the GA-Kmeans method can
improve the accuracy of clustering results and avoid Kmeans
clustering into a local optimum (Yesilbudak, 2016).

Furthermore, the correlation distance was selected as the
distance evaluation index in the Kmeans clustering process.
The fitness function optimized by the GA algorithm was
constructed by counting the intra-class distance and inter-class
distance of each cluster.

The correlation distance between X � (x1, x2, . . . , xn) and
C � (c1, c2, . . . , cn) can be expressed as:

d(X,C) � 1 − (x − �x
→)(c − �c

→)′��������������
(x − �x

→)(x − �x
→)′

√ ��������������
(c − �c

→)(c − �c
→)′

√ (1)

�x
→ � 1

p
⎛⎝∑p

j�1
xj
⎞⎠ �1p (2)

�c
→ � 1

p
⎛⎝∑p

j�1
cj⎞⎠ �1p (3)

where �1p is the row vector of [1, 1, 1,/, 1]p.
The similarity of objects in the Kmeans cluster can be

expressed by the average class inner distance as follows:

ICS � ∑k
i�1

∑Ni

j�1

d(xij, ci)
Ni

(4)

where xij is the jth object of class i,Ni is the sample size of class i,
ci is the cluster center of class i, and d(x, y) is the relative distance
between two samples.

The object difference between clusters of Kmeans clustering
can be expressed by class spacing as:

ICD � ∑k−1
i�1

∑k
j�i+1

d(ci, cj) (5)

The fitness function was defined as:

F � ICD/ICS (6)
The fitness function value was determined by the quality of

clustering results. The fitness function value is larger when the
average in-class distance is smaller and class distance is larger.
Currently, the clustering effect is better.

Calculation Method of Wind Power Output
The wind speed and electric power conversion model is adopted
to calculate the output power of a single wind turbine. The total
output process of the wind farm can be obtained by the ratio of
the unit capacity to the installed machine. The power conversion
relation of a wind turbine is shown as:

PW,t �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0
CpSρv

3/2
Pr

0

0≤ vt ≤ vci
vci ≤ vt ≤ vr
vr ≤ vt ≤ vco
vt ≥ vc0

(7)

FIGURE 1 | The technical route of the proposed methods.
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ρ � ρ0 ·
273.15

273.15 + T
×
P − 0.378Pw

1013.25
(8)

where PW,t is the power output of unit wind turbine at time t, kW;
Pr is rated power, kW; Cp represents the wind energy utilization
coefficient of the wind power; S is the swept leaf area; v is the real
wind speed at time t, m/s; vci, vco, and vr are cut in, cut out, and
rated wind speed, respectively, m/s; ρ is the moist-air density, kg/
m3; ρ0 is the dry-air density at normal pressure and temperature,
ρ0 � 1.293m3/kg; T is temperature, °C; P is the air pressure at the
hub height of wind turbine, hPa; Pw is the water pressure, hPa.

Wind Farm Clusters Correlation Analysis
With the Copula Principle
The correlation analysis method of adjacent wind farm clusters
based on the Copula principle includes the marginal distribution
model of wind farm cluster power output, the Copula function type
and conditional distribution of adjacent wind power cluster output,
and the goodness-of-fit test method of the distribution model.

The Marginal Distribution of Wind Power Output
The main distribution marginal functions widely used in
statistical analysis are Pearson type III distribution (P-III),
lognormal distribution (Ln), Generalized extreme value

distribution (Gev), and Weibull distribution. In this paper,
four distributions are used to fit the marginal distribution of
each wind power cluster’s output.

It is worth noting that if the wind power output is taken as the
random variable, there are multiple repeated minimum and
maximum values in the sample sequence. Moreover, the
probabilities of minimum and maximum values are not equal
to 0, which leads to the discontinuity of probability density
function and cumulative distribution function of wind power
output. Therefore, the probability distribution of wind power
output needs to be described by the interception distribution
model, and the probability density and cumulative distribution
function can be expressed as:

f(x) � β1δ(x −Xmin) + fc(x;R) + β2δ(x −Xmax) (9)

F(x) �
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

β1 x � Xmin∫x
Xmin

fc(x;R)dx Xmin <x<Xmax

1 x � Xmax

(10)

where, β1 and β2 represent the probability of occurrence of
minimum and maximum events, respectively; δ(·) is the Dirac
delta function; fc(x;R) is a continuous function and satisfies∫Xmax

Xmin
fc(x;R)dx � 1 − β1 − β2; R is a vector parameter.

TABLE 1 | The nomenclature table of abbreviations, constants, and variables.

A. Abbreviations

AIC Akaike Information Criterion GA Genetic algorithm
GBM Gradient boosting machine GEV Generalized extreme value
kNN k-nearest neighbor Ln Lognormal distribution
MCMC Markov chain Monte Carlo P-III Pearson type III distribution
PV Photovoltaic RMSE Root Mean Square Error
SODCC Second-Order Data-Coupled Clustering WMCB The watershed-type multi-energy complementary bases

B. Constants

Cp Energy utilization coefficient of wind turbine ρ0 Dry-air density at normal pressure and temperature
Pr Rated power Pw The water pressure
vci Cut in wind speed vco Cut out wind speed
vr Rated wind speed �1p The unit row vector

C. Variables

β1 Probability of occurrence of minimum value β2 Probability of occurrence of maximum value
C(·) Copula joint distribution c(·) Copula joint probability density
ci The cluster center of class i {c1 , c2 , . . . , ck} Clustering center
d(X ,C) Correlation distance between two samples X and C F(v|u) Copula conditional probability distribution function
F(x) Cumulative distribution function f(x) Probability density function
FX(x) Marginal distribution of random variables X FY (y) Marginal distribution of random variables Y
F(X ,Y ) Joint distribution function fc(x;R) Continuous function
ICS The average class inner distance Icd Class spacing distance
K Clustering number Ni The sample size of class i
Pei Empirical frequency Pi Theoretical frequency
P The air pressure at the hub height of wind turbine PW ,t The power output of unit wind turbine at time t
S The swept leaf area T Temperature
u Random variables of Copula v Random variables of Copula
vt The real wind speed at time t xij The jth object of class i

�c
→ Row vector of C � (c1 , c2 , . . . , cn) �x

→ Row vector of X � (x1 , x2 , . . . , xn)
z Partial derivative θ Parameter of Copula function
ρ Moist-air density δ(·) Dirac delta function
rn Pearson linear correlation coefficient τn Kendall rank correlation coefficient
ρn Spearman correlation coefficient
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The Copula Function Type and the Conditional
Distribution
Sklar (1959) introduced the theory of Copula into statistics,
providing an effective method for multivariate analysis. For 2-
dimensional random variables, random variables X and Y obey
the marginal distribution FX(x) and FY(y), respectively.
F(X,Y) represent their joint distribution function. There is a
Copula:

F(x, y) � C(FX(x), FY(y)) (11)
where x ∈ [0, 1] and y ∈ [0, 1].

If FX and FY are continuous functions, then theC(·) is unique,
and the joint distribution density function can be expressed as:

c(x, y) � z2C(u, v)
zxzy

� f(x, y)
� c(FX(x), FY(y)) · fX(x) · fY(y) (12)

where u and v are random variables.
Analyzing the correlation between variables is the basis of

constructing Copula joint distribution. Pearson linear correlation
coefficient (rn), Spearman correlation coefficient (ρn), and
Kendall rank correlation coefficient (τn) were used to describe
the correlation of wind energy in wind power cluster.

Nelson (1999) gave a detailed introduction to the Copula
function and its properties. Generally, Copula functions can be
divided into three types: Elliptic, Archimedean, and Quadratic.
The Archimedean Copula with one parameter is the most
widely used.

In this paper, three Archimedean Copula (Gumbel Copula,
Clayton Copula, and Frank Copula) are used to construct the

joint distribution of wind power of each wind farm cluster. The
joint distribution functions and conditional distribution
functions of three Copula type are provided as follows:

1) The joint distribution function and conditional distribution
function of Gumbel Copula are shown as:

C(u, v) � exp{ − [( − ln u)θ + ( − ln v)θ]1/θ} (13)

F(v|u) � zC(u, v)/zu

� ( − ln u)θ−1[( − ln u)θ + ( − ln v)θ](1−θ)/θ
ue[(−ln u)θ+(−ln v)θ]1/θ

(14)

where θ is the parameter of the Gumbel Copula function,
and θ ∈ [1,∞).

2) The joint distribution function and conditional distribution
function of Clayton Copula are shown as:

C(u, v) � (u−θ + v−θ − 1)−1/θ (15)
F(v|u) � zC(u, v)/zu � [1 + uθ(v−θ − 1)]−(1+θ)/θ (16)

where θ is the parameter of the Clayton Copula function,
and θ ∈ (0,∞).

3) The joint distribution function and conditional distribution
function of Frank Copula are shown as:

C(u, v) � −1
θ
In[1 + (e−vθ − 1)(e−uθ − 1)

e−θ − 1
] (17)

F(v|u) � zC(u, v)/zu
� e−uθ(e−vθ − 1)/[(e−vθ − 1)(e−uθ − 1) + e−θ − 1] (18)

where θ is the parameter of the Frank Copula function, and θ ∈ R.

The Goodness-of-Fit Test Index
Root Mean Square Error (RMSE) and Akaike Information
Criterion (AIC) were used to evaluate the goodness of fit of
the Copula joint distribution function.

1) RMSE is the most commonly used index for the goodness-of-
fit test.

RMSE �
�������������
1
n
∑n
i�1
(Pei − Pi)2

√
(19)

where Pei and Pi are the empirical frequency and theoretical
frequency, respectively.

2) AIC considers the deviation of Copula function fitting and the
uncertainty caused by the number of parameters of Copula
function.

AIC � n ln⎛⎝1
n

�����������∑n
i�1
(Pei − Pi)2

√ ⎞⎠ + 2m (20)

FIGURE 2 | The downstream Yalong River basin.
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wherem is the number of model parameters. The smaller value of
the AIC and RMSE, the better fitting degree of the Copula
function.

Large-Scale Wind Power Output Scene Simulation
Considering the Correlation

According to the correlation characteristics among wind
power clusters, the MCMC method is used in this study to
randomly sample from the conditional distribution of each
variable and its related variables in a fixed order to form the
output scenario set of large-scale wind power bases, and the
sampled output scenarios are reduced based on the synchronous
backstepping method to extract representative typical output
scenarios. The steps of output scenario simulation of large-
scale wind power are as follows:

1) Generate N random numbers aN ∈ (0, 1); let it be the
marginal probability of wind power output of the first
cluster, that is, P(X1 ≤x1) � a1; bring a1 into the inverse

function of marginal distribution F−1
1 (a1) � x1, and solve for

x1, which is the first cluster power output.
2) Let ai i ∈ [2, N] be the conditional transition probabilities

from the second cluster to the last cluster
P(Xi ≤xi|Xi−1 � xi−1) � ai; bring ai into the conditional
distribution among each cluster one by one,
F(v|u) � P(Xi ≤xi|Xi−1 � xi−1), and calculate the marginal
probability vi; according to the inverse function of marginal
distribution F−1

i (vi) � xi, solve for xi, which is the power
output of i cluster.

3) Calculate the output of all wind farm clusters (x1, x2,/, xN)
and accumulate the wind farm clusters’ power output to
obtain the output scenario of a large-scale wind power base.

4) Repeat steps (1) to (3) M times to obtain the output scenario
set of a large-scale wind power base.

5) Based on the Kmeans scenario reduction method, the
representative typical output scenarios are extracted in the
output scenario set of a large-scale wind power base.

TABLE 2 | The main technical parameters of the GW121-2.5MW wind turbine.

Operating parameters Rated power Design wind zone level Design service life Unit operating temperature
2.5 MW IEC II A ≥20 years −30°C–+40°C
Cut in wind speed Rated wind speed Cut out wind speed Unit survival temperature
3 m/s 9.7 m/s 22 m/s −40°C–+50°C

Specifications Impeller diameter Tower type Hub height
120 m Steel tower 90 m

FIGURE 3 | Clustering results of wind farms under different clustering numbers (k = 3–8). (A) Clustering number k = 3. (B) Clustering number k = 4. (C) Clustering
number k = 5. (D) Clustering number k = 6. (E) Clustering number k = 7. (F) Clustering number k = 8
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CASE STUDY

This study focuses on the Yalong River (the longest tributary of
the Jinsha River), which is located in Southwest China. Its
geographical location is 96°52′E to 102°48′E and 26°32′N to
33°58′N. The Yalong River basin is an area that is rich in
wind energy and solar energy resources. There are abundant
wind and PV power resources on both sides of the river basin, and
it has great development potential (Wang et al., 2016; Liu et al.,
2019). The complementary characteristics of wind, PV, and
hydropower resources within the year are fully used to
improve the comprehensive benefits. According to the
preliminary plan of the watershed-type multi-energy
complementary bases (WMCB) in the downstream Yalong
River basin, there are more than 65 wind power farms with a
total capacity of 7 GW; there are nearly 19 PV power stations with
a total capacity of about 5.6 GW; the hydropower installed
capacity of the downstream Yalong River basin is 14.7 GW
(Zhang et al., 2020).

According to the planned location of the wind farms in the
lower reaches of the Yalong River (as shown in Figure 2), the
wind energy reanalysis data at each station location are extracted,
and the wind speed power conversion model is used to calculate
the long-series output process of each wind farm. The advanced
GW121-2.5MW wind turbine is selected as the reference unit in
the research process. The main technical parameters of the
GW121-2.5MW wind turbine are shown in Table 2.

RESULTS AND DISCUSSION

In order to numerically verify the effectiveness of the research
model and method, the results and discussion of the wind farms
cluster in the downstream Yalong River basin are performed.

Dividing the Wind Farm Clusters
Kmeans method should determine the clustering number k
firstly. Generally, the optimal clustering number is between
[2, ��

N
√ ], where N represents the number of clustering wind

farms. In this study, 65 wind farms in the downstream Yalong
River basin are clustered. Considering the geographical location,
scale, wind energy, and other specific conditions of the wind
farms, the maximum clustering number is 8 and the minimum
clustering number is 3. Then, the clustering results of wind farms
in the downstream Yalong River basin under different clustering
numbers are shown in Figure 2. As can be seen from Figure 3,
with the increase of the clustering number, the concentration of
each wind farm cluster increases. However, when the clustering
number is too large, the number of wind farms in individual
clusters is too less.

Therefore, comparing the clustering results under different
cluster numbers, the optimal clustering number is k � 6. The
cluster division results and cluster centers of wind farms in
downstream Yalong River basin are shown in Figure 4. The
cluster center, representative wind farm, and capacity of each
wind farm cluster are shown in Table 3. From Figure 4, the
clustering results calculated by GA-Kmeans show obviously
regional characteristics, and the characteristics are consistent
with the actual situation of the Yalong River basin.

Power Output Characteristic of Wind Farm
Clusters
According to the wind power cluster division results, the power
output of each cluster is calculated by the wind power output

FIGURE 4 | The wind farm cluster division results in downstream Yalong
River basin.

TABLE 3 | The cluster center and representative wind farm of dividing wind farm clusters.

Cluster num Cluster center Representative wind farm Represents farm coordinates Cluster capacity (MW)

Cluster1 101.9708°E, 27.1325°N 36 101.9572°E, 27.0597°N 1,294.9
Cluster2 102.1344°E, 27.9581°N 54 102.1428°E, 28.0091°N 1,726.5
Cluster3 101.3344°E, 28.0422°N 04 101.4182°E, 28.0162°N 971.2
Cluster4 101.8991°E, 26.7945°N 23 101.9108°E, 26.7634°N 1,187.0
Cluster5 101.6885°E, 27.5115°N 12 101.7859°E, 27.6843°N 1,510.7
Cluster6 102.0386°E, 28.4440°N 64 101.9929°E, 28.4481°N 323.7
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physical model, and the typical daily power output of 6 clusters in
each month is shown in Figure 5. It can be seen from Figure 5
that the wind power output has obvious daily and annual
variation rules. In the short term, the wind power output is
low from 10:00 to 15:00, and the wind power output usually
reaches the peak at about 20:00, which is the same time as the
peak load. In the long term, the output of wind power clusters

shows obvious seasonal law. From June to October, the power
output of each cluster is significantly lower than that in other
months. Therefore, it can be divided into two characteristic
periods: summer–autumn and spring–winter.

The daily power output intervals of 6 wind farm clusters in the
winter–spring and summer–autumn seasons are shown in
Figure 6. From Figure 6, there are significant differences in

FIGURE 5 | Daily power output variation curve of six wind farm clusters in each month.

FIGURE 6 | Daily power output interval of six wind farm clusters in summer–autumn and winter–spring seasons. (A) Summer–autumn season. (B) Winter–spring
season.
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TABLE 4 | The correlation coefficients of wind farm clusters in the downstream Yalong River basin.

Cluster num Correlation coefficient Cluster1 Cluster2 Cluster3 Cluster4 Cluster5 Cluster6

Cluster 1 Pearson - 0.906 0.563 0.800 0.774 0.625
Spearman 0.897 0.473 0.776 0.729 0.557
Kendall 0.755 0.344 0.595 0.566 0.425

Cluster 2 Pearson 0.906 - 0.664 0.772 0.666 0.628
Spearman 0.897 0.491 0.684 0.606 0.567
Kendall 0.755 0.362 0.518 0.443 0.425

Cluster 3 Pearson 0.563 0.664 - 0.748 0.806 0.482
Spearman 0.473 0.491 0.695 0.730 0.256
Kendall 0.344 0.362 0.525 0.567 0.180

Cluster 4 Pearson 0.800 0.772 0.748 - 0.806 0.577
Spearman 0.776 0.684 0.695 0.734 0.481
Kendall 0.595 0.518 0.525 0.542 0.347

Cluster 5 Pearson 0.774 0.666 0.806 0.806 - 0.676
Spearman 0.729 0.606 0.730 0.734 0.505
Kendall 0.566 0.443 0.567 0.542 0.370

Cluster 6 Pearson 0.625 0.628 0.482 0.577 0.676 -
Spearman 0.557 0.567 0.256 0.481 0.505
Kendall 0.425 0.425 0.180 0.347 0.370

The bold values represent the adjacent wind clusters with the best correlation.

FIGURE 7 | The correlation scatter diagram matrix of wind farm cluster.
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the daily power output intervals of different seasons and different
clusters. In the spring–winter season, the mean value and
variation range of daily power output are relatively large, while
in the summer–autumn season, the mean value and variation
range of daily power output are both small.

Correlation Analysis of Wind Farm Clusters
Based on Copula
According to wind farm cluster division results in downstream
Yalong River basin and power output sequence and
characteristic of each wind cluster, analyze the correlation

FIGURE 8 | The marginal distribution function of power output in each wind farm cluster. (A)Wind farm Cluster1. (B)Wind farm Cluster2. (C)Wind farm Cluster3.
(D) Wind farm Cluster4. (E) Wind farm Cluster5. (F) Wind farm Cluster6.

TABLE 5 | Parameter estimation and the goodness-of-fit test index of the joint distribution function.

Type Index Cluster3 –Cluster5 Cluster5 –Cluster4 Cluster4 –Cluster1 Cluster1 -–Cluster2 Cluster2 –Cluster6

Gumbel Copula Parameter θ 1.736 7.214 2.180 4.569 2.121
RMSE 0.111 0.185 0.135 0.031 0.025
AIC −38,486 −29,543 −35,048 −60,773 −64,542

Clayton Copula Parameter θ 2.083 11.064 2.858 5.335 3.548
RMSE 0.119 0.192 0.149 0.047 0.055
AIC −37,283 −28,953 −33,310 −53,695 −50,783

Frank Copula Parameter θ 5.625 22.945 6.969 15.551 7.215
RMSE 0.111 0.187 0.140 0.038 0.041
AIC −38,489 −29,344 −34,426 −57,455 −56,142

The bold values indicate the best copula type.
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of adjacent wind farm clusters with three types of Copula
function.

The Correlation Coefficient of Adjacent Wind Farm
Clusters
In this study, the Pearson, Spearman, and Kendall correlation
coefficients are used to evaluate the correlation among six wind
farm clusters in downstream Yalong River basin, as shown in
Table 4. The scatter matrix of wind farm clusters is drawn in
Figure 7.

Because it is hard to analyze the correlation of multiple wind
farm clusters directly, this study uses a set of correlations of
adjacent wind farm clusters to represent the correlation of
multiple wind farm clusters. According to the three correlation
coefficients and scatter matrix of each wind power cluster, the
adjacent wind farm clusters with strong correlation are selected to
form the adjacent wind farm clusters connected head to tail:
Cluster3–Cluster5, Cluster5–Cluster4, Cluster4–Cluster1,
Cluster1–Cluster2, and Cluster2–Cluster6. Figure 7 and
Figure 4 indicate that the selected adjacent wind power
clusters are consistent with the spatial distribution law of wind
farm clusters in downstream Yalong River basin.

The Marginal Distribution of Each Wind Farm Cluster
In this paper, the generalized extreme value distribution, Weibull
distribution, Pearson type III distribution, and lognormal
distribution are selected as the marginal distribution function
to fit the power output of each wind farm cluster, and the
marginal distribution parameters are estimated by the

maximum likelihood method. The cumulative distribution
curves of the power output of six wind power clusters in
downstream Yalong River basin are shown in Figure 8.

From Figure 8, comparing the empirical frequency with the
cumulative frequency of each marginal distribution, it can be
found that the goodness-of-fitting of the four distribution curves
is roughly the same, and four type distributions could fit the data
samples well. After screening, the optimal marginal distributions
of Cluster1, Cluster3, Cluster5, and Cluster6 are lognormal
distribution, the optimal marginal distributions of Cluster2
and Cluster4 are Weibull distribution, and the optimal
marginal distribution of each wind farm cluster is used to
construct Copula joint distribution. Moreover, the interception
distribution model used in this study can effectively fit the
samples with the power output of 0 and 1 in the data series.

The Copula Joint Function of Adjacent Wind Farm
Clusters
According to the adjacent wind farm clusters and the marginal
distribution of each wind power cluster, the Gumbel Copula,
Clayton Copula, and Frank Copula are used to construct the joint
distribution of adjacent wind farm clusters. The Copula joint
distribution parameters are estimated by the maximum
likelihood method. The AIC and RMSE criteria are used to
test the goodness-of-fitting of Copula functions, as shown in
Table 4. As can be seen fromTable 5, the best joint distribution in
Cluster3–Cluster5 is Frank Copula function. The best joint
distribution in Cluster5–Cluster4, Cluster4–Cluster1,
Cluster1–Cluster2, and Cluster2–Cluster6 is the Gumbel

FIGURE 9 | The best joint distribution graph between adjacent wind farm clusters. (A) Cluster3–Cluster5. (B) Cluster5–Cluster4. (C) Cluster4–Cluster1. (D)
Cluster1–Cluster2. (E) Cluster2–Cluster6.
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Copula function. The best Copula joint distribution of adjacent
wind farm clusters is shown in Figure 9.

Figure 9 indicates that the Copula joint distribution diagram
can intuitively reflect the joint probability of adjacent wind farm
clusters. According to the joint distribution of wind farm clusters,
when the power output of a wind farm cluster is certain, the
conditional probability of power output of its adjacent cluster can
be determined. On the contrary, given the joint probability of
adjacent wind farm clusters and one of the cluster power output,
the corresponding power output of the other cluster can be
deduced.

Output Scenario Combination of
Large-Scale Wind Power
Based on the Copula joint distribution, the 10,000 sets of power
output scenarios of downstream Yalong River wind power base in
summer–autumn and winter–spring are simulated by theMCMC
method and shown in Figures 10A, B. From Figure 6 and
Figures 10A, B, the simulated power output scenario sets of

wind power base in summer–autumn and winter–spring have the
same law as the daily power output interval.

However, the power output scenario sets of wind power base
in summer–autumn and winter–spring are too complex, so the
power output scenario sets need to be reasonably reduced. The
Kmeans scenario reduction model is used to reduce 10,000 sets of
scenarios into five typical scenarios. The representative typical
wind power output scenarios and the corresponding scenario
probabilities in the winter–spring and summer–autumn seasons
are shown in Figures 10C, D. From Figure 10, the typical power
output scenes can basically cover the original scenario set, and
each typical power output scenario is highly representative.
Otherwise, comparing the typical power output scenes of wind
power base in summer–autumn and winter–spring seasons, the
probability of each scene in winter–spring season is relatively
similar, and the scene probability is about 0.2. In the
summer–autumn season, the probability of each scene is quite
different. The probability of Scene2 and Scene3 is close to 0.3,
while the probability of Scene5 is only 0.055. In general, the power
output simulation method of large-scale wind power base can

FIGURE 10 | The power output scenario sets and the typical output scenes of the Yalong River wind power base in the summer–autumn and winter–spring
seasons. (A) Summer–autumn power output scenario sets. (B) Winter–spring power output scenario sets. (C) Summer–autumn typical output scenes. (D)
Winter–spring typical output scenes.
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realize the rapid modeling and solution of the integrated output
of abundant wind farms.

CONCLUSION

The continuous expansion of new energy such as wind power directly
leads to the increase of power systemuncertainty and the difficult grid
integration of new energy. It is beneficial to divide the large-scale
wind power base into wind power clusters and quantify the
correlation of wind power clusters. Therefore, this paper proposed
a power output scene simulation method of large-scale wind power
bases considering power station clustering and cluster correlation
characteristics. The method is applied in the Yalong River
downstream, and the main conclusions of this paper can be
summarized:

1) GA-Kmeans clustering method with a similar distance to the
evaluation standard can quickly and accurately divide the
clusters of renewable energy power stations and effectively
solve the influence of cluster number and initial cluster center
on Kmeans clustering results. In the case study, this method is
applied to divide the 65 wind farms in the downstream Yalong
River basin into 6 clusters, and the cluster division results are
consistent with the spatial distribution characteristics of wind
energy resources in the basin.

2) Copula function can effectively reflect the output correlation of
multi-dimensional wind farm clusters and significantly improve
the simulation or prediction effect of the power output in large-
scale wind power bases. In the case study, the Copula function is
constructed to determine the best joint distribution of 6 adjacent
wind farm clusters in the downstream Yalong River basin. Then,
based on the correlation characteristic, the MCMC sampling
method is used to simulate the typical power output of the
Yalong River downstreamwind power base in winter–spring and
summer–autumn seasons, respectively.

3) Compared with the power output scenario sets, the typical
power output scenes can effectively remove the redundant
information in many scenario sets and highlight the
representative situation of the integrated output of a
large-scale wind power base. Furthermore, the typical
power output scenes could be conducive to the
application of scenes in practical work such as planning,
design, scheduling, and operation of large-scale wind
power base.
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