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This paper presents the results of a numerical study on a supercritical CO2 (SCO2)
turboshaft cooling device by considering heat transfer and hydrodynamics. A micro-
cooling device with a radius clearance of 50 micron and a nozzle diameter of 4 mm was
designed and used to investigate the heat transfer characteristics of a micro-spacing
impinging and gas film dynamics. Sixteen nozzles (N = 16) are equally spaced around the
shaft in single or double rows. Investigations include journal speed- and eccentricity-
dependent forward and cross-coupled force coefficients, and the effects of nozzle layouts
and mass flow rate on the heat transfer efficiency. Analysis of the correlation coefficient
shows that the gas density in the radial clearance is the dominant factor affecting the
convective heat transfer performance, while the fluid velocity is a secondary factor. And the
cooling efficiency (mass flow utilization rate) at low cooling pressure (ps < 0.7 MPa) is
significantly greater than that at high cooling pressure (ps > 0.7 MP). In addition,
considering the structure alone, a dual-row cooler exhibits a higher average Nusselt
number, also registers a higher mass flow rate at the same pressure. Once the shaft is
heated only one end, the difference in effectiveness between single- and dual-row cooling
is not significant, so coolers with a single-row configuration should be preferred. Then,
experimental values for the temperature of the heated rotor are provided under specific
cooling airflow conditions. Dynamic analysis results show that the force coefficient of the
single-row configuration is more dependent on the journal rotation speed and eccentricity
ratio, and exhibits a negative direct stiffness coefficient at higher inlet pressure and journal
rotation speed. Moreover, cross-coupled terms (stiffness coefficient) generally have a more
explicit variation tendency than direct terms, and are more sensitive to changes in shaft
speed and eccentricity. Small clearance cooling is a relatively complex technology aimed to
improve heat dissipation efficiency in gas cooling devices while minimizing the effect of
hydrodynamic pressure. Comparing the gas force coefficients of different journal speeds
reveals a drastic increase in the effect of hydrodynamic pressure when the journal is
eccentric. The cooler may be considered for operation with compliant support (such as
bump foil) to generate additional damping and appropriately compensate for the
eccentricity of the rotor.
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INTRODUCTION

The supercritical carbon dioxide (SCO2) cycle has attracted
widespread attention owing to its enhanced efficiency at
higher turbine inlet temperatures, and its effective utilization
in various next generation power plants, such as nuclear, fossil
fuel, waste heat, and renewable heat sources (Turchi et al., 2013;
San Andres et al., 2011a; Ahmadi et al., 2018; White et al., 2021;
Ahn etal., 2015). Numerical (Alawadhi et al., 2021; Khatoon et al.,
2021), experimental (Marchionni et al., 2021; Arslan and Guzel,
2021), and theoretical (Lee et al., 2021; Persico et al., 2021)
investigations have probed into various fundamentals as well
as practical applications of SCO2 Brayton cycles. Multiple factors
make SCO?2 a preferred circulating medium for next generation of
power conversion systems including smaller heat exchangers,
simple physical layouts, reliability and safety with conventional
structure materials, compact turbomachinery and high efficiency
at the higher turbine inlet temperatures (500-900°C) (Pandey
et al, 2020; Penkuhn and Tsatsaronis, 2020). It is generally
accepted that regions with relatively high turbine inlet
temperatures perform much better than regions with lower
temperatures. However, due to the high temperature,
compatibility issues inevitably arise for the design of bearings
and seals in SCO2 Brayton cycle turbomachinerys.

The supercritical CO2 turbine configuration adopted by the
Australian Solar Thermal Research Institute (ASTRI) is a radial
turbine where the rotor is mounted at the end of an overhung
shaft (Figure 1). In order to meet the conventional bearings and
dry gas seals requirement on temperature, a cooling zone is
provided between the impeller on the cantilever and the dry
gas seal. The cooler proposed in this paper aims to protect the dry
gas seals and the bearings inside the gearbox against the high
temperatures at the turbine exhaust.

Besides of the thermal management for the dry gas seal and the
bearings, the paper will also propose the use of a “cooling device”
to add extra stiffness to support the rotor of the turbine. By
“Cooling device”, it means a high-clearance journal bearings with
cool CO2 flowing through the annulus passage to cool the shaft.
The cooler is not a true journal bearing. Its clearance is selected to
provide adequate cooling. The flow in the annular passage in the
cooling device will be simulated using computational fluid
dynamics (CFD). The cooling device stiffness and damping
values (as predicted in CFD) are combined with the shaft
model of SCO2 turbine. The results will give the predicted
critical speed and damping for the SCO2 turbine. Before that,
the convective heat transfer characteristics of the cooling device
should be studied in detail. The unbalanced response of the
turbine impeller and the cooling efficiency of the cooler are
being influenced by the impingement separation distance of
nozzle and shaft surface, and the velocity in the radius
clearance (Figure 1) is affected by the conversion of pressure
gradient with the momentum. In addition, the flow structure is
more intricate as the jet impingement are impacted by adjacent
wall jets and micro scales limiting the average velocity of the fluid
(Adeoye et al., 2021).

The reasons for instability in hot turbines, in addition to
unbalanced mass on the cantilever, may be a resonance,
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misalignment and a too high shaft temperature. A very
important issue is the thermal creep and uneven thermal
expansion of the structural components during hot turbine
operation. To control temperature gradient of the gas foil
bearings, Lubieniecki et al., 2016 and Martowicz et al. (2020)
proposed a method of thermoelectric coolers. With a traditional
but effective approach, Ryu (2012) implemented a thermal
management in gas foil bearings system which is to supply
pressurized air inside the bearing to control thermal growth of
foils. A similar case, San Andres et al. (2011b) presented full
details on the test data and analytical results for dynamic and
thermal performance of gas foil bearings system with a cooling
gas stream condition.

Most of the previous numerical and experimental studies have
reported a high heat transfer coefficient in the jet impingement
cooling region, which have been used in various industrial
applications  (GhadikolaeiAlotaibi et al, 2020; 2021;
Maghrabie, 2021; Modak et al., 2021). Several studies have also
explored micro-scale impinging jets and reported a significantly
different heat transfer characteristics compared to the results
obtained at the normal scale. Lau et al. (2021) reported an
enhanced overall cooling performance for a water jet with
Al203 nano-fluid in their study of heat transfer enhancement
on a microchannel single synthetic jet impinging. Adeoye et al.
(2021)  experimentally  studied micro-nozzle (206 pm)
impingement on a thick fused silica substrate with
supercritical carbon dioxide and noted the differences between
available correlations and experiments. Patil and Narayanan
(2005) compared experimental average Nusselt numbers
(Nu,,) of microscale circular nozzle (nozzle diameter d; =
125 um) jet impingement to the earlier investigation of Martin
and noted that there were notable deviations for the both low
Reynolds numbers (Re) and high Re normal scale jet
impingement. A numerical study by Li et al. (2021) reported
significant enhancements of the heat transfer for CO2 jet
impinging when the separation distance between nozzle and
target surface was reduced from 0.1 to 0.05 mm. However, it is
rare to study the heat transfer performance of gas films in the
radial clearance between rotating shaft and cooler.

A previous study (Kim et al. (2019) has shown that a single-
phase hybrid micro array jet impingement can attain strong
impingement effects caused by reduced diameter of jet nozzles.
However, the nozzle-to-surface spacing is still mainly responsible
for the heat transfer efficiency for a given mass flow rate (Ahmed
et al, 2021). Although this conclusion demonstrates the high
performance of hybrid micro-scales with water for cooling, its
compatibility with gas cooler of rotor systems remains a concern.
For the SCO2 turbine rotor shaft cooling, the multi-nozzle is
employed in the pattern of a row or array jets evenly distributed
around the shaft (Figure 1). For this reason, gaseous refrigerant,
such as supercritical carbon dioxide in the Brayton cycle has been
taken into consideration, but because of the high pressure (the
CO2 critical condition is 30.98°C and 7.38 MPa), dynamic
characteristics of the jets especially need to be investigated.
The overall heat transfer of shaft surfaces increases by creating
very small clearance which also limits the expansion of the gas
near the heat transfer surface. The main reason is that using high
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pressure CO2 in a very small clearance for heat transfer
augmentation typically incurs a strong dynamic pressure
effect, which causes potential instabilities of the high speed
rotor system. To alleviate this issue, the stiffness and damping

of the gas film are also the topics that have to be carefully
examined and designed.

Experimental and numerical investigations have been carried
out on several different configurations to study the dynamic
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TABLE 1 | Boundary conditions and parameter values for the numerical studies.

Parameters Range
Outlet pressure p, (MPa) 0.1
Inlet pressure ps (MPa) 0.2-2.0
Inlet temperature Teoz (K) 330
Heat source T (K) 1,073
Rotor speed n (rom) 0-50,000
nozzle diameter d; (mm) 4
nozzle to rotor surface spacing H (mm) 0.05
Length of cooler L (mm) 30
Diameter of the shaft D (mm) 30

Number of nozzles N; 16 (single or double row)

performance of gas film, such as gas foil bearings (Basumatary
etal., 2020; Zhang et al., 2018; Zywica et al., 2021), self-acting gas
journal bearings (Feng et al., 2017; Zhang et al., 2014), and other
externally pressurized gas bearing (Moore et al., 2011; Han et al,,
2014; Ise et al., 2014). Although the pressure distribution of the
gas film obtained numerically with standard Reynolds equation is
approximately to determine the stiffness and damping, the
thermally coupled analysis of the bearing may be impeded. In
the model of the cooler, the radius clearance (50 um ) is large
enough to maintain sufficient flow while attenuating the dynamic
pressure effect. Although the assumption of the Reynolds
equation for the gas film of the bearing is reasonable, it is
obviously no longer applicable for the gas jet impingement
with a slightly larger gap. A 3D mesh with radial boundary
layers is necessary. This paper, employing the commercial
computational tool Fluent, presents extensive predictions of
the temperature field and dynamic force coefficients, as well as
various other parameters, of a 3D model of the rotor cooler.

To sum up, a reliable implementation of conventional bearings
(such as gas foil bearings, angular contact ball bearings and oil
film bearings) and seals into high temperature SCO2
turbomachinery requires effective thermal management to
maintain rotor system stability. Another purpose of this paper
is to tailor the cooler stiffness in both forward and cross
directions, thereby minimizing the dynamic pressure effect of
gas film, to maintain a reasonable compliance and accommodate
mechanical distortions as well as misalignment of the shafts. The
cooler proposed in this paper is inspired by the external gas
bearing and jet impingement, as the coolant is a high-pressure
CO2 gas, with the impinging jet is normal to the surface of the
shaft. There are constrains on the radius clearance between the
shaft surface and the nozzle mounting surface (confinement
surface) to provide additional throttling effect for the cooling
device and improve the cooling efficiency of the airflow.

THE PHYSICAL PROBLEM AND METHOD
OF ANALYSIS

Computational Fluid Dynamic Modeling and

Boundary Conditions
The cooler consists of 16 nozzles assembly oriented normal to the
rotor shaft surface. The geometry of the fluent model is symmetry
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TABLE 2 | Correlation coefficients between the average Nusselt number and the
variables analyzed.

Correlation Coefficient Parameters Double Row Single Row
Rxy = w—x%m X=Nua, Y =p,, Rxy = 0.998 Rxy = 0.9974
X=Nua Y=Va  Rxy=05934  Ryxy =0.2935

with the axis as shown in Figure 1. However the circumferential
symmetry only happens when the shaft is at the geometric center
of the cooler, dynamic pressure effect of gas film is inevitably
caused by the rotating speed and displacement of the shaft. The
dynamic pressure effect of minimum gas film thickness between
shaft surface and the bearing inner surface provides cross force
may well in excess of forward force obtained around the nozzle.
The symmetry of the gas film dynamics no longer exists. And, the
negative cross-acting force promotes the whirl of the rotor is also
one of the important factors of system instability. Hence, full of
the inlet, nozzles, clearance are modeled as real CO2 gas fluids in
commercial CFD software, and shaft is modeled as steel solid. The
hollow shaft is the superficial heat generating source and the
constant amount of temperature is 1073 K in core. Inlet of nozzles
is the momentum source of jets which is set as a pressure inlet or
mass flow rate conditions. The outlet boundary condition is set to
a pressure of 0.1 MPa. An isothermal no-slip boundary condition
was assumed with the rotor surface and adiabatic condition for
the other walls. With the purpose of getting a comprehensive
investigation for the stiffness, damping and heat transfer
efficiency in the micro-clearance jet impingement, the CFD
software Fluent 19.1 and computer cluster have been utilized.
The nozzle rows, the jet-to-surface spacing and rotation speed of
shaft are variable to assess how they have impacts on heat transfer
rate and kinetic characteristics of gas film. Several different
combinations of boundary conditions and nozzle
configurations were considered as summarized in Tables 1 and 2.

Governing Equation

As a conclusion of the previous experimental and numerical
preliminary investigation, that the ideal turbulence model does
not exist, as is commonly asserted in a jet impingement analysis
(Ehsan et al.,, 2019).As a compromise, many investigations have
concluded that Reynolds-averaged k-omega turbulence model
shows reasonably admissible performance in gas jet impact
prediction (Lapka et al., 2020; Tepe, 2021; Tepea et al., 2020).
Considering the complex flow of jet impact and the high-speed
rotation of the shaft, the flow in the computational domain was
depicted by the k-omega model (Lapka et al, 2020). The
governing equations in the computation are the Reynolds-
averaged mass, momentum, and energy. The equations with
steady-state compressible fluid properties are expressed as:

Continuity Equation:

0
aTCi(P”i)—O

D e 20 D[ 2B 2 ] o (s
an Puxu} - ax,- aX] # aXJ aX,' 3 Uaxi aX] Puiu‘i

ey
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Momentum Equation:

Apww;)) op o[ (0w ow; 2 ou\] O —
ch‘_a_acfa_xj[“(a_xﬁaxfi‘;"fa_xj)]+a_xj<")“””f>
2

Where, —pu'u'; is Reynolds stress denotes the effect of
turbulence (Tepea et al., 2020), u is the velocity, u' is the
turbulent velocity, p is the pressure, y is the dynamic
viscosity, p is the density.

Energy Equation:

0 _ 0 cptt; | OT y
s lum el =5 | (s ) vu(m) | o

Where, i, j, k = 1, 2, 3 are indices of Cartesian axes, c, is the
specific heat, T is the temperature, k. is the effective thermal
conductivity, and Pr; is the turbulent Prandtl number, E is total
energy, (7ij), is the deviatoric stress tensor (Marzec, 2020). The
above equations will be closed by the SST k — w model. The
standard k — w model has the characteristics of near-wall stability
and sensitivity to adverse pressure gradient. The k — ¢ model has
the advantage of independence from the boundary layer. Menter
(1994) introduced hybrid functions to combine the two modes
into one, and developed k — w into the shear stress transport
model (SST k — w). The improved model is more accurate and
reliable over a wide range of flows than its standard form. Refer to
the paper for a detailed introduction of the SST k-w model.
The Reynolds number of nozzles is defined as follows:

_pvdi  4q

R =
€ u T[Nid,“l/l

(4)

Where, p is the CO2 fluid density, kg/m?; v is the average velocity
at the inlet of nozzles, m/s; d; is the nozzle diameter, m; and y is
dynamic viscosity, Pa - s; g mass flow rate, kg/s; N; is number of
nozzles. For lubrication flow and eccentric annular rings, the
Reynolds number is expressed as

Re = /%L (%)2 (5)

Where u = 78.54m/s is the rotor working speed and L = 30mm is
the width of the hydrostatic zones. Here, constant fluid
temperature at the extreme case are represented by T = 330 K.
The Re in Eq. 5 are depicted in terms of the lines with symbols in
Figure 2A. These data represent the turbulence intensity (I) and
can be used as a reference for setting boundary conditions. The I
determined by

I =0.16Re™®

The dimensionless convective heat transfer rates along the
cooled rotor surface are defined in terms of the Nusselt number,
and the local Nu; can be calculated as:

h,D
Ny, = ,’c— (6)

Averaged Nu number can be determined as:
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FIGURE 2 | Grid refinement and experimental verification. (A) Reynolds
number distribution vs. parameters, (B) Grid independence study for the
numerical computation, (C) Experimental data vs. CFD results of load capacity.

Nu,, = ™)
Where, k. represents the thermal conductivity of the fluid
material. The term h is the local heat transfer coefficient
obtained by numerical computation (Fp et al, 2010). The
average heat transfer coefficient is defined as

1
b= J’AhldA 8)

Analysis of Gas Film Forced Performance

The wall boundary conditions for the gas film are the stationary
wall and the rotating surface on the inner wall of the bearing and
the surface of the shaft, respectively. In the case of gas bearing,
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dynamic gas forces are calculated based on the shaft eccentricity
and whirling velocity perturbations. It can be defined as the
following:

F, _ Fg kxx kxy Ae, Cxx Cxy
F,| |F (;)' * kyc  kyy . de, * Cyx  Cyy
[ (€} + dey)a0 ©
(€% + Ae,)AQ

X

Where, F) and F!) are the gas film forces without disturbance, k;;
and c;j represent the stiffness and damping at a given rotational
speed and eccentricity, respectively. AQ is the whirl frequency
perturbation of the shaft. The small constants [Ae?c 0]" and
[0 Ae‘; T are the perturbed displacements at rotational
frequency wy and whirl frequency Qg of the shaft. The new
film forces, at displacement (e + Ae,) and (e(}), +Aey), is
assumed to vary linearly with whirl frequency perturbation as
[f2 f ) and (£ £3110.

Accordingly, the damping and stiffness in the thin film is
assumed to behave as linear changes at the occurrence of minor
perturbations, and hence the equation of followings (Eqs. 10-19)
are used to express the kinetic characteristics of gas film as a
function of shaft’s displacement and whirling velocity
disturbances. Damping can be expressed separately as

Con = M (10)
(e‘; + Aey)AQ
Cx - f)lcz_f.?cz (11)
7 (€0 + dey)AQ
12 02
Coo = M (12)
7 (€0 + Ae, )AQ
11 _ £01
cyx—ify /5 (13)

(0 +4e,)A0

Where, [ fo! f?,l] and [ f% (}),2] are obtained when the
steady state position of the rotor is perturbed by small
translational ~ displacements [ Ae? 0]" and [O Ae?,]T.
Gas film stiffness and damping calculation is a nonlinear
problem in which the eccentricity must be considered case-
by-case. Therefore, in the present study, the radius clearance
is discretized with an interval of 5 microns and the
perturbation method is used to linearize the variation of
stiffness and damping. The linearized equations are then
expressed iteratively as

A B 2
f il ! 2, kyc  kyy Ae, Cyx  Cyy

[ Ae, (Qo +20Q) |
| Be. (2 +40) | (14)
|:f;2cz:|_|:f?cj|+|:kxx kxy:|'|:Aexj|+|iCxx ny]
f iz ?' kyc  kyy de, Cyx  Cyy
[ Ae, () +AQ) |
| A (0 +40) (15)
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Hence, the stiffness coefficients, at eccentricity [ €7, eg), ], are
calculated as

koo = T2 S _A;’:y (Aes) (pe,=0,40=0)  (16)
yy = 5 h _AZy (e 00) (de,=0,40=0)  (17)
- L2 ;’y"‘(AeyQ(’)  (dec=0,40=0)  (18)
, =L _AZ"(A”Q‘))  (dec=0,40=0)  (19)

Where, f7 and f9 are the gas film forces at eccentricity [e], e)]
of shaft.

In order to introduce a variable whirl frequency, the
components of rotor rotational velocity must be coupled to
the translational velocity, and the coupled motion is solved for
the boundary condition of the shaft surface after considering the
displacement disturbance. The translational velocities over each
steady state position is determined by the whirl frequency as

Uyy = Qe, (20)
Uy = Qe, (21)

For a rotating journal operation, the surface gas flow
circumferential velocities vary along the Cartesian coordinate x
and y as

U, = wr - sin(0) (22)
Uy = wr - cos(0) (23)

Where, w is angular velocity of the rotor rotation, 6 is the azimuth
in the X-Y plane and r is radius of shaft. The u is the absolute
velocity of the airflow on the rotor surface, hereby taken as shaft
surface velocity since in the SST k-omega model the non-slip
boundary condition is adopted. Once the rotational velocities
distribution and the translational velocities are obtained, the
absolute velocities of the shaft surface can be evaluated as follows:

Ux = Upx + Uy (24)

Uy = Upy + Uy, (25)

The coupled velocities u, and u, are then used as the
boundary conditions to calculate the pressure perturbations of
the shaft surface which are integrated to carry out the predictions
of the dynamic force coefficients.

The number of modeling and the amount of numerical
calculation were reduced by application of the rotating
coordinate system (RCS) in the calculation of the stiffness
coefficient. This section further details RCS methods for
predicting stiffness coefficients from dynamic load. The
prediction restricts its attention to cylindrical bearings.

Figure 1D depicts a schematic diagram of an extruded gas film
with a journal describing a whirl motion with amplitudes e, and
e,. This diagram involves two coordinate systems, one stationary
(X, Y) and one rotation (x, y), with angle (). & = 0 coincides with
the X axis, whereas the angular origin of the rotation coordinate is
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located on the x axis. The relationship between rotation and
stationary frames is to rotate (X, Y) by the angle 3 to obtain (x, ).

In a CFD analysis, the shaft journal kinematics [e°, a]”
squeezes the gas film and produces forces f° and fg governed
by the dynamic pressure and inlet pressure field.

In the rotation coordinate (x, y), the deflection angle of the
journal becomes (a+ ). Whereas, in absolute frame, the
journal’s displacements equal

o [ex] _ |:62+A€x605([3) e

e e + e, sin(B) e

+ Ae, sin(f)
+ Ae, cos ()

< o

(26)

< o

y

Then the relative displacement is [Ae, cos (f8) Ae, sin(f5)] and
[Ae, sin (B) Aey cos (B)]. The gas film force on the journal can be
determined as

kyxAex cos(B) + kyydey sin(B) + f2 cos () + fg sin(B)

= 2 cos(§) + 2 sin(B) = F )
kyiAey cos(B) + ky,Aey sin(B) + f° sin(B) + fg cos(f) (28)
P sin(8) + £ cos (6) = FY

ke, sin(B) + keyAey cos(B) + £, cos(B) + £ sin(B)

= f% cos(B) + £ sin(B) = FZ @)
ky.Ae, sin(B) + kyyAe, cos(B) + fsin(B) + f?, cos(B) (30)

= fsin(B) + f3 cos(B) = F}!

The dynamic equilibrium relations above reveal that the gas
film thickness and its forces are angle-invariant in the rotating
coordinate system. However, the estimation above is true only
in a cooler configuration neglect of its anisotropy. The inlet gas
flow distort the distribution of pressure; consequently,
resultant force is no longer invariant in the rotating
coordinate system. In other words, the periodicity of the
cooler configuration does not exist at arbitrarily small
Interval angles.

Grid Refinement and Experimental

Verification

The grid independence examinations have been carried out to
validate that the results are independent of the mesh element
size. Nine grids with degressive element sizes 0f 0.12,0.11, 0.1,
0.09, 0.08, 0.07, 0.06, 0.05 and 0.04 mm have been used to
examine the mesh resolution independency. Average,
maximum and Minimum Nusselt number Nu on target
surface at radius clearance H = 0.05 mm, nozzle diameter
d; = 4 mm, rotor speed n = 60,000 rpm and extreme boundary
conditions of Ap =6.9 MPa (mass flow rate g = 0.112kg/s)
were investigated for the validation. The convergence
procedures of the predicted average Nusselt number on
the surface with mesh refinement are shown in Figure 2B.
It can be noticed that deviation of the Nusselt number is less
than 1% for the 0.05 mm, 0.04 mm grids. Consequently, the
element size of 0.05 mm has been adopted for the purposes of
accuracy and saving the iteration time. The radial dimension
of the first grid layer adjacent to the shaft surface is set to be
2.5 um with layers of 5 to ensure that the ceiling amount of
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local Y-plus is less than 1.0. For this investigation, since the
computations were implemented with SST k-omega
turbulence model, the near wall functions are automatically
selected according to the wall-function meshes on the target
surface, and the wall treatment is automatically switched
between the viscous sublayer formulation and the wall
function, depending on the meshing grid refinement (Afroz
and Sharif, 2020).

Since the micro-clearance jet impingement is a design
similar to the external pressure gas bearing, there is a
comparison in the published experimental data for the gas
film dynamic characteristics of gas film. The externally
pressurized gas bearing referred to in this verification is a
rectangular slot restriction type. The actual dimensions and
structure of this bearing are same as (Ise et al., 2014). The gas
bearing load capacities were evaluated using the results of CFD
(in this study) and test data. A symmetrical pressure region
admission type journal bearing was used for the sample. The
detailed bearing forced performance have been tested and
solved numerically in the previous study, where the
Reynolds equation was applied to describe the dynamic
characteristics of the gas film. The solid line in Figure 2C
shows the test results of the load capacity of the gas bearing
relative to the eccentricity ratio for dimensionless inlet
pressure P = 4.2. Eccentricity ratio ¢ is defined by e/c.
Where e is rotor displacement from bearing geometric
center, ¢ is the radius clearance. The square dots in
Figure 2C shows the CFD results vs. eccentricity ratio.
These boundary conditions are the same as those used in
the previous tests of this type of gas bearing, and all
calculations use a real gas model of carbon dioxide. The
CFD results are compared with experimental load capacities
at the eccentricity ratio of ¢ = 0.2, 0.4, 0.6, 0.5. It is demonstrated that
there are deviations between the experimental data and the CFD
results. The maximum, minimum and average prediction errors are
21.65, 10.16 and 17.84%, respectively. The deviation is observed to
increase with increasing eccentricity ratio, but it is still within an
acceptable range. In actual calculations, it is found that the stronger
the dynamic pressure effect, the stricter the boundary layer mesh
requirements.

RESULTS AND DISCUSSION

Thermal Performance of the Cooling Device
The thermal analysis of the cooling system proposed in the
study is carried out based on the assumption that the journal is
dynamically stable in the geometric center of the cooling
device. The journal diameters and the cooler lengths used
in the thermal analyses are both 30 mm (see Table 1). Due to
the reduced distance between the inlet and outlet for double
row cooler, the heat transfer capacity contribution from the
mass flow rate increases. While the one with single row (inlet
assumed to be located in the middle of the two outlet, see
Figures 1B,C) has a longer throttling distance. Therefore, the
combined effect of the density, velocity, and temperature
difference of the fluid in the radial clearance should be
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considered. The Heat transfer performance of gas film is
presented in terms of average Nusselt number of the fluid
and journal coupling surfaces (Figure 1, interface).

Figure 3A compares the pressure-dependent surface-
averaged Nusselt distributions. Compared to the single-row
configuration, the Nu,, in the dual-row configuration showed

an average increase of 19.36% at different cooling pressures.
Shorter throttling spacing between the nozzle and outlet
increases the axial pressure gradient in the radial clearance.
Complementarily, the average increase in mass flow rate for
the dual-row configuration is 21.53%, which is higher than the
Nu,, increase in percentage. Figure 3B compares the average
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density in the radial clearance. The average density of the dual-
row configuration is significantly higher than that of the
single-row configuration by 49.26%.

The jet gas experiences notable velocity and density
variations in the micro-radius clearance. Figures 4, 5
presents the averaged Nusselt number Nu,,, average density
p.,» average velocity v,, and their derivative with respect to
mass flow rate for nozzle arrangement of double row and single
row. The figures show the derivative of the average density for
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both double row (case 1) and single row (case 2) respectively,
and these derivatives show similar tendency to the cases of
derivative of the Nu,,. As can be seen, there are significant
same variation tendency of derivative of Nu,, and derivative of
average density, despite the strongly non-linear behavior
observed in practical calculations. However, this consistency
is significantly lower for the derivative of average velocity
presented in the pictures compared to the derivative of p,,.
Further, the correlation coefficient can be used as an
indicator to verify these conclusions. The correlation values
reported in Table 2 are calculated using the data in Figures 8,
9. The Ryxy of the nonlinear correlation metric shows
consistent results and a strong positive correlations in
evaluating the average density for both double and single
rows. The second row of the table data shows the
correlation coefficient between the average Nusselt number
and the average velocity. Although there are differences in the
results for double and single rows, they are all significantly
smaller than the Rxy between density and Nusselt number.
Therefore, these facts suggest that the density of the gas in the
radial clearance dominates the convective heat transfer
performance.

Further thermal analysis is performed on the solid shaft
heated at the right end for the coolers of both configurations.
The results of this investigation are shown in Figure 6. The
average temperature at free end of journal with double row
cooler is slightly higher (0.71% on average) due to half the
nozzles away from elevated temperature. In addition, the total
mass flow rate increased slightly (7.3% on average) over the
entire pressure range compared to the single-row
configuration. The maximum averaged temperature of free
end are around 505 K (double row) and 503 K (single row)
when cooling gas pressure supplied is only 0.2 MPa, while
increasing the gas pressure to 0.7 MPa drops the average
temperature significantly to around 368 K (double row) and
364 K (single row). Steps further on, the average temperature
of free end can even be maintained below the temperature of
coolant with an extremely high inlet pressure due to expansion
of endothermic. However, it is noteworthy that the cooling
efficiency of the cooler with low cooling pressure (p; <
0.7 MPa) is significantly larger than the case with high
cooling pressure (p; > 0.7 MP). Higher pressure means more
energy and gas wasted.

In general, although the mass flow rate and average Nusselt
number in cases 1 and 2 do differ significantly, the
temperatures T,, do not (Figure 6A). Figures 6B,C shows
the cooling system temperature field along the axial direction
for both cases with inlet pressure of 0.7 MPa. The right end is
in thermal contact to the hot impeller (T = 1073 K) and the left
end (free end) is in thermal contact with the bearing unit
(considered as adiabatic in this study). Due to the coolant
injected into radius clearance flows out along the axial
direction (both elevated and low temperature side), the
rotor temperature sharply drops. The journal temperature
has slightly higher thermal gradient along the axial
direction for case with single row nozzles because of more
cooling effect at the nozzle and at the location with the larger
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temperature difference. The tendency can also be observed in  transmission that a stream impacts directly onto the target
the shaft temperature field shown in Figure 6A. Demonstrated ~ surface with thermal boundary layers to transfer heat
in the figures is the basic principle for impingement heat  efficiently.
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Experiment
For the purpose of validating the mathematical model of the

fluid in the journal cooler, the experiment was performed using
one rotor test rig (illustrated in Figure 7A). In the test rig, a
horizontal shaft rotation is automatically applied by an
electro-spindle. The journal cooler is supported by a hub
with a pressure transducers and a thermocouple. The
cooling device is located in the middle of the cantilever of a
rotor. The larger disc at the free end of cantilever is heated by
electromagnetic induction at a restricted power of 1.6 kW. The
cooler hub has a total of three radial threaded holes to supply
the pressurized gas while allowing a transducers to be attached
to gas in the annular cavity (Figure 1). The geometry of the
tested cooler is presented in Figure 1C. With the Thermal
imaging camera, temperature measurements of the shaft and
the discs are examined in order to compare with the numerical
results.

Figures 7B,C shows the measured and the predicted
temperature distribution of the cantilever. The temperature
image is captured when the rotor is thermally balanced, this is
important for the comparison. The current pressure and
temperature of the gas in the annular cavity are measured
by the thermocouple and pressure sensor. These parameters

will be used as boundary conditions for numerical calculation.
The large disc on the right is used as the heat source, and the
temperature value adopts the steady-state temperature
measured in the experiment. The line LI in the figures is
defined as temperatures of the cantilever in the direction of the
center of the rotor, and its coordinate origin is on the left. The
measured temperature on the horizontal line (LI) (see
Figure 7B), is extracted on pixels. Figure 7D compares
experimental and numerical temperatures on LI. These
curves follow almost the same trend. It can be seen that
both temperature curves (numerical and experimental) were
subdivided into three main ranges. The range belonging to the
shaft, is characterized by a small gradient, accompanied by
small fluctuations (experiment results). This temperature is
mainly determined by the cooling gas. The region belonging to
the small disc is characterized by a significant increase in
temperature gradient. The third region, located on the
larger disc, remains roughly constant in temperature and
can be considered a heat source. In this region, only a small
gas flow is in contact with the surface.

As shown in the curves (Figure 7D), the numerical and
measured temperature curve agree well. In the first region,
slight deviation between CFD numeration and measurement
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exist. This might be traced back to shape difference and thermal
resistance at the connection between the shaft and the disc which
can cause uneven heat transfer. In addition, no temperature
gradient of the large disc side surface are captured by the
infrared thermal imaging camera.

Analysis of Dynamic Force Coefficients
This section discussed the force coefficient performance of
cooling film versus eccentricity ratio and rotor speed for
attitude angle of a=m/4. Note that, the extreme large
attitude angle is selected because the increase of journal
attitude angle signifies the enhancement of the
hydrodynamic instability effect caused by the cross-coupled
force coefficient. The stiffness and damping characteristics
analyses are conducted with the boundary conditions and
geometric parameters in Table 1.

The variation tendency of the stiffness coefficient k,, is
relatively complicated. Hydrodynamic pressure caused by
journal speed and static pressure from the nozzle have
opposite effects on k,, The eccentricity (stiffness comes
from static pressure) is the dominant factor at low journal
speed and the opposite at high speed. The competition between
the two forces causes the curves in the graphs to be distorted.

In general, it first increases and then decreases with increasing
journal eccentricity. The peak occurs between an eccentricity
ratio equal to 0.14 and 0.283, depending on the cooling
pressure and rotor speed.

Figures 8, 9 present the forward stiffness coefficient k,, and
ky, versus eccentric ratio for varying journal speeds,
respectively. As the rotor speed increases from 0 to
60,000 rpm, the k,, (Figure 9) increases and k., decreases
at higher speeds, demonstrating that journal speed can
significantly change the pressure distribution in the radius
clearance. In particular, the principal stiffness coefficient k,, of
the gas film is greatly reduced, for example, going from a
maximum of 4.34 x 10° to a minimum of —-1.04 x 10° N/m,
when the journal eccentricity reaches 0.707 (Figure 8D).
Negative principal stiffness (Figure 8D) can even occur at
high rotational speeds and large eccentricity ratios, which is a
potential threat to the system. Compared with the double row
configuration, the minimum stiffness coefficients of k. and k,,,
decrease for single row configuration (with a larger axial
throttling distance) due to the decreased spacing between
the nozzles over the circumference, but the maximum
stiffness coefficients of k,, (Figure 9) increase because of
the raised rotational speed.
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A cooler model that does not consider hydrodynamic
pressure effects will incorrectly estimate the force
coefficient, due to the existence of unbalanced responses
and misalignment of the rotor. Figures 10, 11 show the
cross stiffness coefficient k., and k,, versus eccentric ratio,
respectively. In general, the cross stiffness coefficient increases
with rotor speed and eccentric ratio while decreases with the
number of nozzle rows. Cooler with the higher journal speed
and stronger the gas film squeeze shows the larger k,,,, k,, and
k,. (absolute value), and the single row with the more
concentrated the hydrodynamic pressure effect (See
Figure 12) demonstrates the larger the cross-coupling force
coefficient.

Journal speed and eccentricity independent force
coefficients are important because they contribute less
indetermination to the prediction of dynamic response of
turbine rotor systems. Moreover, cross-coupled terms with
different signs and negative direct force coefficients in nearly
all cases imply that the system is not stable or potentially
destabilizing. The coupling of hydrodynamic effects may add
energy to the rotor-bearing system, giving shaft rise to whirl in
the direction of journal rotation, while the coupling of static
pressure from the nozzle affects only the whirl orbit shape
without enhancing the energy of the system. One of the
purposes of the double-row and single-row nozzle

configuration cases is to demonstrate the significance of
hydrodynamic pressure effect in the gas film. The self-
excitation effect at higher operating speeds is increased in
view of the stiffening effect occurring in the CO2 film,
which leads to increased reaction forces during rotor
vibration in a squeezed region. In order to prevent
promoting rotor whirl as hydrodynamic pressure effect was
increased, it is necessary to select appropriate nozzle layout or
take additional precautions.

The bump foil combined cooler can be considered to
provide an additional compensation for journal eccentricity.
As shown in the model in Figure 13, the cooler would then
follow the eccentricity of the rotor by means of the
deformation of the bump foil (See (Gad and Kaneko, 2016).
for a full description on the computation of force coefficients
for foil structures). Dry-friction between the bump foil and the
cooler and between the bump foil and the housing inner
surface provides energy dissipation damping well in
excess of that obtained in the limited viscous friction of
CO2. Yet the full potential of utilizing the foil’s elastic
deformation might be hindered by increasing asymmetry of
the structural stiffness in the X- and Y-directions with
increasing gas film force. Proper selection of the bump
foil parameters is vital to exploiting the potential
compensation for eccentricity. The ongoing research strives
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to address the eccentricity and frequency dependent  requirements of conventional bearings and dry gas seals in
properties of the force coefficient of cooler to eventually  the SCO2 turbine rotor system at high-temperature and
provide a cooling system that meets the temperature  speed.
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FIGURE 13 | Schematic view of typical cooler in bump-type.

CONCLUSION

The proposed air-film cooling device on the turboshaft is
intended for application in a 300 kW SCO2 turbomachine to
provide reliable thermal management while coping with the
hydrodynamic pressure effects of the gas film. Dynamic force
coefficients and heat transfer performance of the cooling device
with a radius clearance of 50 microns are presented. Then, the
present work investigated the comprehensive effect of nozzle
arrangement and inlet pressure variation on the heat transfer
performance of gas film. From the investigation, it can be
concluded as follows:

1) CFD results shows a significant increase of cooling efficiency
(also refers to mass flow utilization) with increase of the mass
flow rate at a cooling pressure of less than 0.7 MPa, and then
shows a gradual decay trend. Heat transfer capacity of the
cooler are affected by nozzle arrangement at a given mass flow
rate, that is, the temperature difference at the nozzle position
directly determines the heat dissipation capacity. The fluid
density and velocity in the radial clearance were selected as
factors affecting heat transfer to be studied. Heat transfer
performance is enhanced in terms of average Nusselt number
by increasing average density in the radial clearance at a given
inlet pressure. However, the correlation with the average
velocity of the fluid in the clearance is not very manifest.

The average Nusselt number of the interface with double-row
nozzle configuration is significantly higher than that of the
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