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Feedstock heterogeneity is a key challenge impacting the deconstruction and conversion
of herbaceous lignocellulosic biomass to biobased fuels, chemicals, and materials.
Upstream processing to homogenize biomass feedstock streams into their anatomical
components via air classification allows for a more tailored approach to subsequent
mechanical and chemical processing. Here, we show that differing corn stover anatomical
tissues respond differently to pretreatment and enzymatic hydrolysis and therefore, a one-
size-fits-all approach to chemical processing biomass is inappropriate. To inform on-line
downstream processing, a robust and high-throughput analytical technique is needed to
quantitatively characterize the separated biomass. Predictive correlation of near-infrared
spectra to biomass chemical composition is such a technique. Here, we demonstrate the
capability of models developed using an “off-the-shelf,” industrially relevant spectrometer
with limited spectral range to make strong predictions of both cell wall chemical
composition and the relative abundance of anatomical components of the corn stover,
the latter for the first time ever. Gaussian process regression (GPR) yields stronger
correlations (average R2

v = 88% for chemical composition and 95% for anatomical
relative abundance) than the more commonly used partial least squares (PLS)
regression (average R2

v = 84% for chemical composition and 92% for anatomical
relative abundance). In nearly all cases, both GPR and PLS outperform models
generated using neural networks. These results highlight the potential for coupling
NIRS with predictive models based on GPR due to the potential to yield more robust
correlations.
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INTRODUCTION

Lignocellulosic biomass offers enormous potential as a renewable feedstock for biorefining processes
that can yield sustainable fuels, chemicals, and materials (Sharma et al., 2020). A wide range of
technological approaches are available for biorefining of lignocellulose that include thermochemical,
catalytic, chemical, and biological processes for deconstruction and conversion of the cell wall
biopolymers contained within lignocellulose to these bio-based fuels and products (Brown and
Brown, 2013; Qureshi et al., 2014). One approach for biorefining of lignocellulosic biomass involves a
chemical pretreatment to facilitate the subsequent depolymerization of plant cell wall
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polysaccharides using cellulolytic enzymes to yield
monosaccharides that can be further processed to biofuels or
biobased chemicals (Kumar et al., 2016). Additional pre-
processing operations on the biomass may be necessary to
facilitate optimal storage, transport, and processing of
heterogeneous, geographically dispersed biomass feedstocks.
These feedstock pre-processing operations can include
comminution, cleaning, physical or chemical fractionation,
drying, pretreatment, and densification (Carolan et al., 2007;
Lamers et al., 2015).

Corn stover is a high-volume co-product of corn production
that has been identified as having significant potential for
sustainable biofuel production in the U.S. (Langholtz et al.,
2016). Importantly, corn stover, like other gramineous
feedstocks for biorefining processes, exhibits significant within-
plant heterogeneity as a consequence of the differences in the cell
wall composition and higher order structures between different
cell types, tissues, or anatomical fractions (e.g., cob, leaf, husk,
stem). In addition to this heterogeneity, variability within a single
feedstock can arise from differences in feedstock biological origin,
agronomic practices, local environment during growth, harvest
time and approach, and biomass storage time and conditions
(Morrison et al., 1998).

Feedstock variability resulting from differences in chemical
composition and physical properties can significantly impact
process performance during both pre-processing and
downstream biorefining operations. Moreover, differences in
the physical properties of individual corn stover particles are
largely derived from anatomical differences in the tissues. Such
differences can impact the mechanical handling of biomass, have
been shown to contribute to process upsets and can be
detrimental to overall process throughput (Sievers et al., 2020).
Since different anatomical tissues respond differently to both pre-
processing (e.g., comminution) and deconstruction (e.g.,
chemical pretreatment and enzymatic hydrolysis), on-line
knowledge of the tissue type, composition, and moisture
content could prove to be a fundamental requirement for
commercial-scale biorefineries (Garlock et al., 2009; Crowe
et al., 2017; Li et al., 2018). To this end, a high-throughput
analytical technique that is potentially deployable as an on-line
measurement, would be needed to inform not only the feedstock
chemical composition, but also anatomical relative abundance for
a given sample of corn stover.

A suite of laboratory analysis procedures developed by the
National Renewable Energy Laboratory (NREL) have become the
de facto analysis techniques to determine the composition of both
feedstocks and pretreated biomass slurries (Sluiter and Sluiter,
2011a; b). However, the wet laboratory procedures for these
techniques are time consuming and expensive (Lupoi et al.,
2014; Sykes et al., 2015). Therefore, near-infrared (NIR)
spectroscopy (NIRS) has become widely used to characterize
the composition of biomass (Xu et al., 2013). Predictions of
cell wall composition via NIRS have been developed for corn
stover (Hames et al., 2003; Templeton et al., 2009), pretreated
corn stover (Wolfrum and Sluiter, 2009; Sluiter and Wolfrum,
2013), sorghum (Wolfrum et al., 2013; Li et al., 2017a),
switchgrass (Vogel et al., 2011; Park et al., 2012), poplar

(Robinson and Mansfield, 2009; Nkansah et al., 2010) and
cereal grains (Bruno-Soares et al., 1998; Caporaso et al., 2018).
However, cell wall composition alone cannot predict other
physical properties of the feedstock, yet this information
would benefit biomass processing. Therefore, a principal
objective of the present work is to demonstrate the predictive
capability of NIRS for not only cell wall composition in corn
stover, but also feedstock anatomical origin (e.g., husk, cob, or
stalk rind) that greatly impacts both response to mechanical
operations (e.g., comminution and feeding) and subsequent
biorefining operations.

NIRS gained widespread use in the food industry in the
1980s due to advancement in chemometric techniques to
correlate convoluted absorbance peaks to the chemical
composition of the analytes using various mathematical
tools like principal component analysis (PCA) and partial
least squares (PLS) regression (Scotter, 1990). NIR is a
commonly used technology for quality control in grain
processing facilities (Gradenecker, 2003) as well as crude
protein content in livestock forage and feeds (Vincent and
Dardenne, 2021). Early work on analysis of biomass energy
feedstocks showed the viability of NIRS with PLS to accurately
predict corn stover cell wall composition (glucan, xylan, lignin,
acetate, and ash) (Sanderson et al., 1996; Gao et al., 2018).
Quantification of cell wall composition by NIRS demonstrated
varying polysaccharide levels of anatomical fractions of corn
stover (Ye et al., 2008) and differences between feedstock corn
stover and that pretreated with dilute sulfuric acid (Wolfrum
and Sluiter, 2009). Further work at NREL demonstrated a large
variation in the cell wall composition of corn stover from
various harvests as predicted by NIRS (Templeton et al., 2009).
Lately, the same group has demonstrated that potentially low-
cost and portable spectrometers with limited spectral range
provide predictions that are nearly as accurate as those of well-
developed laboratory instruments (Wolfrum et al., 2020).
Here, we demonstrate that a comparable “off the shelf”
instrument is adequate to predict not only composition, but
further extend the predictive capability to anatomical
tissue type.

Various chemometric tools have been implemented to make
predictions of chemical composition from NIR spectra with
PLS being the most common technique. Neural networks
(NNs) (Li X. et al., 2015; Jin et al., 2017; Ahmed et al.,
2019), support vector machines (SVMs) (Balabin and
Lomakina, 2011) and Gaussian process regression (GPR)
have also been applied to NIR spectra to predict the
moisture content of biomass. GPR is commonly used to
predict biomass properties in remote sensing but lacks any
significant use in NIRS predictions of biomass properties
(Hultquist et al., 2014). In this work, we investigate the
efficacy of PLS, GRP, and NN for prediction of chemical
composition and anatomical abundance in corn stover.

Air classification is a preprocessing technique of great interest
that separates corn stover based on differences in density and
surface area (Bilanski and Lai, 1965; Stessel Richard and Peirce,
1983; Lacey et al., 2015). These physical characteristics differ
within the anatomical tissue types of corn stover. Additionally,
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since chemical composition varies with anatomy, we aim to
demonstrate that models developed from NIRS can predict
not only chemical composition of fractionated biomass, but
also the relative abundance of tissue type. The utility of this
technique is two-fold: 1) from an experimental perspective, NIRS
is a high-throughput tool to validate air classification during
process development and 2) in an applied setting, NIRS can
inform downstream processes about the relative abundance of
incoming corn stover (i.e., “stringy” with many husks vs. more
“chip-like” with many stalk rinds and cobs). In the present work,
we compare the predictive capabilities of NIRS by traditional PLS
methods then explore the use of GPR and NNs to expand the
state-of-the-art. Further, we demonstrate that NIRS can provide
reliable predictions for not only composition, but also a further
level of abstraction to anatomical tissue type.

EXPERIMENTAL

Materials
A diverse range of corn stover samples were used in the present
study. Corn stover diversity panel samples were the same as those
described in previous work (Li et al., 2017b). Briefly, the maize
was grown at a different density and plants were harvested at
grain maturity using a single pass, Case IH® 2144 axial-flow,
combine for better separation of corn stover and grain. The
samples for NIR scanning were taken from a commercial
hybrid corn stover bale harvested on 28 October 2017 from
Story, Iowa using an AGCO 2270 XD Large Square Baler
(Duluth, Georgia) set to a 4-inch cut. The bales were sent to
Iowa State University for storage under dry, stable conditions
until 24 October 2019, when they were delivered to Idaho
National Laboratory (INL). At INL, they continued to be
stored under dry (moisture content 8.7 to 9.7 wt%), stable
conditions until use.

Methods
Sample Preparation
To generate manually sorted anatomical fractions, 50 kg of flakes
from the end sections of unprocessed, square corn stover bales
was set aside. As detailed in Figure 1, the plant fractions of corn
stover isolated consisted of leaf, sheath, stalk, pith, husk, shank,
and cob. However, shank was not investigated in this study due to
lower occurrence and similarity with the stalk fraction. The leaf
fraction (Figure 1E) is often pulverized during the baling process
and will usually be found in smaller pieces and fines. They are
darker than most other tissues with a thick mid-rib. Husks
(Figure 1G) are broad, thin tissues, lighter in color than the
leaves, and do not fracture during the baling process. The sheath
(Figure 1D) is usually found attached to the stalk. This is a thick,
waxy, rigid tissue that must be broken off the stalk to collect. The
stalk (Figure 1C) is long and usually cylindrical and consists of a
rigid outer layer (rind), and spongy inner tissue (pith). The shank
(Figure 1H) is a branch-like structure that grows out from a leaf
node and it is from this shank that an ear of corn will grow. Cobs
(Figure 1B) are usually found in larger pieces and have a “fuzzy”
outer layer (beeswing/chaff) and contain pith inside a rigid ring of
tissue (woody ring).

To further separate and isolate 25 g for subsequent testing of
each anatomical fraction, 50 kg of the whole stover was slowly
removed and manually sorted to provide a near-pure baseline of
the different anatomical fractions. The larger plant fractions were
isolated to control mass loss and minimize variance in overall
anatomical composition of the unprocessed bale. To isolate 25 g
of pith (Figure 1F), the tissue was scraped off the rind portion
and reviewed for purity of anatomy. The cobs were mostly
unattached to the husk and stalk from harvest operations and
are the densest of the fractions, making manual separation
quickly identifiable. The husks identified in Figure 1G tend to
segregate from the other plant fractions and were hand-picked off
the remaining unprocessed material. The shanks were pulled

FIGURE 1 | Images of the harvested corn stover and respective plant fractions of interest for further isolation. These include (A) the corn stover rectangular bale as
harvested, (B) cob, (C) stalk, (D) sheath, (E) leaf fractions pulverized during harvesting operations, (F) pith isolated from stalk fractions, (G) is the husk with attached
shank, and (H) isolated shank found attached to the stalk and husk plant fractions.
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from the broad husk portion of the plant and separated as seen in
Figure 1H. To ensure purity and integrity of the leaf isolation, the
darker and scattered pieces were gently brushed from the
collapsed section of the bale. Any contaminates such as twine,
plastic, and metal objects were identified and removed.

Composition analysis was conducted on both alkaline
pretreated (see Section 2.2.2) and raw milled (#20 standard
mesh, 0.85 mm) pure anatomical fractions (sheath, leaf, pith,
husk, rind, and cob) of corn stover to determine structural
polysaccharides, lignin, extractive, and ash content according
to NREL/TP-510-42618 and 510-48087 with modifications as
reported in our prior work (Sluiter et al., 2008; Sluiter and Sluiter,
2011a; Templeton et al., 2016; Singh et al., 2019). For composition
analysis of pure tissues, several dozen pieces of a given tissue were
milled and placed into a sealed bag. These were mixed by shaking
and subsequently, aliquots of the mixture were taken for
composition analysis which was done in triplicate.
Supplementary Table S2 provides summary data for samples
used for prediction of chemical composition and Supplementary
Table S5 gives complete composition information for all samples
used for NIR modeling.

To generate anatomical tissues with varying moisture content
to enhance predictive models, samples of unmilled anatomical
fractions were hydrated at varying relative humidity. To achieve
different relative humidity, samples were equilibrated in five
separate sealed containers containing saturated aqueous
solutions of various ionic compounds in the bottom of the
container. These compounds govern the water activity, and
therefore, relative humidity. By varying the species of the ionic
compound, the relative humidity can be altered to cover a wide
range. Samples were allowed to equilibrate for at least 72 h and
until the mass change due to moisture uptake no longer increased
(maximum 96 h). Supplementary Table S1 provides the salts and
associated relative humidity used for moisture sorption
experiments (Greenspan, 1977). Supplementary Table S3
provides the associated moisture content of anatomical tissues
that were equilibrated at varying relative humidity.

Alkaline Pretreatment
Anatomical tissues milled to #20 standard mesh using a
benchtop Wiley mill were separately treated in an aqueous
alkaline solution at 10% solids (w/v) with 10% sodium
hydroxide (w/w) on a 3 g dry biomass basis in a 100 ml
AMAR reactor. The vessel was continuously stirred at
200 rpm and temperature was ramped to 90°C over the
course of 20 min where it was then held for an additional
60 min and then cooled to room temperature over the course
of 10 min. The biomass was then vacuum filtered and washed
with DI water until the effluent was of neutral pH. Prior to
enzymatic hydrolysis, the pH was adjusted to 5 by adding the
biomass to 300 ml of water and titrating with sulfuric acid.
Pretreated samples were then vacuum filtered and stored in
this moist state in a sealable polyethylene bag at 4°C until
further use. Supplementary Table S4 presents the moisture
content during storage of these materials.

Enzymatic Hydrolysis
Enzymatic hydrolysis was performed on both raw and pretreated
samples according to the procedure described by Yuan et al (Yuan
et al., 2019). Briefly, pure anatomical tissues of corn stover
(sheath, leaf, stalk pith, husk, stalk rind, and cob) were milled
to pass a 20-mesh screen using a Wiley mini-mill (Thomas
Scientific, Swedesboro, NJ). Hydrolysis was carried out in 15-
ml centrifuge tubes at 10% (w/v) solids loading with 15 mg CTec3
enzyme per g of glucan buffered using a 50 mM sodium citrate
buffer (pH 5) in a rotating incubator (198° of rotation) at 60 rpm
for 72 h at 50°C. Glucose yields were determined by diluting the
hydrolysis liquor ten-fold and measuring the concentration on an
Agilent 1260 series HPLC equipped with an Aminex HPX-87H
column (Bio-Rad, Hercules, CA) using 5 mM aqueous H2SO4 as
the mobile phase coupled with RI detection. Hydrolysis yields are
given in terms of percent of maximum theoretical glucose
produced. Enzymatic hydrolysis was conducted on both raw
and alkaline pretreated samples. Pretreated samples were used
for enzymatic hydrolysis no more than 5 days after pretreatment
to limit microbial growth.

Spectra Acquisition
NIR spectra were collected on a Foss InfraXact 7,500 non-contact
spectrometer over wavelengths from 570 to 1850 nm in
reflectance with the empty cup (air) serving as a baseline. This
is a reduced wavelength range compared to many studies using
NIR for chemical composition prediction (typically covering the
full NIR range from 800 to 2500 nm), but recent work has
confirmed little reduction in model predictive capability when
using reduced spectral range (Wolfrum et al., 2020). For
correlation of chemical composition (i.e. glucan, xylan, etc.)
specimens from the corn stover diversity panel were used in
addition to pure fractions that were isolated from the bale
described above. In total, there were 62 specimens available
for correlation of chemical composition (only 36 for
extractives and moisture content). It should be noted that
some of these specimens were milled (those from corn stover
diversity and ambient humidity anatomical fractions) to #20
standard mesh, while some were not (those tissues that were
hydrated at varying relative humidity as previously described).

Milled specimens were added to a cup with a transparent
bottom (approximately 2 inches in diameter) to a depth of no less
than 1 cm. Specimens were measured over three replicates except
for hydrated tissues, for which spectra were collected in duplicate
to minimize water loss due to drying. These hydrated tissues were
not milled prior to scanning, but all other samples were milled to
pass a #20 standard mesh. Specimens were stirred between
replicate measurements. Hydrated, unmilled tissues were
removed from their sealed containers and duplicate scans were
performed quickly to limit moisture desorption from the
material, though the samples were briefly mixed between
scans. The duration of each scan is approximately 30 s,
therefore relatively little time was available for desorption of
water during the measurement. Nevertheless, inconsistency due
to effects of moisture desorption means that these results should
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be interpreted for their trends rather than as tabulations of well-
defined thermodynamic hydration states.

In general, the anatomical relative abundance of a given
sample of corn stover is not explicitly known, therefore, to
generate a dataset for calibration of the models, mixtures of
pure anatomical fractions which had been previously manually
sorted and subsequently milled to pass a #20 standard mesh
screen were prepared by “remixing” to obtain samples with
known anatomical quantities. These mixtures were at least 3 g
in quantity and were thoroughly agitated in sealed plastic bags
prior to scanning. Thus, 60 total specimens were combined and
scanned to generate the data set for determining anatomical
relative abundance.

Modeling
Several techniques were used to process spectra prior to training
models for prediction. Standard normal variate (SNV)
pretreatment was applied to the absorbance spectra by
subtracting the mean of absorbances over all wavelengths for a
given observation and normalizing by the standard deviation. In
this way, the mean values of all spectra were normalized to zero
with a standard deviation of one. The second derivative of the
absorbance spectra with respect to wavelength was calculated
numerically over the sampling increment of the instrument
(2 nm). Another common preprocessing technique is
multiplicative scatter correction (MSC) to reduce the effects of
scattering and differing path length between measurements
(Rinnan et al., 2009). MSC regresses each spectrum to the
mean spectrum of the dataset by ordinary least squares, then
corrects each spectrum by the regressed linear parameters. The
second derivative (2D) of the absorbance spectra is used to
achieve higher correlations between the actual and predicted
composition values. For all regressed spectra and correlations
compared here, SNV, MSC, and the second derivative were
applied.

Preliminary model screening was conducted using the
Regression Learner Application in MATLAB (release R2021b;
MathWorks, Natick, MA), which can quickly screen linear
regression, decision trees, known nearest neighbor, SVMs, and
GPR. Of these methods, GPR yielded the lowest mean squared
error in preliminary screening when predicting both chemical
and anatomical composition of corn stover. Therefore, in this
work, GPR is compared to more commonly used PLS regression
and NNs using MATLAB’s fitrgp, plsregress, and fitrnet functions,
respectively. For model testing in each training case, the data were
partitioned into training and test data with a 70/30 split for
holdout cross-validation. Root-mean-squared-error of validation
(RMSEV) and R2

v (coefficient of determination of validation) were
used to assess model performance on the holdout sets. In the case
of the cell wall composition, the RMSE was normalized by the
range of the predicted values. For each algorithm, the model was
trained 100 times each with a new training/test split. R2

v and
RMSEV are those for the average of the 100 model runs.

Gaussian processes leverage the expectation that samples with
similar predictors will have similar targets. In this case the
predictors are the absorbance values at varying wavelengths
and the targets are the chemical or anatomical composition.

Briefly, the process fits a distribution of functions to the
predictors in order to predict a target (e.g., chemical or
anatomical composition). The variance of the assumed
distribution of functions (prior) is designated by a kernel,
which can take various forms. We screened common kernels
and found that the rational quadratic form outperformed the
Matern 5/2 and 3/2, squared exponential, and exponential kernels
as screened by the Regression Learner Application in MATLAB.
Therefore, in the fitrgpMATLAB function, the rational quadratic
kernel was used to describe the covariance between predictors. All
other hyperparameters were held at default settings.

plsregress implements the SIMPLS algorithm developed by de
Jong (de Jong, 1993). All default parameters were used for
plsregress and the number of components was varied from 1
to 20. The R2

v and RMSEV values tabulated for PLS are the
maxima and minima over this range of components, respectively.
Standard deviations over the 100 model runs were calculated at
the number of components that maximized the R2

v value or
minimized the RMSEV.

NNs trained using fitrnet used Bayesian optimization, with the
default NN structure for the function: two fully connected layers
with the first having 10 nodes and the second having a single
output. The first fully connected layer has a rectified linear unit
activation function while the second layer corresponds to the
output target. The training iteration limit was set to 1,000 and
both the gradient tolerance and the tolerance for the function loss
were set to 10−6. Principal component analysis was conducted
using the pca function in MATLAB. Default parameters for the
function were used (data are centered and singular value
decomposition is the algorithm).

RESULTS AND DISCUSSION

Composition, Enzymatic Hydrolysis, and
Moisture of Corn Stover Anatomical Tissues
While NIRS has been used in a number of studies and
applications in the past to predict the composition of corn
stover, the three objectives of the present study differentiate
this work from the prior literature. The first objective is to
identify differences in composition and responses to
pretreatment and enzymatic hydrolysis between manually
fractionated corn stover anatomical fractions. The second
objective is to employ these corn stover samples to develop
models for prediction of differences in chemical composition,
relative abundance of anatomical fractions, and response to
pretreatment and enzymatic hydrolysis using an industrially
relevant NIR system with limited spectral range. The final
objective is to compare both the utility and performance of
three chemometric/machine learning algorithms (PLS, NN,
GPR) to make these predictions from the NIR data sets. For
correlative models to be useful, the dataset must cover the desired
prediction range. To achieve this, we use anatomically pure
samples to bound the design space for all samples of corn
stover. That is, no mixture of corn stover will have chemical
composition (e.g., glucan content) that is greater or lesser than the
pure anatomical fractions that have the maximum or minimum
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chemical content. Corn stover from our previous work was also
used to develop correlations of chemical composition (Li et al.,
2017b). Table 1 shows the summary composition data for the
corn stover samples used in this study and Figure 2A shows the
composition for manually sorted anatomical tissues on a dry
basis. The range of compositions found here are comparable to
other studies (Hames et al., 2003; Templeton et al., 2009).

Several key differences in composition between the
anatomical fractions can be observed within this data
(Figure 2A). First, it can be observed that the stalk rind
fraction had the highest glucan content (42.3% by mass),
which is consistent with other prior work for the stems of
graminaceous feedstocks such as corn stover (Li et al., 2012)
and Miscanthus × giganteus (Williams et al., 2015). Another
key observation is that the cob fraction exhibits the highest
xylan content. It is well-established that cobs are more highly
enriched in xylan (Takada et al., 2018) and the lower
recalcitrance and potential for collection/recovery have
made cobs a target feedstock for biorefining (Brown and
Brown, 2013). The leaf fraction exhibits the highest ash
content and is consistent with prior studies that have
found the most abundant ash content in leaf fractions of
corn stover (Li et al., 2012) and wheat straw (Atik and Ates,
2012), presumably due to the abundance of structural
inorganics such as silicates. A final observation is the low
lignin contents observed in stalk pith (9.5%), sheath (11.0%),
and husk (7.0%). Low lignin contents for pith has been

observed in corn stover (Li et al., 2012) and have been
linked to high enzymatic hydrolysis yields in sorghums (Li
et al., 2018). Results for the response to enzymatic hydrolysis
show significant differences between the six anatomical
fractions for both untreated and following pretreatment
(Figure 2B). From these results it can be observed that the
stalk pith has the highest yield (59.7%) of the untreated
anatomical fractions. It has been well-documented that
untreated pith from diverse grasses are known to be more
susceptible to digestion by rumen microbiota or cellulolytic
enzymes due to their lower lignin content (Akin, 2008).
Following pretreatment, the leaf, pith, husk, and cob
fractions exhibit glucose yields greater than 80%. Leaf,
husk, and cob show the most improvement in glucose
yields between untreated and pretreated samples, while the
sheath is particularly recalcitrant. Since this recalcitrance is
fundamentally rooted in cell wall structure and chemical
composition, we investigate later whether yields can be
correlated to NIR spectra. Because different tissues of corn
stover have different responses to pretreatment and
hydrolysis, a preprocessing technique that can enrich the
process streams in various anatomies would be highly
advantageous.

In addition to chemical composition and enzymatic
hydrolysis yields, moisture content is a critical parameter
affecting both mechanical processes (e.g., comminution,
conveying) and (bio)chemical processes (e.g., pretreatment,

TABLE 1 | Summary of composition data for the specimens analyzed in this work. Maximum, minimum, range and average for chemicals are given as wt% on a dry basis. N
refers to the number of NIR spectra available for correlation with a given parameter.

Glucan Xylan Klason
Lignin

Acetate Ash Water
extractives

Ethanol
extractives

Moisture

Max 42.3 41.1 20.4 5.0 12.4 26.7 6.5 38.0
Min 28.7 16.4 7.0 2.7 0.4 5.1 1.8 2.6
Range 13.6 24.7 13.4 2.3 12.0 21.6 4.7 35.4
Average 34.1 23.1 15.0 3.6 2.7 13.7 3.5 11.3
N 234 234 234 234 234 78 78 78

FIGURE 2 | (A) Composition of manually sorted anatomical tissues of corn stover on a dry basis and (B) glucose hydrolysis following enzymatic hydrolysis (as % of
theoretical maximum) for anatomical tissues of untreated corn stover and those pretreated under alkaline conditions.
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enzymatic hydrolysis) (Laureano-Perez et al., 2005;
Liebmann et al., 2010; Ozaki, 2012; Sievers et al., 2020).
Indeed, many processes utilizing materials of biological
origin have utilized NIRS for decades to monitor moisture
content. Therefore, it is a sensible candidate for prediction;
strong correlations for moisture content are expected so it
acts as a baseline check for model development. To obtain a
range of moisture content across anatomical tissues, unmilled
corn stover tissues were equilibrated at varying relative
humidity as presented in Supplementary Figure S1.
Generally, the moisture content increases rapidly at the

end of the moisture sorption curves and the stalk
components (rind and pith) demonstrating the greatest
hygroscopicity.

Correlation of Spectra to Chemical and
Anatomical Composition
The principal focus of this work is to demonstrate that an “off the
shelf” NIR spectrometer with limited spectral range
(570–1850 nm) can be used to generate predictive models on a
relatively small sample set of corn stover. Chemical functional

FIGURE 3 | Pearson correlation coefficients between NIR absorption from 570 to 1850 nm and corn stover compositional components, relative abundance of
anatomical components, and response to pretreatment and enzymatic hydrolysis.

FIGURE 4 | Second derivative of NIR absorbance spectra for anatomically pure fractions of corn stover in the region from (A) 850–1,050 nm, (B)
1,075 nm–1,125 nm, and (C) 1,500 nm–1775 nm.
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groups govern absorbance of NIR spectra and these groups
appear in different quantities in the cell wall biopolymers that
make up anatomical tissues. Therefore, chemical composition
predictions can be made from the spectral signatures. Predictions
of anatomical relative abundance are also rooted in the fact that
the varying chemicals absorb IR radiation differently and
different tissues have varying quantities of these chemicals. A
correlation map was developed (Figure 3) to first identify NIR
spectral correlations to the cell wall composition, relative
abundance of anatomical fractions, and responses to
pretreatment and enzymatic hydrolysis. This plot shows the
strength of the Pearson correlation coefficient between these
quantities and the second derivative of wavelength absorbance.
Red areas indicate negative correlations while green areas indicate
positive correlations. The magnitude of the second derivative
gives an indication of the degree of concavity in the raw spectra. A
larger magnitude of the second derivative in the negative
direction corresponds to a more defined absorbance peak in
the raw spectra. Positive peaks in the second derivative spectra
are often coupled with negative peaks. These coupled peaks are
often correlated to chemical composition or anatomical tissues
(Figure 3) as transitions from positive to negative correlation (or
vice versa). Such transitions are observed at 970 nm, 1,100 nm,
and 1,238 nm, among others, and are important for model
prediction. Chemical structures (polysaccharides, lignin, etc.)
and anatomical tissues that share similar correlation patters
are likely to be correlated (e.g., xylan and cob).

Several key differences within the NIR spectra contributing
these correlations can be highlighted (Figure 4). First, starting at
the lower end of the spectra, the first peak of interest occurs at
970 nm (Figure 3), where matching correlations between glucan,
xylan, acetate, stalk rind, and cob can be observed. This peak is
associated with amorphous hydroxyl content (Ahmed et al.,
2019) and stronger peak signals are observed for rind and cob
compared to other tissues (Figure 4A). These specimens are dried
to approximately 5% moisture content so the signal increased
hydroxyl absorbance may be due to higher relative abundance of
these groups present on polysaccharides. Though weaker than the
correlations previously described, lignin and water extractives
show similar positive correlations to sheath, leaf, and husk.
Because the second derivative of the spectra is negative for
wavelengths greater than 970 nm (up to about 1,015 nm), a
positive correlation between the absorbance and the chemical
composition implies that the relative chemical quantity is
decreasing with an increasing absorbance peak.

The peak that appears at 1,100 nm (Figure 4B) shows unique
properties in that related tissues display similar behavior as the
peaks transition from negative to positive. For example, sheath,
leaf, and husk group together and have matching correlation
patterns to lignin at 1,100 nm (Figure 3). Similarly, stalk rind,
stalk pith, and cob group together and have matching correlation
patterns to polysaccharides at 1,100 nm (Figure 3). Other reports
have also shown positive correlation between absorbance and
reference compositions of hemicellulose and cellulose at
1,096 nm and 1,100 nm, respectively, and negative correlation
at 1,098 nm for lignin (Jin et al., 2017). The peak at 1,100 nm is
one of the only significant peaks observed in this spectrum that

shows a segregation of anatomical tissues into positive and
negative second derivatives of absorbance.

Prediction of chemical composition is one key component of
feedstock quality and can be used to inform pre-processing or
downstream pretreatment. Peaks in NIR spectra associated with
crystalline cellulose can be observed at 1,592 nm (Figure 4C) for
which stalk rind is observed to have the sharpest absorbance
(Tsuchikawa et al., 2003). Higher up the spectrum, the
segregation of the data into positive and negative peaks at
1,668 nm distinguishes anatomical tissues in a similar way to
the peak at 1,100 nm. These two areas appear to be the only two
significant wavelengths at which this phenomenon occurs. In
previous work, our group has shown guaiacyl lignin to be
correlated to a negative peak at 1726 nm (Li et al., 2017b).
Previous authors have attributed this peak to pentose sugars
(furanose or pyranose) from the presence of hemicellulose
(Tsuchikawa et al., 2003). That the xylan-rich cob shows the
largest peak is therefore likely attributable to the polysaccharides
rather than the guaiacyl lignin in the present case.

Besides the spectra of specific anatomical fractions, it is
informative to investigate the spectra for a single anatomical
tissue that has been equilibrated at varying relative humidity. Our
results show (Figure 5) the effect of moisture sorption on the
amorphous hydroxyl band that is associated with wavelengths
from 1,350 to 1,450 nm (Henri et al., 2002) for stalk pith that has
been equilibrated at varying relative humidity. The band between
1,400 and 1,420 nm is related to the O-H first bending overtone
(Gergely and Salgó, 2005). Increased moisture content is observed
to lower the wavelength at which radiation is absorbed. In the raw
spectra (Supplementary Figure S2), the magnitude of
absorbance in this region is also observed to increase with
increasing moisture content. At low moisture content, the
water molecules can strongly associate with biopolymers
through hydrogen bonding but as the moisture content
increases, available sites for such interactions are decreased
and the spectra becomes more dominated by unbound or
amorphous water molecules. The contributions to the
absorbance from hydroxyl groups present on the biopolymers
are also diminished as the moisture content increases. These
subtle shifts in absorbance enable predictive models to be
developed from these spectra later in this work.

Of principal interest for the present study is identification of
corn stover samples which may be more amenable to subsequent
processing. For example, stalk pith requires no pretreatment to
achieve the same glucose yields during enzymatic hydrolysis
compared to pretreated stalk rind (Figure 2A). Therefore,
samples enriched in pith can be targeted in upstream
processing and the anatomical composition could be verified
by NIR predictive models. Though correlation of chemical
components to NIR spectra has been previously shown using
PLS, here we also investigate GPR and NN to test whether these
can provide more accurate predictions. The chemical
components of interest are glucan, xylan, Klason lignin,
acetate, ash, water extractives, ethanol extractives, and
moisture content.

Use of high throughput screening for determination of
biomass composition could be used in various applications
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within a biorefinery process. Variability of lignocellulosic biomass
poses a challenge for scale-up; but on-line NIRS could be used to
predict composition, such as glucan, to inform downstream
process parameters, such as enzyme loading for hydrolysis.

The average R2
v value and range-normalized RMSEV

(RNRMSEV) between the actual and predicted responses for
cell wall composition for models that could inform such
predictions are presented in Figure 6 (full data set in

FIGURE 5 | Second derivative of NIR absorbance spectra for stalk pith in the range of the amorphous -OH groups at 970 nm (A) and 1,424 nm (B) equilibrated at
varying % moisture content (MC).

FIGURE 6 | R2
v (A) and RNRMSEV (B) for chemical composition and response to pretreatment and enzymatic hydrolysis of corn stover predicted from NIR spectra

using partial least squares (PLS), Gaussian process regression (GPR) and neural networks (NN). Bars represent standard deviations over 100 model runs. Tabular data
are provided in the Supplementary Material.
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Supplementary Tables S8, S9, S14). For PLS, the reported R2
v

values are those that are the averages of the maximum R2
v for any

loop over varying number of components in the model (up to 20
components). Supplementary Figure S3 demonstrates how the
number of components affects the correlation between the actual
and predicted values. Generally, R2

v for the correlation plateaus at
its maximum value by 10 PLS components.

Of the chemical composition parameters, it is observed that
moisture content is themost easily predicted parameter. Indeed, NIR
has been used extensively for moisture content prediction
(Cozzolino et al., 2013). Well-defined peak shifts associated with
increasing moisture content (Figure 5) at 970 and 1,420 nm likely
contribute to these strong correlations. Polysaccharides (glucan and
xylan) as well as extractives (both ethanol- and water-extractable)
show relatively strong correlations between predicted and actual
values (R2v > 0.80). In all model cases, xylan is the best-predicted
chemical component besides moisture content. Minor components
(lignin, acetate and ash) have weaker correlation coefficients. The
correlation between actual and predicted values for minor
components (lignin, acetate, and ash) are about 10–15% higher
for GPR compared to PLS. That these minor components can be
well-predicted by GPR is an advancement of the state of the art. Ash
can be difficult to correlate due to the fact that the mineral
components that make up ash do not directly absorb NIR
radiation and only affect the absorbance of proximal functional
groups (Gao et al., 2018). This trend can be observed in Figure 3
where ash has comparatively weak correlations when compared to
major components like glucan, xylan, and lignin. Nevertheless, even
subtle correlations prove useful for predictive modeling as ash
content still has a relatively high R2

v value (0.87 for GPR).
The first three component loadings from PLS regression show

strong positive and negative correlations for both anatomical and
compositional components at 1,100 nm (Supplementary Figure
S4), which correspond to the behavior of the positive and negative
spectral derivatives at that wavelength (Figure 4B). Only a few
wavelengths appear to have high or low loadings in the first three
PLS components for chemical composition. Interestingly,
loadings are extreme in the visible spectra (from 570 nm to
about 720 nm). The first PLS component for composition
regression also shows a strong loading around 1,394 nm. This
pattern is observed for the moisture content present in the
biomass samples. Importantly, this transition is slightly lower
than those observed for polysaccharides (approximately
1,404 nm) so this may provide an important wavelength to
distinguish the difference between hydroxyl content associated
with water vs. those associated with polysaccharides that are not
well-distinguished at 970 nm. Range-normalized PLS regression
coefficients do not have similar patterning between observations
(anatomical or chemical composition) (Supplementary Figures
S5, S6A,B) unlike the Pearson correlation coefficients of those
values.

GPR is able to achieve an R2
v of 0.85 for the raw yield from

enzymatic hydrolysis and PLS is able to achieve an R2
v of 0.83 for

the pretreated enzymatic hydrolysis yield. This ability to predict
hydrolysis yields of corn stover by spectral analysis of incoming
feedstock could be of great utility in an industrial setting. Prior
work has employed PLS coupled to NIR to predict in vitro

digestibility in corn stover fractionated by anatomy (Hansey
et al., 2010) and our previous work for predicted enzymatic
hydrolysis yields in corn stover both before and after alkaline
pretreatment (Li et al., 2017b). Notably, our previous work was
not able to obtain robust prediction models for enzymatic
hydrolysis yields following pretreatment.

While composition is useful to inform downstream
chemical processing, knowledge of the anatomical tissue
type can also inform process operations. Particularly, work
from the Integrated Biorefinery Research Facility at NREL
showed that certain anatomical types can be problematic for
conveyance machinery (Sievers et al., 2020). That work found
husk material from corn stover tends to form “bird nests” that
can overload rotating equipment and cause large spikes in
machinery energy requirements. Foreknowledge of the tissue
type and quantity would be advantageous so that material flow
or equipment specifications could be altered to prevent process
bottlenecks or equipment damage. Moreover, corn stover
feedstock quality can be improved via air classification,
which separates different anatomical tissues based on
surface area and density (Lacey et al., 2016; Thompson
et al., 2016). To that end, Figure 7 presents the goodness-
of-fit (full data set in Supplementary Tables S11, S12, S13,
S15) and RMSEV between actual and predicted model values
for the relative abundance of differing anatomical fractions,
which has hitherto not been described in the literature, despite
instances of anatomical separation used to introduce variation
in the cell wall composition to the sample dataset (Pordesimo
et al., 2005; Liu et al., 2010; Gao et al., 2018). Prior work found
that the first three principal components of NIR spectra of
remixed anatomical fractions of Miscanthus × giganteus were
able to predict the structural carbohydrate, lignin, and ash
content (Williams et al., 2015). However, that work stopped
short of making predictions of the anatomical relative
abundance of the remixed anatomical samples. Because the
dataset for anatomical composition covers the complete range
(mass fraction from 0 to 1), the RMSEV does not require
normalization. The anatomical relative abundance is well-
predicted by all methods with average R2

v values of 0.92,
0.95, and 0.89 for PLS, GPR, and NN, respectively.

Because the chemical composition of biomass can be
discerned by the principal components of NIR spectra, we
applied principal component analysis to the spectra for pure
anatomical fractions of corn stover (Figure 8). In this analysis,
the first three principal components explained 92.9% of the
variance in the NIR spectra. The anatomical fractions are
shown to segregate into distinct bundles besides cob and
husk which tend to group together. That husk and cob have
distinct overlap of their principal component grouping is
counterintuitive because their correlations with NIR
absorbance are generally opposite (Figure 3).

Interestingly, the average correlation coefficient is higher for the
anatomical relative abundance predictions than for the composition.
Since the anatomical relative abundance can be thought of as another
level of abstraction from composition, which governs NIR
absorbance, one might expect these parameters to correlate less
strongly. Composition analysis of corn stover for this study was
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conducted at Michigan State University in 2014 for corn stover
diversity panel specimens (Li M. et al., 2015) and in 2021 for
anatomical fractions at Montana State University. Measurements
of chemical composition of biomass can vary by up to 20% between
laboratories (Templeton et al., 2016), though other studies found
much less error (Templeton et al., 2010). However, the quantity of
corn stover anatomical tissues can be accurately and precisely
controlled when preparing mixtures. Therefore, the higher
correlation coefficient and lower RMSEV for the anatomical
relative abundance compared to composition may be due in part
to interlaboratory data variance in the composition. Nonetheless,
these models still demonstrate utility to predict the chemical and
anatomical constituents of corn stover over a relatively small data set.
Here, we show that GPR as modeling approach may yield better
predictions for both chemical composition and anatomical relative
abundance in corn stover, but many different algorithmic
approaches and other hyperparameter tuning options exist for

each of the three models presented here. It is beyond the scope
of this study to investigate these parameters; we aim to demonstrate
that GPR is a viable and presently under-investigated modeling
technique that should be given more attention in the NIRS
community.

CONCLUSION

In this work, we show for the first time that anatomical relative
abundance can be predicted by NIRS models. This has important
implications for the biomass processing by adding additional
information about the feedstock beyond chemical composition. We
demonstrate the stalk pith has the highest glucose hydrolysis yield
(60% and 95% of theoretical for untreated and alkaline pretreated,
respectively) among anatomical fractions of corn stover. If coupled
with a physical fractionation strategy to recover fractions enriched or

FIGURE 7 | R2
v (A) and RMSEV (B) for anatomical relative abundance of corn stover predicted by various modeling algorithms. Bars represent standard deviations

over 100 model runs. Tabular data are provided in the Supplementary Material.

FIGURE 8 | First three principal components of the NIR spectra for pure components of corn stover. Circles represent the position in the 3-dimensional space,
squares represent the position in the PC1-PC2 plane and diamonds represent the position in the PC2-PC3 plane.
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depleted in select features such as the relative abundance of a target
anatomical fraction, those streams can be treated differently to
improve overall conversion. Despite the limited spectral range of
the spectrometer used in this work, strong correlativemodels were still
developed with a relatively small data set. We show that predictive
models from GPR give the strongest correlations for these data; this
regression technique should certainly garner more attention in future
investigations. Futureworkwill demonstrate the utility of thesemodels
on predicting composition, anatomical relative abundance, response
to pretreatment, and hydrolysis yields for air-classified fractions of
biomass.
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