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In recent decades, population growth and industrial evolution have led to a

significant increase in the need to produce electricity. Photovoltaic energy has

assumed a key role in responding to this need, mainly due to its low cost and

reduced environmental impact. Therefore, predicting and controlling

photovoltaic power is an indispensable task nowadays. This paper studies

how photovoltaic power can be affected under non-uniform irradiance

conditions, i.e., when the photovoltaic energy production system is under

partial shading. Concretely, the effect of bypass diodes on the current-

voltage characteristic curve, according to the shaded area, was studied and

the power loss under partial shading was quantified. In addition, electrical

characteristics and the temperature distribution in the photovoltaic module

were analyzed. Furthermore, we propose a hill climbing neural network

algorithm to precisely estimate the parameters of the single-diode and

double-diode models under partial shading conditions and, consequently,

predict the photovoltaic power output. Different shading scenarios in an

outdoor photovoltaic system were created to experimentally study how

partial shading of a photovoltaic module affects the current-voltage

characteristic curve. Six shading patterns of a single cell were examined, as

well as three shading patterns of cells located in one or more strings. The hill

climbing neural network algorithm was experimentally validated with standard

datasets and different shading scenarios. The results show that the hill climbing

neural network algorithm can find highly accurate solutions with low

computational cost and high reliability. The statistical analysis of the results

demonstrates that the proposed approach has an excellent performance and

can be a promising method in estimating the photovoltaic model parameters

under partial shading conditions.
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1 Introduction

The importance of using renewable energy has never been so

debated worldwide as it is today. National governments,

companies and citizens are increasingly concentrating efforts

to accelerate the energy transition towards a sustainable and

environmentally friendly energy consumption model. Among

the different sources of renewable energy, photovoltaic (PV)

energy has been one of the most relevant in terms of

electricity production. In recent years, new developments in

the PV sector have contributed to increasing the efficiency of

this energy production technology, as well as in reducing its cost.

However, it is hoped that continued advances will enable

researchers and manufacturers to achieve even more efficient

and less expensive PV energy production systems, allowing

greater penetration of this energy production technology. In

addition, PV energy has been combined in several strategies

for the use and transformation of essential resources, such as in

water desalination (Manokar et al., 2018) and in the use of

sunlight on building facades (Karthick et al., 2020), allowing to

effectively explore the resources and reduce costs.

The number of installed PV plants has been increasing

considerably and floating PV has been a good alternative for

several investors in the energy sector (REN21, 2021). However,

predicting PV energy production remains a complex task due to

the variability and unpredictability of solar radiation. To answer

this problem, researchers have been continuously developing

new models and forecasting methods, but the operation of real-

time PV systems can still be improved, particularly under partial

shading conditions (PSC).

In the literature, there are numerous approaches of greater or

lesser complexity to deal with PSC, the main purpose being to

mitigate power loss. To maximize the output power under PSC,

the bypass diodes are activated as a function of the photoelectric

current Iph of a given PV cell or array. For example, Bai et al.,

(2015) used the single-diode model (SDM) to simulate the

current-voltage (I-V) characteristics under uniform and non-

uniform irradiances (with shading). To more accurately predict

the performance of a PV system with PSC, Ishaque et al., (2011)

used the double-diode model (DDM) because it is more accurate

for lower irradiance levels. This model allows the simulation of

maximum power point tracking (MPPT) algorithms and

electronic power converters. Alternatively, Batzelis et al.,

(2014) used the SDM based on the Lambert W function

(LWF) to evaluate the performance of strings of PV modules

under PSC in order to make SDM explicit. This model expresses

the PV string voltage as an explicit function of the current,

avoiding an iterative procedure, with the bypass diode described

by a logarithmic equation. In turn, Wang and Hsu, (2011) used

the Newton-Raphson method (NRM) to estimate the I-V

characteristic curve of five different connection configurations

(simple series, series-parallel, total-cross-tied, bridge-linked and

honeycomb) of PV cells with different types and levels of partial

shading, as this is an effective method to approximate the non-

linear equation roots of the model. Using the same connection

configurations, Bingöl and Özkaya, (2018) analyzed partial

shading in a PV array in six different scenarios, while Zhu

et al., (2019) analyzed the effect of partial shadow on the

photoelectric current Iph and series resistance Rs. In contrast,

Moreira et al., (2021) represented the behavior of PV systems

under PSC through an improved model with a superposition

technique that considers the voltage drop caused by the bypass

diodes. Kermadi et al., (2020) proposed an analytical approach to

predict I-V characteristics under PSC that uses the DDM and

requires only the information in the standard test condition

(STC), while Zhang et al., (2021) developed an explicit analytical

model based on SDM for PSC that requires lower computational

cost when compared to NRM and FWL.

To mitigate power loss and prevent hot spots when a PV

system is shaded, a common strategy is to bypass the shaded cells

or modules using bypass diodes. However, this strategy leads to

the appearance of multiple peaks in the characteristic curve and

the need for robust MPPT algorithms capable of tracking the

highest power peak. Alqaisi and Mahmoud, (2019) developed a

model that uses overlapping bypass diodes to evaluate the

performance of a PV module in terms of electrical

characteristics, hot-spot formation and quantification of power

loss. Mohammed et al., (2020) studied the temperature

FIGURE 1
Equivalent circuit: (A) single-diode model; (B) double-diode model.
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distribution in a shaded PVmodule when the bypass diode’s state

changes from inactive to active and concluded that thin edge

shadows can lead shaded cells to very high temperatures when

the bypass diode is inactive, and that this state change is more

effective with larger shadows. Lee et al., (2021) analyzed the

electrical and thermal characteristics of a PV array with

mismatch between strings due to a short-circuit failure of

bypass diodes, verifying that in this situation, in addition to

heating the PV cells, the bypass diode can reach high

temperatures leading to its deformation and even cause

accidents like fire.

Predicting the I-V characteristics of a PV system under

uniform irradiance is a complex task due to the inherent

implicit nature in estimating the PV parameters of the

model under consideration. However, PSC (non-uniform

irradiance) still creates an added difficulty due to the

presence of multiple power peaks in the characteristic

curve. This makes it even more important to use accurate

and efficient methods for estimating the PV parameters. As an

alternative to efficient but sometimes inaccurate analytical

methods, metaheuristic methods have assumed great

relevance in the literature regarding the estimation of PV

parameters. These include the Runge-Kutta optimizer (RUN)

(Shaban et al., 2021), grouped beetle antennae search (GBAS)

(Sun et al., 2021), neural network algorithm with

reinforcement learning (RLNNA) (Zhang, 2021) and

enhanced adaptive butterfly optimization algorithm

(EABOA) (Long et al., 2021). Concretely, metaheuristic

methods have the advantage of considering all sample

points of the I-V curve, thus leading to more accurate and

reliable solutions. In addition, they are suitable for solving

complex and multimodal problems due to a global search

capability, computational simplicity and easy

implementation. However, to avoid premature convergence,

metaheuristic methods must strike a good balance between

intensification and diversification mechanisms. Moreover,

FIGURE 2
Equivalent circuit for the SDM and DDM under partial shading conditions.
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less efficient search mechanisms can lead to the need for large

populations requiring high computational costs. Also, most of

these methods are highly dependent on the proper adjustment

of control parameters. Abdel-Basset et al., (2021) proposed a

modified artificial jellyfish search optimizer (MJSO) with a

strategy to mitigate premature convergence, which requires

adjustment of several control parameters. To minimize the

probability of the Harris hawks optimization (HHO) getting

stuck in local optima, Naeijian et al., (2021) added a strategy

that eliminates the worst solutions and generates new

solutions in the search space. However, the improved

algorithm, whippy HHO (WHHO), requires two new

control parameters. Yesilbudak et al., (2021) used a grey

wolf optimizer with a dimension learning-based hunting

search strategy (I-GWO) to mitigate the imbalance between

intensification and diversification mechanisms and the lack of

population diversity. To improve the global search capability

of teaching-learning-based optimization (TLBO) and avoid

local minima, Mi et al., (2021) proposed an adaptive TLBO

with experience learning (ELATLBO). The modification

consisted of dividing the population into two parts (best

and worst agents) according to the objective function,

where the best agents are used in local search and the

worst in global search. Sallam et al., (2021) proposed an

improved gaining-sharing knowledge (IGSK) algorithm that

minimizes the dependence of several control parameters.

Specifically, a mechanism was introduced that

automatically adjusts the knowledge rate responsible for

ensuring a good balance between agents with greater and

lesser knowledge. To take advantage of intensification and

diversification mechanisms with different capabilities, several

metaheuristics have been combined in the literature (hybrid

methods) and applied to the PV parameter estimation, such as

the hybrid marine predators-slime mould algorithm (HMPA)

(Yousri et al., 2021), enhanced marine predators algorithm

(EMPA) (Abd Elaziz et al., 2021) and Laplace’s cross search

mechanism combined with Nelder-Mead simplex (LCNMSE)

(Weng et al., 2021). However, the hybrid methods require the

adjustment of a greater number of control parameters and

larger populations to enhance the different search

mechanisms, leading to high computational cost.

Recently, other approaches to deal with the PV parameter

estimation problem have been proposed in the literature.

Nunes et al., (2020) proposed a multiswarm spiral leader

particle swarm optimization (M-SLPSO) algorithm that,

unlike most metaheuristics, has several swarms guided by

different leaders, maintaining a diversity of exploratory

trajectories when building new solutions during the search

process and mitigating population stagnation. To increase

reliability when accurately estimating PV parameters with

metaheuristics, Li et al., (2021) proposed a data prediction-

based metaheuristic algorithm (DPMhA) that extends the

measured I-V data via extreme learning machine-based

data prediction. In response to emerging PV technologies,

Nunes et al., (2021) proposed a mathematical model that

determines the optimal number of diodes in the equivalent

electrical circuit for each technology by using a guaranteed

convergence particle swarm optimization (GCPSO)

metaheuristic algorithm.

Despite the efforts of many researchers to estimate PV

parameters with accuracy, reliability and low computational

cost, there is still need of new approaches, namely for the

operation of PV systems in real-time and under PSC. To fill

this gap and overcome some of the drawbacks associated with

metaheuristic methods in estimating PV parameters, we

propose a new method that uses an improved metaheuristic

to ensure a good balance between the intensification and

diversification mechanisms, without any adjustment of

control parameters. Specifically, we studied the bypass

diode effect on the I-V characteristic curve and quantified

the power loss under PSC. The possible presence of hot spots

was also considered through thermographic analysis of the

temperature distribution. Furthermore, a hill climbing neural

network algorithm (HCNNA) was proposed to estimate the

PV parameters of SDM and DDM with and without partial

shading. The effect of bypass diodes was studied in an outdoor

experimental environment by creating two shading scenarios

with different patterns. To validate the HCNNA, we used

TABLE 1 Parameter ranges for the PV models in each case study.

Parameters Photowatt-PWP201: SDM
and DDM

RTC France: SDM and DDM Sharp ND-R250A5: SDM
and DDM

Lower bound Upper bound Lower bound Upper bound Lower bound Upper bound

Iph [A] 0 1.2 0 1 0 10

I0, I01, I02 [A] 1E-12 1E-05 1E-12 1E-05 1E-12 1E-05

n, n1, n2 0.5 2.5 0.5 2.5 0.5 2.5

Rs [Ω] 0.001 2 0.001 0.5 0.001 2

Rp [Ω] 0.001 5,000 0.001 100 0.001 5,000
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standard literature datasets under uniform irradiance and

experimentally measured datasets with shading. The results

are promising and show that HCNNA has an extremely

competitive performance in the PV parameter estimation

problem.

The main contributions of this paper are as follows:

1) Monitoring PV power losses and the presence of hot spots

under partial shading.

2) A novel HCNNA method for PV parameter estimation with

and without partial shading.

3) The proposed HCNNA establishes a good balance between

diversification and intensification mechanisms and does not

use any control parameters.

4) HCNNA has an adaptive movement strategy to prevent

population stagnation and premature convergence.

5) HCNNA performance was extensively investigated by

applying several experimental datasets, and the results

demonstrate high accuracy and reliability.

The paper is structured as follows: Section 2 reviews the

PV models used and formulates the PV parameter estimation

problem; Section 3 presents background and methods for PV

parameter estimation and describes the proposed HCNNA;

Section 4 analyzes the bypass diode effect in PV modules;

Section 5 tests the HCNNA performance in estimating PV

parameters; Section 6 concludes the paper.

2 PV modelling

Describing the non-linear characteristics of a PV cell or

module is essential to estimate the power generated by a PV

system under real operating conditions. For this purpose, two

mathematical models are adopted in the literature, the single-

diode model (SDM) and the double-diode model (DDM).

2.1 Single-diode model

The SDM, Figure 1A formed by: a current source that

represents the photoelectric current (Iph) generated by solar

radiation; a parallel connected diode to describe the physical

effects at the PN junction; a series resistance (Rs) considering the

FIGURE 3
Flowchart of the proposed HCNNA.
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ohmic losses; and a parallel resistance (Rp) considering the

leakage currents.

Considering Shockley’s equation and according to

Kirchhoff’s laws, the output current (I) is obtained by Eq. 1.

I � Iph − I0[exp(V + I × Rs

n × Vt
) − 1] − V + I × Rs

Rp
(1)

where I0 is the reverse saturation current of the diode, V is the

output voltage, n is the diode ideality factor, and Vt is the thermal

voltage obtained by Eq. 2.

Vt � Ns × k × T

q
(2)

where k is the Boltzmann constant (1.3806503 × 10−23 J/K), q is the

electron charge (1.60217646 × 10−19 C),T is the cell temperature (K),

and Ns is the number of cells connected in series.

2.2 Double-diode model

The DDM, in Figure 1B, is used to more accurately estimate

the PV power generated under real operating conditions, namely

under low irradiance levels. This model has a second diode in

parallel with the current source to better describe the physical

effects at the PN junction. In particular, the first diode represents

the diffusion current at the PN junction, while the second diode

represents the recombination effects in the semiconductor. From

a computational point of view, DDM is less advantageous due to

the greater number of parameters.

Considering Shockley’s equation and according to Kirchhoff’s

laws, the output current (I) for the DDM is obtained by Eq. 3.

I � Iph − I01[exp(V + I × Rs

n1 × Vt
) − 1] − I02[exp(V + I × Rs

n2 × Vt
)

− 1] − V + I × Rs

Rp

(3)

where n1 and n2 are the ideality factors of diodes D1 and D2, and

I01 and I02 are the reverse saturation currents of diodes D1 and

D2, respectively.

2.3 Photovoltaic models on partial shading
condition

A common problem in the operation of PV systems, under

real conditions, is the probability of occasional periods when

the irradiance level is non-uniform. This problem is called the

partial shading condition (PSC) and considerably affects the

power generated due to the voltage drop in the shaded PV

cells. Some common causes for PV cells not receiving solar

irradiance uniformly include dirt on the surface, the presence

of obstacles around cells causing temporary shadows

throughout the day, and the presence of clouds in the sky.

Under such conditions, the PV cells or modules area is

partially shaded, leading to the occurrence of potential

divergences in the generated current, which in turn can

cause hot spots, compromising the proper functioning of

the PV system. Briefly, the shaded cells start to dissipate

electrical energy in the form of heat due to the inversion in

polarity as a result of potential divergences between the cells

connected in series.

To overcome this problem, which can lead to significant losses

of generated PV power and even damage the PVmodules, the most

common practice is to install bypass diodes (Dby), in antiparallel

with the PVmodule cells, aiming to bypass the current of the reverse

polarized cells. Normally, the PV module cells are grouped in m

groups according to the number of bypass diodes adopted by the

manufacturer. Thus, it is possible to take one or more groups of PV

cells out of operation, while the remaining continue to operate

without any disturbance. Figure 2 shows the equivalent electrical

circuit for the SDM and DDM of a PV module with m bypass

diodes.

The bypass diodes connected in antiparallel are Schottky

diodes. Schottky diodes offer a very low forward voltage drop,

typically less than 0.4 V (Liu et al., 2021), high current density,

fast reverse recovery time, low resistance and therefore can be

modeled as a resistance (Rby) that depends on the

photoelectric current, Iph. According to Seyedmahmoudian

et al., (2013) in a reversed-polarity, the bypass diode is

represented as a high resistance (1010 Ω), while in a direct-

polarity it is represented as a low resistance (10−2 Ω), as stated

in Eq. 4.

Rby(Iph) � { 10−2 Dby On
1010 Dby Off

(4)

Therefore, to mitigate the PV power loss under PSC and

obtain the respective output current and voltage, Eqs 5, 6 are

considered (Seyedmahmoudian et al., 2013).

FIGURE 4
Shaded PV module with one bypass diode activated.
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I �

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Iph 1(G1) −∑u

i�1[I0i 1[exp(Vpv 1 + Ipv 1 × Rs 1

ni 1 × Vt
) − 1]] − Vpv 1 + Ipv 1 × Rs 1

Rp 1
I > Iph 2

Iph 2(G2) −∑u
i�1
[I0i 2[exp(Vpv 2 + Ipv 2 × Rs 2

ni 2 × Vt
) − 1]] − Vpv 2 + Ipv 2 × Rs 2

Rp 2
Iph 2 ≥ I ≥ Iph m

Iph m(Gm) −∑u
i�1
[I0i m[exp(Vpv m + Ipv m × Rs m

ni m × Vt
) − 1]] − Vpv m + Ipv m × Rs m

Rp m
I < Iph m

(5)

V �
⎧⎪⎨⎪⎩ Vpv 1 I > Iph 2

Vpv 2 + Vpv 1 Iph 2 ≥ I ≥ Iph m

Vpv m + Vpv 2 + Vpv 1 I < Iph m

(6)

where Ipv and Vpv are the output current and voltage of each

group of PV cells, respectively; G is the irradiance with G1 > G2 >
Gm; and u represents the number of diodes in the equivalent

circuit of PV model with u = 1 for SDM and u = 2 for DDM.

2.4 Problem formulation

Estimating the I-V characteristics of a PV system through

metaheuristic methods requires the definition of an objective

function that evaluates the error between experimental and

estimated data. Several performance indexes can be used for

this purpose, such as: the sum squared error (SSE), mean

square error (MSE), root mean square error (RMSE), absolute

error (AE), and mean absolute error (MAE) (Laudani et al.,

2014). The selected objective function was the RMSE,

expressed by Eq. 7, as it is a common performance index in

the literature on PV parameter estimation (Mi et al., 2021).

Min RMSE(τ) � Min

���������������
1
N

∑N
z�1

(Iz − Î(Vz,τ))2
√√

(7)

where N represents the experimentally measured set of points

(Iz,Vz), with z ε N, and Î(Vz,τ) represents the estimated value of

the current as a function of the unknown parameters τ that

characterize the PV models.

To solve the equivalent equation of the PV models under

consideration, i.e., estimate the current values of the

characteristic curve, the Newton-Raphson method (NRM)

was used with a threshold value of 10-10. NRM was chosen

because it is simple and fast in approximating the roots of

any non-linear equations. Furthermore, for a fair

FIGURE 5
Shading scenarios with Sharp ND-R250A5 PV module: (A) just a shaded cell; (B) different shaded strings.
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comparison with the literature, the unknown parameters

were limited according to Table 1.

3 Background and methods

In the specialized literature, there are several methods to

estimate PV parameters, which differ in complexity,

computational cost, convergence rate, accuracy and

popularity. However, in recent years, there has been a

clear trend towards the use of metaheuristic methods as

they are extremely efficient in solving non-convex and

multimodal optimization problems (Cotfas et al., 2021).

This trend is mainly due to their search mechanisms,

i.e., the intensification and diversification mechanisms.

The intensification mechanism (local search) attempts to

build new solutions in regions of the search space that have

already been explored, i.e., in regions where high-quality

solutions have already been found. Meanwhile, the

diversification mechanism tries to build solutions in

unexplored regions of the search space, i.e., in regions

that differ significantly from the best solutions found so

far. However, the efficiency of these methods depends,

profoundly, on the balance between the different

techniques inherent to their diversification and

intensification mechanisms and on the correct adjustment

of their control parameters. The hill climbing neural network

algorithm (HCNNA) overcomes these constraints, as it does

not require the adjustment of any control parameter and

combines several intensification and diversification

mechanisms to achieve high-quality solutions with low

computational cost. Furthermore, HCNNA has been

FIGURE 6
Effect of bypass diode with Sharp ND-R250A5 PV module: (A) I-V curves for first scenario; (B) P-V curves for first scenario; (C) I-V curves for
second scenario; (D) P-V curves for second scenario.

Frontiers in Energy Research frontiersin.org08

Nunes et al. 10.3389/fenrg.2022.837540

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.837540


combined with NRM to overcome the implicit and non-

linear nature inherent in the mathematical equations that

characterize the PV models.

3.1 Neural network algorithm

The neural network algorithm (NNA) (Sadollah et al.,

2018) is a metaheuristic optimization algorithm inspired by

artificial neural networks (ANN) and by the biological

functioning of the human nervous system. ANNs are

composed of several neurons, interconnected and

distributed through different layers, capable of receiving,

processing, transforming and sending information.

Through a learning process, ANNs present a computational

structure capable of performing interpolations and

extrapolations between the input and output pairs

provided, adjusting the weights associated with the existing

connections between neurons. To mimic this process, NNA is

an optimization algorithm without control parameters, i.e., its

performance and reliability does not depend on the

adjustment of any control parameters to achieve high-

quality solutions. Like any other metaheuristic algorithm,

NNA starts with an initial population (with size npop × d)

randomly generated within the multidimensional search

space, where npop is the number of agents in the population

and d is the number of dimensions of the optimization

problem. In the initial population (X), expressed by Eq. 8,

x represents the positions of each agent (designated of pattern

solution), and the initial population is composed of several

pattern solutions.

X � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ x1,1 / x1,d

..

.
1 ..

.

xnpop,1 / xnpop,d

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (8)

However, in addition to the initial population, it is also

necessary to initialize a weight matrix (W) that mimics the

interconnections between neurons, expressed by Eq. 9, with

dimension npop × npop and random values between 0 and 1.

W � ⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ w1,1 / w1,npop

..

.
1 ..

.

wnpop,1 / wnpop,npop

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ (9)

To avoid NNA premature convergence due to the weights

showing an increasing tendency in a specific direction (values

FIGURE 7
Temperature variation with a PV cell under partial shading (Sharp ND-R250A5 PV module: first scenario).
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greater than 1), the sum of the weights cannot exceed unity.

This condition can be defined mathematically through the Eqs

10, 11. ∑npop

j�1 wij(t) � 1 i � 1, 2, 3, . . . , npop (10)
wij ∈ U(0, 1) i, j � 1, 2, 3, . . . , npop (11)

At each iteration, the new positions of pattern solutions

are calculated using Eqs 12, 13 and later evaluated using the

objective function.

�Xj(t + 1) � ∑npop

i�1 wij(t) × �Xi(t) j � 1, 2, 3, . . . , npop

(12)
�Xi(t + 1) � �Xi(t) + �Xj(t + 1) i � 1, 2, 3, . . . , npop

(13)
Once the new pattern solutions are determined, the

weight matrix must also be updated based on the best

weight value found so far ( �WTarget). The weight matrix is

updated through Eq. 14, considering the conditions

described in Eqs 10, 11.

�Wi(t + 1) � �Wi + 2 × r1 × ( �WTarget(t) − �Wi(t)) i

� 1, 2, 3, . . . , npop (14)

NNA presents two different strategies to avoid premature

convergence and population stagnation: the bias operator

and transfer function operator. The bias operator, at an

initial stage, favors the diversification mechanism by

modifying, at each iteration, a percentage of each pattern

solution (x) in the population of pattern solutions (X) and

the weight matrix (W). For this, at the beginning of the

optimization process, the bias value (β) is initialized to one

and decremented as iterations (t) progresses, through the

Eq. 15.

β(t + 1) � β(t) × 0.99 t � 1, 2, 3, . . . , tmax (15)

The transfer function operator favors the intensification

mechanism, forcing the creation of new agents ( �Xi) around

the best solution found so far ( �XTarget), according to Eq. 16.

�Xi(t + 1) � �Xi(t + 1) + 2 × r2 × ( �XTarget(t) − �Xi(t + 1)) i

� 1, 2, 3, . . . , npop

(16)
The balance and harmony between the diversification

mechanism (bias operator) and intensification mechanism

(transfer function operator) is controlled by a probability.

This probability depends on the bias value (β) and a random

number (p) with a uniform distribution between 0 and 1.

3.2 Hill climbing

Hill climbing (HC) is an elitist optimization algorithm

that favors the intensification mechanism, i.e., a local search,

by exploring its neighborhood (Alweshah et al., 2020; Jately

et al., 2021). Starting from an initial solution
�x � (x1, x2 . . .xd), at each iteration the HC algorithm tries

to advance to a better solution x′
→� (x1

′, x2
′ . . .x′

d), through
two operators: N-operator and S-operator. The N-operator is

used to build new solutions, in a certain neighborhood,

through a movement strategy, as represented by Eq. 17.

x′
i

→
(t) � �x(t) ± bwi

��→
i � 1, 2, 3, . . . , nb (17)

where bwi
��→

is the distance bandwidth between the current and

neighboring solution and nb is the number of neighbors. This

movement strategy can be deterministic or stochastic and must

be updated, at each iteration, to achieve a higher convergence rate

and HC efficiency. The S-operator is responsible for evaluating

the solution or neighboring solutions through the objective

function. If the neighboring solution performs better than the

current solution, i.e., f(x′
i

→
(t))<f( �x(t)), the current solution �x

FIGURE 8
Temperature variation with different cell strings under partial shading (Sharp ND-R250A5 PV module: second scenario).
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will be replaced by the new solution x′
i

→
. HC execution ends when

a certain stopping criterion is reached, such as when, after a

certain number of iterations, none of the neighboring solutions

improve the current solution or when the maximum number of

predefined iterations is reached.

3.3 Hill climbing neural network algorithm

In this section, we present the hill climbing neural network

algorithm (HCNNA) in detail, which aims to improve NNA

performance. Figure 3 presents the HCNNA flowchart. First,

all variables inherent to the optimization problem and the

proposed method are initialized, such as: the problem

dimension (d), lower and upper bounds, number of agents

(pattern solutions) of the population (npop), bias value (β),

maximum number of iterations (tmax). Then, the HCNNA

performs the initial positioning of the weight matrix (W) and

pattern solutions (X). An initial random positioning was

performed, within the multidimensional search space,

considering a population of 15 agents per dimension and a

maximum number of 150 iterations per dimension. At each

iteration, the movement of each pattern solution is performed

as described above and detailed in Eqs 12, 13. However, to

ensure greater diversification and randomness in updating the

weight matrix (W), the logistic chaotic map was introduced in

Eq. 14. Chaotic maps result from chaos theory and are based

on deterministic differential equations that exhibit extremely

random (chaotic) behavior. The logistic chaotic map with a =

4, initialized with a value of 0.7, as suggested in the literature,

is expressed by Eq. 18.

x(t + 1) � ax(t)(1 − x(t)) (18)

Subsequently, the bias value (β) is compared with a random

number (p) from a uniform distribution between 0 and 1. This

comparison triggers the two strategies inherent to the NNA to

avoid premature convergence and population stagnation, namely

the bias operator and transfer function operator. In addition, and

as part of the transfer function operator strategy, the logistic

chaotic map (Eq. 18) was used to achieve greater diversification

in the built of new pattern solutions.

The confinement strategy given by Eq. 19 was

implemented to prevent new positioning of pattern

solutions outside the multidimensional search space, during

successive iterations.

{ if xi,d(t + 1)> ubd then xi,d(t + 1) � ubd
if xi,d(t + 1)< lbd then xi,d(t + 1) � lbd

(19)

In this strategy, if the lower bound (lb) or upper bound (ub)

are exceeded, the agent’s movement is modified, ensuring that

the new positioning is within the search space (according to

Table 1). Once confinement is verified, for each pattern solution

of the population, the estimated current Î(Vz,τ) is obtained

through the NRM with a stop criterion of 10-10, for each set

of points (Iz,Vz) measured experimentally. Its performance is

TABLE 2 Comparison of results between HCNNA and other state-of-the-art metaheuristics for the Photowatt-PWP201 PV module with SDM.

Method Iph [A] I0 [µA] n Rs [Ω] Rp [Ω] RMSE

HCNNA 1.03238236 2.51291026 1.31730437 1.23928865 744.71293809 2.046535E-03

NNA 1.03213499 2.74861697 1.32646167 1.22904350 782.13448436 2.055430E-03

MJSO (Abdel-Basset et al., 2021) 1.031434 2.64 1.32217 1.235634 821.6413 2.0530E-03

WHHO (Naeijian et al., 2021) 1.030514 3.482109E-06 1.349987 1.201274 981.905230 2.4251E-03

I-GWO (Yesilbudak et al., 2021) 1.03051453 3.48217802 1.35118726 1.20127379 981.95296539 2.4251E-03

RLNNA (Zhang, 2021) 1.0305 3.4823 1.3512 1.2013 981.9823 2.4251E-03

LCNMSE (Weng et al., 2021) 1.030514 3.4822 1.35119 1.2013 981.9741 2.4251E-03

IGSK (Sallam et al., 2021) 1.0305142985 3.4823 1.3511898533 1.2012710155 981.9823032551 2.4251E-03

ELATLBO (Mi et al., 2021) 1.03051430 3.48226302 1.35118986 1.20127101 981.98226985 2.4251E-03

EABOA (Long et al., 2021) 1.03044416 3.5084 1.35198131 1.200630203 991.9830745 2.4252E-03

TABLE 3 Comparison of results between HCNNA and other state-of-the-art metaheuristics for the Photowatt-PWP201 PV module with DDM.

Method Iph
[A]

I01
[µA]

I02
[µA]

n1 n2 Rs

[Ω]
Rp

[Ω]
RMSE

HCNNA 1.03238230 1.00000389E-06 2.51294633 1.31729129 1.31730586 1.23928701 744.71967471 2.046535E-03

NNA 1.03216075 2.72314863 1.10814475E-06 1.32550519 2.49919727 1.23010995 778.00927695 2.053675E-03

WHHO (Naeijian et al., 2021) 1.032381 2.512910 1.000057E-06 1.317304 1.316937 1.239287 744.715389 2.046534E-03
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evaluated through the objective function defined above, which

consists of the RMSE between the measured and estimated data,

expressed by Eq. 7.

Then, the best global performance of all pattern solutions

of the population so far ( �XTarget) and, consequently, the best

value of weights found so far ( �WTarget) are determined. Based

on the information acquired by the NNA, at each iteration,

the HC algorithm tries to explore the neighborhood of the
�XTarget through a movement strategy defined by the

N-operator. This movement strategy consists of the

construction of 2d neighbor solutions defined by a

neighborhood given by Eq. 20.

bw
�→(t) �

∣∣∣∣∣∣ �XTarget(t) − �XTarget(t − 1)
∣∣∣∣∣∣ × �δ(t) (20)

where �XTarget(t) is the position of the best pattern solution in the

current iteration, �XTarget(t − 1) is the previous position of the

best pattern solution and �δ(t) is an expansion factor that controls
the diameter of the neighborhood. However, if any component of

bw
�→

(dimension) is null, the position of the best pattern solution

so far is assigned to that component, weighted by a scale factor

(0.1), i.e., 0.1 �XTarget(t). Once the neighborhood region is

established, the neighboring solutions are selectively

positioned at their vertices, using Eq. 17, and evaluated

through the established objective function (S-operator). If any

neighboring solution presents a better performance than the

current best solution ( �XTarget(t)), this information is transmitted

to the NNA and analyzed to identify the several components

(dimensions) that contributed to this improvement in the

FIGURE 9
Comparisons between experimental and estimated data obtained by HCNNA: (A) Photowatt-PWP201 with SDM; (B) Photowatt-PWP201 with
DDM; (C) RTC France with SDM; (D) RTC France with DDM.
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objective function. This analysis is essential to control the

dilation factor: if there is an improvement in the objective

function, the diameter of the neighborhood of this component

is dilated (doubled) in the next iteration. Otherwise, the

expansion factor value is reset to the unit value. The

execution of the HCNNA ends when the established stop

criterion is reached, namely the maximum number of allowed

iterations (150 iterations per dimension).

4 Analysis of bypass diodes effect

As mentioned in Section 2.3, the bypass diodes present in

the PV modules have the function of bypassing the electrical

current from the cell groups where potential divergences

occur, as shown in Figure 4. These potential divergences

can originate from mismatch losses (manufacturing defects

or different technical characteristics; incorrect installation,

interconnection failures and possible damage) or shading

losses (partial shading).

This section studies the effect of bypass diodes on the I-V and

P-V characteristic curves in order to mitigate power losses under

PSC. Temperature variation of the shaded cells was also analyzed

to show the formation of hot spots and possible consequences.

Therefore, to study the impact of PSC on PV power generation

and the effect triggered by the direct polarization of bypass

diodes, two partial shading scenarios were considered, which

included several shading patterns measured experimentally

through the Itech DC electronic load IT8512A+. For this, a

Sharp ND-R250A5 PV module (Sharp, 2012) with

TABLE 4 Comparison of results between HCNNA and other state-of-the-art metaheuristics for the RTC France PV cell with SDM.

Method Iph [A] I0 [µA] n Rs [Ω] Rp [Ω] RMSE

HCNNA 0.76078797 3.10684588E-01 1.47726778 0.03654695 52.88978231 7.730063E-04

NNA 0.76051474 6.77976721E-01 1.55984770 0.03301292 80.63240677 1.479782E-03

MJSO (Abdel-Basset et al., 2021) 0.760788 3.11E-01 1.477268 0.036547 52.88979 7.730063E-04

EMPA (Abd Elaziz et al., 2021) 0.76079 3.1074E-01 1.4771 0.036546 52.890 7.7301E-04

EABOA (Long et al., 2021) 0.760771077 3.22929E-01 1.481153457 0.036379593 53.76600144 9.8602E-04

WHHO (Naeijian et al., 2021) 0.76077551 3.2302031E-01 1.48110808 0.03637710 53.71867407 9.8602E-04

I-GWO (Yesilbudak et al., 2021) 0.76077561 3.2302197E-01 1.48118398 0.03637706 53.71770917 9.8602E-04

RLNNA (Zhang, 2021) 0.7608 3.230E-01 1.4812 0.0364 53.7185 9.8602E-04

LCNMSE (Weng et al., 2021) 0.760776 3.2302E-01 1.481182 0.036377 53.71822 9.8602E-04

IGSK (Sallam et al., 2021) 0.76077553 3.230E-01 1.4811835921 0.0363770926 53.7185253183 9.8602E−04

ELATLBO (Mi et al., 2021) 0.76077553 3.2302080E-01 1.48118359 0.03637709 53.71852283 9.8602E-04

GBAS (Sun et al., 2021) 0.7607 3.247E-01 1.4817 0.0363 53.7669 9.8610E-04

RUN (Shaban et al., 2021) 0.76076384 3.20E-01 1.4802504 0.03641606 53.6707057 9.8624E-04

TABLE 5 Comparison of results between HCNNA and other state-of-the-art metaheuristics for the RTC France PV cell with DDM.

Method Iph
[A]

I01
[µA]

I02
[µA]

n1 n2 Rs

[Ω]
Rp

[Ω]
RMSE

HCNNA 0.76083314 1.27068150E-01 8.46666560 1.39848741 2.50000000 0.03806678 61.46704076 7.185582E-04

NNA 0.76069719 6.12054549E-02 4.40214535 1.34680366 2.09498883 0.03786875 72.70007483 8.420559E-04

MJSO (Abdel-Basset et al., 2021) 0.7608 7.03E-02 1 1.3642 1.7963 0.0378 56.2715 7.419371E-04

EMPA (Abd Elaziz et al., 2021) 0.7608 1.3706E-01 1 1.411 1.8987 0.037342 55.6225 7.4396E-04

LCNMSE (Weng et al., 2021) 0.760781 7.4933E-01 2.2598E-01 2 1.451017 0.03674 55.48542 9.8248E-04

IGSK (Sallam et al., 2021) 0.7607810788 7.493E-01 2.260E-01 2 1.4510168928 0.0367404286 55.4854342543 9.8248E-04

ELATLBO (Mi et al., 2021) 0.76078108 7.4934827E-01 2.2597419E-01 2 1.45101674 0.03674043 55.48544657 9.8248E-04

WHHO (Naeijian et al., 2021) 0.76078094 2.28574E-01 7.27182E-01 1.451895 2 0.03672887 55.42643282 9.8249E-04

I-GWO (Yesilbudak et al., 2021) 0.76078188 2.2628489E-01 7.4609152E-01 1.45112760 1.99999856 0.03673977 55.46161769 9.8249E-04

RLNNA (Zhang, 2021) 0.7608 2.260E-01 7.486E-01 1.5251 2 0.0361 67.8855 9.8249E-04

GBAS (Sun et al., 2021) 0.7608 2.376E-01 2.602E-01 1.4570 1.7954 0.0366 53.4190 9.8594E-04

EABOA (Long et al., 2021) 0.76082865 2.5072E-01 7.2069E-01 1.45988481 1.99997318 0.03662660 55.3660129 9.8607E-04

RUN (Shaban et al., 2021) 0.76080253 2.60E-01 5.58E-01 1.46347838 1.9996951 0.03644583 55.3832189 9.8717E-04
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60 polycrystalline silicon cells connected in series was used. Cells

were divided into three strings, each protected with a bypass

diode, i.e., the PV module for every 20 cells included a bypass

diode. The irradiance and temperature data for each of the

shading patterns were obtained with the solar irradiance

sensor Ingenieurbüro Si-13TC-T. Temperature variation of the

shaded cells was measured with an infrared thermographic

camera Flir i7. All thermographic images were taken with the

camera’s emissivity of 0.95.

The first scenario consisted of shading only one cell of the PV

module with different shaded areas (0%, 20%, 40%, 60%, 80%

and 100%), for a total of six shading patterns (pattern 1 to pattern

6) as shown in Figure 5A. The second scenario consisted of

gradually shading one or more 20-cell strings of the PV module

(each with a bypass diode), as shown in Figure 5B. Pattern A

consisted of shading only one string, pattern B consisted of

shading two strings, and pattern C consisted of shading all

three strings.

The irradiance and temperature values corresponding to

each of the experimentally measured shading patterns were as

follows: Pattern 1 962 W/m2 at 52°C; Pattern 2 1,005 W/m2 at

54°C; Pattern 3 1,006 W/m2 at 55°C; Pattern 4 1,013 W/m2 at

56°C; Pattern 5 1,023 W/m2 at 56°C; Pattern 6 1,007 W/m2 at

56°C; Pattern A 881 W/m2 at 48°C; Pattern B 955 W/m2 at 52°C;

and Pattern C 965 W/m2 at 52°C.

4.1 Effect of bypass diodes on
characteristic curves

The partial shading of a PV cell or module drastically reduces

the output current since this is directly proportional to the

FIGURE 10
Convergence curves of the HCNNA and NNA with SDM and DDM: (A) Photowatt-PWP201 PV module; (B) RTC France PV cell.

TABLE 6 The measured and estimated current, voltage and power values at MPP, and IAE values for the Sharp ND-R250A5 PV module under partial
shading conditions with SDM using the HCNNA.

Dataset Experimental data at MPP Estimated data at MPP IAE at MPP

Imeasured [A] Vmeasured [V] Pmeasured [W] Iestimated [A] Vestimated [V] Pestimated [W]

Pattern 1 7.73855400 24.71483500 191.25708525 7.74543389 24.71483500 191.42712071 0.17003546

Pattern 2 6.86654250 26.96205500 185.13609654 6.79996805 26.96205500 183.34111263 1.79498391

Pattern 3 5.52144950 28.46649000 157.17628698 5.42212785 28.46649000 154.34894809 2.82733889

Pattern 4 7.79455900 15.71409500 122.48444061 7.78570310 15.71409500 122.34527810 0.13916251

Pattern 5 8.19812150 14.95716500 122.62065597 8.20087550 14.95716500 122.66184805 0.04119208

Pattern 6 8.22494950 14.96108500 123.05416859 8.22434747 14.96108500 123.04516151 0.00900708

Pattern A 6.81794500 16.46103500 112.23043127 6.82414380 16.46103500 112.33247002 0.10203875

Pattern B 4.82713400 18.70755000 90.30385066 4.69289806 18.70755000 87.79262506 2.51122560

Pattern C 3.22094350 19.45597500 62.66659621 3.19106418 19.45597500 62.08526488 0.58133133
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incident irradiance; and, as explained previously, this leads to

operation in reverse polarity. Since the use of bypass diodes is

common practice tomitigate the constraints caused by shading, it

is important to understand their effects on the characteristic

curves and, consequently, on the real-time maximum power

extraction.

In the first shading scenario, with gradually shading of

only one PV cell of the module used (connected in series in a

string of 20 cells protected by a bypass diode), the direct

polarization of the respective bypass diode depended on the

shaded area, as shown in Figures 6A,B. As the shaded area

increases, the bypass diode is directly polarized at lower

current levels, causing a voltage drop (equivalent to the

sum of the 20 cells of the respective string) and

consequently a significant decrease in output power. The

power curves (P-V) also indicate that direct polarization of

the bypass diode leads to an additional power peak, making it

difficult to track the maximum power, mainly when the cell is

shaded around 60%, as both peaks are close to the same value.

Specifically, for pattern 1 (962 W/m2 of irradiance), in which

the characteristic curve was obtained without shading, the

maximum power point (MPP) was 191.26 W. Patterns 2, 3, 4,

5 and 6, with shading, comprised a similar irradiance, since

measurements were carried out in an outdoor environment

between 1005 W/m2 and 1023 W/m2. The MPP value for these

patterns was 185.14, 157.18, 122.48, 122.62 and 123.05 W,

respectively. Although pattern 1 was measured with slightly

lower irradiance, its power value (191.26 W) was used as a

reference to quantify each shading pattern’s power loss. Thus,

the power loss for pattern 2 was 3.2%, which corresponds to

6.12 W; pattern 3, 17.8% (34.08 W); pattern 4, 36.0% (68.78 W);

pattern 5, 35.9% (68.64 W); and pattern 6, 35.7% (68.21 W).

Patterns 4, 5 and 6 presented approximately the same power loss,

as their peak with highest power corresponded to the peak with

the lowest voltage, as guaranteed by the correct operation of the

remaining module strings. Clearly, a single shaded cell in a PV

module can lead to large losses, and it is extremely important to

consider all the surrounding obstacles when sizing and installing

systems; to carry out cleaning maintenance; and develop

methods to effectively deal with shading causedmainly by clouds.

The second shading scenario analyzed the direct

polarization of bypass diodes in different strings, shaded

according to Figure 5B (patterns A, B and C). Initially,

only one string from the PV module was shaded, later two

strings were shaded and finally the three strings were shaded

simultaneously. The I-V curves in Figure 6C reflect the direct

polarization of the bypass diodes at different current levels,

according to the shaded area in each string. The P-V curves in

Figure 6D show the existence of a new power peak resulting

from the direct polarization of another bypass diode.

Pattern A, measured under an irradiance of 881 W/m2,

recorded an MPP of 112.23 W; pattern B with 955 W/m2 had

an MPP of 90.30 W; while pattern C with 965 W/m2 recorded

only an MPP of 62.67 W. The maximum power, 191.26 W,

measured without shading in the first scenario (under 962 W/

m2 of irradiance), was used as a reference for evaluating power

loss in the second scenario: for pattern A was 41.3%,

corresponding to 79.03 W; for pattern B, 52.8% (100.96 W);

pattern C, 67.2% (equivalent to 128.59 W). Considering the

maximum power of the module in the STC (250 W), the

power loss (also affected by the temperature increase) was

about 75% for pattern C, which shows the importance of real-

time monitoring of the PV systems. Note that bypass diodes can

be activated by PSC or string mismatch, drastically reducing the

output power.

To reduce losses, ideally, each cell would have a bypass

diode. However, from a constructive point of view, this is not

feasible and would also make it difficult to track the MPP. To

address this problem, in recent years, strategies to

reconfigure connections between strings have been studied

TABLE 7 The measured and estimated current, voltage and power values at MPP, and IAE values for the Sharp ND-R250A5 PV module under partial
shading conditions with DDM using the HCNNA.

Dataset Experimental data at MPP Estimated data at MPP IAE at MPP

Imeasured [A] Vmeasured [V] Pmeasured [W] Iestimated [A] Vestimated [V] Pestimated [W]

Pattern 1 7.73855400 24.71483500 191.25708525 7.74411058 24.71483500 191.39441532 0.13733007

Pattern 2 6.86654250 26.96205500 185.13609654 6.79984216 26.96205500 183.33771821 1.79837833

Pattern 3 5.52144950 28.46649000 157.17628698 5.42211580 28.46649000 154.34860533 2.82768165

Pattern 4 7.79455900 15.71409500 122.48444061 7.78964102 15.71409500 122.40715905 0.07728156

Pattern 5 8.19812150 14.95716500 122.62065597 8.20522490 14.95716500 122.72690272 0.10624675

Pattern 6 8.22494950 14.96108500 123.05416859 8.22434738 14.96108500 123.04516023 0.00900836

Pattern A 6.81794500 16.46103500 112.23043127 6.82514655 16.46103500 112.34897619 0.11854492

Pattern B 4.82713400 18.70755000 90.30385066 4.69290256 18.70755000 87.79270933 2.51114133

Pattern C 3.22094350 19.45597500 62.66659621 3.19106377 19.45597500 62.08525700 0.58133921
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to maximize the output power in specific situations such as

shading.

4.2 Temperature variation of the shaded
cells

Reverse polarity operation resulting from partial shading

or other divergences leads to the formation of hot spots that

can damage PV cells or modules. Thus, during the

experimental test, thermographic recording of the

temperature distribution in the PV module was carried out

in both shading scenarios with each of the patterns. To clearly

analyze temperature evolution before the bypass diode

switched to the active state, the respective I-V curves were

traced for approximately 8 min.

Figure 7 shows the temperature distribution in the PV

module for the first shading scenario. For pattern 1, with the

characteristic curve traced under uniform irradiance, the

figure shows slight heating (approximately 5°C) mainly in

three cells, which resulted from insignificant divergences

derived from their aging or principle of degradation. For

patterns 2, 3, 4, 5 and 6, hot spots were observed in the

shaded cell, independently of the shading percentage, whose

temperature reached 87.9°C, 98.1°C, 96.3°C, 84.9°C and

67.4°C, for each pattern respectively. Temperature

increased to higher values when the shaded percentage

was around 50%, specifically with patterns 3 and 4. When

FIGURE 11
Comparisons between experimental and estimated data obtained by HCNNA for the Sharp ND-R250A5 PV module under partial shading
(patterns 1–6): (A) I-V curves with SDM; (B) P-V curves with SDM; (C) I-V curves with DDM; (D) P-V curves with DDM.
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the bypass diode went into the active state, the respective

string was taken out of operation and the temperature

immediately began to drop, becoming uniform with the

other cells.

For the second shading scenario, the temperature

distribution in the PV module is shown in Figure 8. In this

case, two cells in each string were shaded with different

proportions according to the shading pattern. By observing

the temperature distribution (Figure 8), it is concluded that

there was a significant increase only in the cell with greatest

shaded area. Thus, for each string, an elevated temperature

level was recorded in one of the shaded cells until the bypass

diode went into the active state. Specifically, for pattern A, a

temperature of 74.8°C was recorded, while patterns B and C

recorded 72.2 and 75.3°C, respectively.

Regarding the temperature of the bypass diodes, there was an

increase of about 5°C when they switched to the active state.

However, Lee et al. (2021) showed that in case of failure, bypass

diodes can reach very high temperatures capable of causing

accidents.

5 Photovoltaic parameter estimation:
Simulation and results

PV parameter estimation becomes more complex when

the PV systems are under partial shading, as there are multiple

power peaks due to the direct polarization of the bypass

diodes. Thus, effectively determining accurate solutions for

simulation models that consider mitigation of shadow effects

in a PV system requires more robust I-V characteristics

prediction methods, due to the need for real-time monitoring.

In this section, the proposed HCNNA was validated in PV

parameter estimation using the RTC France cell and

Photowatt-PWP201 module (both standard data in the

literature) under uniform irradiance. Subsequently, the

HCNNA was validated under partial shading using data

measured experimentally with the Sharp ND-R250A5 PV

module, presented previously in Section 4 (first and second

shading scenarios). The validation considered the SDM and

DDM, as they are the most used in the literature, and used the

RMSE as a performance index.

HCNNA performance was compared with several recent

metaheuristics in the literature, particularly with the original

NNA, which was also implemented. To minimize statistical

errors, 30 runs were performed with the different datasets.

The population depended on the size of the optimization

problem (15 agents per dimension), as well as the maximum

number of iterations (150 iterations per dimension). All

computational work was carried out in Matlab® using a

computer with an Intel® Xeon® E5-2630 v3 @2.40 GHz CPU

processor, 64 GB RAM, and Windows 10 Professional 64-bit

operating system.

5.1 Results with standard literature data

For the Photowatt-PWP201 PV module standard dataset,

measured under 1000 W/m2 irradiance and 45°C temperature

(Easwarakhanthan et al., 1986), the PV parameter estimation

results with SDM are presented and compared with the ones

presented in literature, as shown in Table 2. The results displayed

in this table show that the accuracy obtained by HCNNA was

higher than the original NNA (0.43% better). Specifically, the

HCNNA achieved an RMSE of 2.046535E-03, while the NNA

obtained 2.055430E-03. The MJSO was closest to HCNNA, with

an RMSE of 2.0530E-03. The remaining methods were less

accurate (2.425E-03).

Table 3 Presents the results with DDM for the Photowatt-

PWP201 PV module. In this case, WHHO obtained the best

RMSE value (2.046534E-03). The HCNNA achieved an RMSE of

2.046535E-03, just as with the SDM; while the NNA obtained

2.053675E-03, slightly better than with the SDM. Comparing

both methods with the DDM, the HCNNA was 0.35% better.

Figures 9A,B show the I-V and P-V characteristic curves

reconstructed using the parameters estimated by HCNNA for the

SDM and DDM with the Photowatt-PWP201 PV module. A

good correspondence between experimental and estimated data

is clearly observed over the whole voltage range, which shows

that the estimated parameters are accurate. HCNNA performed

well with both models when estimating the unknown parameters

for the Photowatt-PWP201 PV module.

For the RTC France PV cell standard dataset, measured

under 1000 W/m2 irradiance and 33°C temperature

(Easwarakhanthan et al., 1986), the PV parameter estimation

results with SDM are presented and compared with the ones

presented in literature, as shown in Table 4. The results

comparison shows that in this case the HCNNA was 91.43%

better than the NNA, with RMSE values of 7.730063E-04 and

1.479782E-03, respectively. The MJSO and EMPA obtained

similar accuracy to HCNNA, while the remaining methods

obtained an RMSE value of approximately 9.860E-04.

Table 5 presents the results with DDM for the RTC France

PV cell. As for SDM, the best RMSE value was achieved by

HCNNA (7.185582E-04). Comparing this RMSE value with

that obtained by the NNA (8.420559E-04) indicates that, for

the DDM, the proposed HCNNA was 17.19% better than its

ancestor. Both the HCNNA and NNA methods obtained

better RMSE value with DDM than with SDM. The MJSO

was the second most accurate method (7.419371E-04) and

EMPA the third most accurate (7.4396E-04). The remaining

methods showed less accuracy, with an RMSE value on the

order of 9.8E-04.

Figures 9C,D show the I-V and P-V characteristic curves

reconstructed using the parameters estimated by HCNNA for the

SDMandDDMwith the RTCFrance PV cell. As with the Photowatt-

PWP201 PV module, there was a good correspondence between

experimental and estimated data over the whole voltage range,
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FIGURE 12
Comparisons between experimental and estimated data obtained by HCNNA for the Sharp ND-R250A5 PV module under partial shading
(patterns A–C): (A) I-V curves with SDM; (B) P-V curves with SDM; (C) I-V curves with DDM; (D) P-V curves with DDM.

TABLE 8 RMSE statistical results and runtime for the Photowatt-PWP201 PV module with SDM and DDM (30 independent runs).

Method PV model RMSE Time [s]

Min Mean Max STD Min Mean Max

HCNNA SDM 2.046535E-03 2.046535E-03 2.046536E-03 3.568167E-10 15.24 16.22 18.82

DDM 2.046535E-03 2.046547E-03 2.046877E-03 6.249338E-08 33.75 34.28 36.39

NNA SDM 2.055430E-03 3.126399E-03 3.697255E-03 5.570051E-04 13.34 13.70 14.24

DDM 2.053675E-03 2.812062E-03 3.584367E-03 5.175662E-04 29.48 30.49 31.92
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showing that the estimated parameters are accurate. Once again,

HCNNA performed well with both models when estimating the

unknown parameters for the RTC France PV cell.

Regarding the objective function minimization in the

optimal PV parameter estimation, the convergence curves

with both models (SDM and DDM) for the HCNNA and

NNA are presented in Figure 10. For the Photowatt-PWP201

PV module, the convergence process is presented in

Figure 10A. At the beginning of the search process, the

HCNNA converged faster than the NNA with both models.

Although the HCNNA with the DDM stagnated between

iterations 100 and 300, it later surpassed the local optima

FIGURE 13
RMSE distribution achieved by HCNNA and NNA in 30 runs: (A) Photowatt-PWP201 with SDM; (B) Photowatt-PWP201 with DDM; (C) RTC
France with SDM; (D) RTC France with DDM.

TABLE 9 RMSE statistical results and runtime for the RTC France PV cell with SDM and DDM (30 independent runs).

Method PV model RMSE Time [s]

Min Mean Max STD Min Mean Max

HCNNA SDM 7.730063E-04 7.730063E-04 7.730064E-04 2.546875E-11 15.48 16.30 17.03

DDM 7.185582E-04 7.578145E-04 7.760278E-04 1.822474E-05 34.56 36.59 37.77

NNA SDM 1.479782E-03 5.993844E-03 7.140312E-03 1.235549E-03 13.51 13.84 14.14

DDM 8.420559E-04 3.358240E-03 5.787924E-03 1.695927E-03 32.68 33.19 33.68
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stagnation, converging on the same value as the SDM. In

contrast, the NNA converged prematurely, with both the SDM

and DDM. For the RTC France PV cell, the convergence

process is presented in Figure 10B and showed a similar

behavior. HCNNA was again the fastest at the beginning of

the search process, overcoming a possible stagnation zone

after a few iterations. Once again, the NNA converged

prematurely with both models, which was most evident

with the SDM. Overall, the proposed HCNNA clearly

achieved more accurate solutions and mitigated premature

convergence when compared to the original NNA.

5.2 Results with experimental data under
partial shading

For the Sharp ND-R250A5 PV module experimental

datasets, measured in the irradiance range of 1005 W/m2 to

1023 W/m2 and temperature range of 48–56°C under partial

shading, the electrical characteristics estimation results with

SDM are presented in Table 6, specifically the current, voltage

and power values for the maximum power point (MPP) of

each shading pattern, and the respective individual absolute

error (IAE) at the MPP given by Eq. 21.

IAE � ∣∣∣∣Iz − Î(Vz,τ)
∣∣∣∣ (21)

where Iz represents the experimentally measured current and

Î(Vz,τ) the estimated current at each point z of the I-V

characteristic curve as a function of the unknown parameters τ.
The results in Table 6 indicate that the IAE at the MPP was

0.09%, 0.97%, 1.80%, 0.11%, 0.03%, 0.01%, 0.09%, 2.78% and

0.93%, for pattern 1 to pattern C, respectively. In fact, the error

value was higher than 1% only for pattern 3 (1.80%) and for

pattern B (2.78%), demonstrating HCNNA’s good accuracy

when estimating the electrical characteristics of the PV

module under PSC. The RMSE values considering all points

of the I-V characteristic curves are presented later in Section 5.3.

Table 7 presents the electrical characteristics estimation results

with the Sharp ND-R250A5 PV module for the DDM. The results

were similar to those with the SDM, showingHCNNA’s efficacy and

robustness, independently of the PV model. In this case, the IAE at

the MPP was 0.07, 0.97, 1.80, 0.06, 0.09, 0.01, 0.11, 2.78 and 0.93%,

from pattern 1 to pattern C, respectively. Comparing the error in

MPP between both models (SDM and DDM) indicates that the

DDMwas more accurate for patterns 1 and 4, and performed worse

for patterns 5 and A. In the remaining patterns, the accuracy at the

MPP was the same in both models.

The optimal parameters estimated by HCNNA were used to

reconstruct the I-V and P-V characteristic curves of patterns 1 to

6 for the SDM and DDM, as shown in Figures 11A–D. The

estimated data using both models and the experimentally

measured data were coincident for the different shading patterns.

TABLE 10 RMSE statistical results obtained by HCNNA for the Sharp ND-R250A5 PV module under partial shading conditions with SDM and DDM
(30 independent runs).

Dataset PV model RMSE

Min Mean Max STD

Pattern 1 SDM 8.627525E-03 2.512515E-02 5.308817E-02 1.584743E-02

DDM 8.734583E-03 2.601503E-02 5.722347E-02 1.515041E-02

Pattern 2 SDM 2.240554E-02 1.917671E-01 2.854673E-01 1.065705E-01

DDM 2.240322E-02 2.075679E-01 2.718836E-01 1.030828E-01

Pattern 3 SDM 2.650814E-02 2.080567E-01 5.656565E-01 2.549353E-01

DDM 2.650814E-02 1.607127E-01 5.656565E-01 2.262227E-01

Pattern 4 SDM 2.697201E-02 2.705885E-02 2.793927E-02 2.274138E-04

DDM 2.689984E-02 2.695027E-02 2.697560E-02 3.108229E-05

Pattern 5 SDM 2.149382E-02 2.337090E-02 3.660554E-02 4.826952E-03

DDM 2.103185E-02 2.128567E-02 2.149410E-02 1.540973E-04

Pattern 6 SDM 1.022240E-02 1.159510E-01 2.097454E-01 1.005191E-01

DDM 1.022240E-02 5.663789E-02 2.099335E-01 8.557378E-02

Pattern A SDM 1.793545E-02 1.883368E-02 2.346809E-02 2.038518E-03

DDM 1.792580E-02 1.793469E-02 1.795379E-02 5.664775E-06

Pattern B SDM 2.941734E-02 2.688952E-01 4.834359E-01 2.180509E-01

DDM 2.930867E-02 2.250638E-01 4.694069E-01 2.159737E-01

Pattern C SDM 2.831009E-02 1.954521E-01 2.738940E-01 1.085695E-01

DDM 2.831009E-02 2.303970E-01 2.782579E-01 9.005247E-02

Frontiers in Energy Research frontiersin.org20

Nunes et al. 10.3389/fenrg.2022.837540

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://doi.org/10.3389/fenrg.2022.837540


The high proximity between the data, regardless of the shading

pattern, demonstrates that the proposed HCNNA also obtains

accurate results under PSC.

Figures 12A–D show the I-V and P-V characteristic curves

reconstructed using the optimal parameters estimated by

HCNNA for patterns A, B and C with the SDM and DDM.

A good correspondence between the measured and estimated

curves is also inferred in this case and with both models.

Although the shading patterns had a greater number of power

peaks due to shading of different cell strings, HCNNA

maintained a good accuracy.

To evaluate the impact of partial shading in terms of efficiency,

the PVmodule efficiency (η) was determined based on the estimated

power for each pattern considered through Eq. 22.

η(%) � PMPP

A ×G
(22)

where PMPP is the maximum power value, A the PV module area

(m2) and G the incident irradiance (W/m2).

Thus, regardless of the model used (SDM and DDM) the PV

module efficiency, η, determined for patterns 1, 2, 3, 4, 5 and 6,

was respectively 13.54, 12.41, 10.44, 8.22, 8.16 and 8.31%. While

for patterns A, B and C, the efficiency was 8.68, 6.26 and 4.38%,

respectively. These results clearly indicate that there is a great loss

of efficiency (around 68%) with partial shading.

5.3 Statistical results

In this section, the accuracy, reliability and computational

cost of the HCNNA were compared to the original NNA using

the standard datasets in the literature (Photowatt-PWP201 PV

module and RTC France PV cell) and both models (SDM and

DDM). Subsequently, the accuracy and reliability of the HCNNA

FIGURE 14
RMSE distribution achieved by HCNNA and NNA in 30 runs for the Sharp ND-R250A5 PV module with SDM and DDM under partial shading
conditions (patterns 1–6).
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were evaluated under partial shading using the Sharp ND-

R250A5 PV module, also with both models, in a total of nine

shading patterns. Specifically, the RMSE statistical results

obtained in 30 runs were compared and their distribution

analyzed.

Table 8 presents the RMSE statistical results and

computational cost for the Photowatt-PWP201 PV module.

Considering the minimum RMSE, the HCNNA was 0.43%

better than the NNA with the SDM. However, due to the

metaheuristic nature of the methods in question, one should

consider the mean RMSE, which indicates a 52.77%

improvement. For DDM, the HCNNA was 0.35% more

accurate than NNA, according to the minimum RMSE, but

on average HCNNA was 37.41% more accurate with this

model. Analyzing the standard deviation (STD), the HCNNA

was not only more accurate, but also more consistent, obtaining

an STD of 3.568167E-10 and 6.249338E-08, for the SDM and

DDM, respectively. Regarding computational cost, the NNA was,

on average, 15.54 and 11.06% more efficient, with the SDM and

DDM, respectively.

HCNNA’s robustness with the Photowatt-PWP201 PV

module is demonstrated in Figures 13A,B, by the small

variation in the RMSE distribution with both models

(SDM and DDM), while the NNA presented a large

variation. The HCNNA showed very small deviations from

the minimum RMSE regardless of the model, therefore it

accurately determines solutions by reliably estimating the PV

parameters.

For the RTC France PV cell, the RMSE statistical results

and computational cost are presented in Table 9. Considering

the minimum RMSE, the HCNNA was 91.43% better than the

NNA with SDM, while according to the mean RMSE it was

675.39% better. HCNNA was 17.19% more accurate than

NNA according to the minimum RMSE with DDM, but on

average HCNNA was 343.15% more accurate. Regarding the

STD, HCNNA again obtained the best values, and was also the

most reliable with the PV cell. The NNA once again presented

the best computational cost: 15.09% more efficient than the

HCNNA with SDM and 10.83% with DDM.

Figures 13C,D show the RMSE distribution with both

models (SDM and DDM) for the RTC France PV cell.

Once again, these results clearly show the HCNNA’s

robustness. However, with DDM, most of the RMSE values

are somewhat far from the minimum value, as indicated by the

STD in Table 9. Perhaps the distance between RMSE values

and the minimum was related to the fact that the DDM

improved accuracy for the PV cell compared to the SDM.

Table 10 shows the HCNNA performance when

estimating PV parameters for the Sharp ND-R250A5 PV

module under PSC, using SDM and DDM, presenting the

RMSE statistical results for each shading pattern. Considering

the STD values, the HCNNA was consistent when estimating

characteristic curves with multiple power peaks resulting from

the use of bypass diodes. To determine the most accurate

model, on average, for each of the shading patterns, it is

important to compare the mean RMSE values. Thus, the DDM

was on average more accurate than the SDM for patterns 3, 4,

5, 6, A and B, respectively 29.46, 0.40, 9.80, 104.72, 5.01 and

19.48% more accurate for those patterns; while the SDM was

on average more accurate for patterns 1, 2 and C, respectively

3.54, 8.24 and 17.88%. Overall, this comparison showed that

on average the DDM was more accurate under PSC.

For pattern 1 to 6 (first shading scenario with Sharp ND-

R250A5 PVmodule), the RMSE distribution of HCNNA with

both models (SDM and DDM) is shown in Figure 14. SDM

and DDM obtained similar RMSE distributions, for patterns

1 and 2. However, for patterns 3, 4 and 6, DDM clearly

presented an RMSE distribution closer to the minimum

value, compared to SDM. For pattern 5, a similar RMSE

FIGURE 15
RMSE distribution achieved by HCNNA and NNA in 30 runs
for the Sharp ND-R250A5 PV module with SDM and DDM under
partial shading conditions (patterns A–C).
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distribution was observed with both models, but outliers

were observed with the SDM.

Figure 15 presents the RMSE distribution of the HCNNA for

the patterns A, B and C with Sharp ND-R250A5 PV module

(second shading scenario). Considering patterns A and B, the

RMSE distribution was similar with both models (SDM and

DDM), although outliers were observed far from the minimum

value, with the SDM. As the mean RMSE revealed, HCNNA

obtained more accurate solutions with SDM for pattern C.

In summary, the statistical results showed that the proposed

HCNNA was significantly more accurate than the NNA when

estimating the PV parameters. Furthermore, HCNNA performed

well when predicting the PV electrical characteristics under

partial shading with SDM and DDM, although that DDM was

mostly more accurate under these operating conditions.

6 Conclusion

This paper studied the bypass diode effect on the

characteristic curves of photovoltaic (PV) cells or modules

and proposed the hill climbing neural network algorithm

(HCNNA) to estimate the PV parameters of single- and

double-diode models under partial shading conditions.

Specifically, the study analyzed the power loss caused by the

voltage drop when the bypass diodes switch to the active state due

to divergences caused by mismatch or partial shading. The

temperature distribution was also analyzed to identify eventual

hot spots resulting from these divergences. The proposed

HCNNA was validated for estimating the PV parameters,

using standard literature data under uniform irradiance and

experimentally measured data, with different partial shading

patterns. To overcome the implicit nature associated with the

PV parameter estimation problem, the Newton-Raphsonmethod

was used, and the root mean square error (RMSE) was selected as

performance index in the optimization problem.

Results of the bypass diode effect showed power losses up to

about 70% with the considered shading patterns, resulting in

efficiency losses up to about 68%. Regarding the temperature

distribution under partial shading, when the bypass diodes fail,

the PV cells can reach very high temperatures. Specifically, in

some of the partial shading tests, temperatures of approximately

100°C were reached in a short period of time. The results

obtained in the PV parameter estimation demonstrated the

HCNNA’s high accuracy and reliability, with and without

partial shading. Overall, the performance of the proposed

HCNNA was very competitive when compared to other

methods in the literature. Considering the standard literature

datasets and the minimum RMSE, the HCNNA was on average

27% more accurate when compared to the original NNA. On the

other hand, considering the datasets with shading and the mean

RMSE, the DDM was on average 28% more accurate than the

SDM under partial shading.

In conclusion, the proposed HCNNA demonstrated high

performance and reliability, which constitutes a promising

alternative to predict the electrical characteristics in PV

systems monitoring.
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