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This work reported the successive incorporation of tetrabutylammonium (TBA) into
Methylammonium lead Iodide (MAPbI3) perovskite. The thin films were characterized
by X-Ray diffraction (XRD), Scanning electron microscopy (SEM), Transmittance electron
microscopy (TEM), Atomic force microscopy (AFM), and UV-Visible spectroscopy. It was
shown that introducing TBA increases the crystallinity, grain size, surface morphology
without pin-hole, and roughness of the MAPbI3 thin films. Moreover, the MA(1-X)TBAX PbI3
thin film shows better stability in a relative humidity of ~60% after 15 days than the pure
MAPbI3 thin film. The obtained results are hoped to be helpful for stability and improvement
of the performance of the MAPbI3 thin films by doping TBA cations under ambient
conditions.
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HIGHLIGHTS

⁃ The MA(1-X)TBAX PbI3 thin film crystallinity was enhanced with TBA incorporation.
⁃ The morphology of MAPbI3 improved with a pinhole-free surface.
⁃ Optical and PL properties were boosted with the TBA incorporation into MAPbI3 thin film.
⁃ MA(1-X)TBAX PbI3 thin film shows better stability than pure MAPbI3 thin film.

INTRODUCTION

To begin with, nowadays, the Perovskites with formula ABX3 (A = cation (Formamidinium (FA),
Methylammonium (MA).), B = metal cation and X is a halogen anion VII halides (Br−, Cl−, I−)), have
been demonstrated good absorbers properties for solar cells with higher photovoltaic conversion
efficiency (PCE) (Fakharuddin et al., 2019; Weidman et al., 2019). Methylammonium lead triiodide
(MAPbI3) solar cells show good optoelectronic properties with a bandgap between 1.4 and 1.5 eV
(Wang et al., 2019), a high absorption coefficient around 105cm−1 (Im et al., 2011; De Roo et al., 2016)
with amazing PCE = 25% (Xiao et al., 2014; Park, 2015). To manufacture MAPbI3 Solar cells, low-
cost and simple techniques have been used to deposit the MAPbI3 film: thermal vapor deposition,
two-step vapor-assisted deposition (Chen et al., 2013), two-step solution deposition, and one-step
solution deposition (Yantara et al., 2015; Patel et al., 2017). Despite the outstanding PCE reported of
MAPbI3 solar cells, the problem of MAPbI3 degradation by the loss of MAI and formation of lead
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iodide PbI2 under humid conditions and higher temperatures
makes use of MAPbI3 difficult (Ko et al., 2015). Concerning to
improve the stability of MAPbI3, MAPbI3 was doped by cesium
and showed the potential to enhance the stability of MaPbI3 solar
cell under UV irradiance conditions (Niu et al., 2016); also on the
road for stable MAPbI3, the divalent anion Se2− was incorporated
in MAPbI3 structure to increase the atomic interactions between
the inorganic and the organic cations (Gong et al., 2018; Li et al.,
2018). Considering the ongoing discussion, some researchers
have demonstrated that the MAPbBr3 absorber is more stable

than MAPbI3; the MAPbBr3 optical absorption is not appropriate
for solar cell production (Ahmad et al., 2019).

In this research work, the tetrabutylammonium iodide (TBA)
was incorporated into MAPbI3 solution in the form of MA(1-X)

TBA(X) PbI3 thin film to study the effect on the structure-property
of the MAPbI3 when TBA was incorporated in different
percentages. As a result, significant improvement was found in
the crystallinity, morphology, optical properties, and stability of
the MA(1-X)TBA(X) PbI3 thin film. The obtained results are hoped
to help delay the degradation and to enhance the performance of

GRAPHICAL ABSTRACT |

FIGURE 1 | (A) XRD pattern of MA1−xTBAxPbI3 where X%= (0, 1, 2.5,5, and 10), (B) MA1−xTBAxPbI3 photographs (C) FWHM of (011) and (022) peaks of
MA1−xTBAxPbI3 (C) Raman spectra of MAPbI3 undoped and doped with 5% TBA.
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FIGURE 2 | The zoomed XRD peaks, (A) (110) and, (B) (220) of MA1−xTBAxPbI3 where X % = (0%, 1%, 2.5%, 5%, and 10%).

TABLE 1 | Lattice parameters of MA1−xTBAxPbI3 via the Pawley method.

Sample. ID a = b (Å) c (Å) Grain size
(nm)

Roughness (nm) Dislocation density
(nm−1)

Lattice strain
(ε)

MAPbI3 8.90 11.12 184.7 147.7 1.04 × 10−05 0.38
5% TBA 8.91 11.11 249.1 198.5 0.52 × 10−05 0.39
10% TBA 8.99 11.13 209.8 158.0 0.61 × 10−05 0.37

FIGURE 3 | (A) EDS Mapping of MAPbI3 (B–E) SEM images of pure and doped MAPbI3.
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FIGURE 4 | HRTEM Images of undoped and 5% TBA doped MAPbI3.

FIGURE 5 | AFM images 2 and 3 Dimensional of pure and doped MAPbI3.

FIGURE 6 | (A) Optical absorption, (B) calculated bandgap of MA1−xTBAxPbI3 where X % = (0%, 5%, and 10%).
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the MAPbI3 thin film by doping TBA cations under ambient
conditions.

MATERIALS AND EXPERIMENTAL
PROCEDURE

Methylammonium iodide (MAI), Lead (II) iodide (PbI2),
Chlorobenzene (CBZ), Methylammonium iodide (MAI) and
Tetrabutylammonium iodide (TBAI), anhydrous N,N-
dimethylformamide (DMF) and dimethyl sulfoxide (DMSO).
All compounds were purchased from Sigma-Aldrich, and they
were used without any additional purification. The
MA1−xTBAxPbI3 solution was prepared in a glovebox by
dissolving PbI2, TBAI, and MAI in the solvent of DMF and
DMSO; the solution was agitated at 60°C for 3 h.

CHARACTERIZATION TECHNIQUES

X-ray diffraction (XRD) was employed to characterize the
crystallinity of the films using RIGAKU Ultima IV
diffractometer the range of 2θ = 10°–60° using CuKa radiation
(λ = 1.5418 Å) at room temperature. The morphology
characteristic of thin films was constantly observed by
scanning electron microscopy (SEM) model (Quanta 200–FEI)
under 1.5 kV accelerated potential in several magnifications
(Stewart et al., 2021). In addition, the films were examined by
atomic force microscopy (AFM) with 0.5Hz a scan rate. The
fringes crystallinity was confirmed by Transmission electron
microscopy with 2.5 KV. Also, UV-VIS and PL spectra were

characterized using Ocean Optics HR4000 spectrophotometer in
the range of 300–850 nm and He-Cd laser source Si-CCD
detector Hamamatsu for PL analysis, respectively.

RESULTS AND DISCUSSION

In the present work, thin films perovskite MA1−xTBAxPbI3
were successfully deposited on FTO back contact using a
simple spin-coating technique. Figure 1 shows the XRD
results of the MA1−xTBAxPbI3 where X = (0, 1,2.5, 5, 10).
The characteristic peaks located at 14° and 28° match to XRD
planes of (110) and (220) respectively in agreement with
MAPbI3 structure (Ono et al., 2015; Abdelmageed et al.,
2016) without any PbI2 binary phase. Thus, a significant
increase was found in the main XRD peaks (110) and (220)
intensities and crystallinity by incorporating the TBA
amount. Figure 2 represents the zoomed XRD peak in the
range of 13°–15°; the small shift was observed towards a lower
2θ degree after the incorporation of TBA compared to the
MAPbI3 thin film. Furthermore, the increase in the crystal
lattice could be related to a bigger radius TBA (4.70 Å) than a
small radius of MA (1.8 Å).

The MAPbI3 thin film with a tetragonal structure where a = b =
8.90 Å, c = 11.12 Å and with insignificant changes due to TBA
incorporation where a = b = 8.91 Å, c = 11.11 Å. The crystal
parameters details of MA1−xTBAxPbI3 and the grain size were
calculated using the Pawley method summarized in Table 1.
Moreover, FWHM of peaks (110) and (220) values gradually
decrease an agreement of good crystallinity of the films with
increasing the amount of TBA from 0 to 5% in Figure 1C. In
this respect, the stability of the MAPbI3 main (110) peak remains
excellent after incorporating TBA amounts. Especially many
studies have been reported that the inorganized Pb atoms affect
the surface imperfections of the film, which leads to a decrease in
the performance of perovskite devices. In the current work, the
TBA arguably shows a significant improvement of MAPbI3
stability that degrades quickly into PbI2 in external conditions
(Yu et al., 2018).

Here, the Raman spectroscopy analysis was used to verify the
phase identification of pure MAPbI3 and 5% doped TBA

FIGURE 7 | (A) PL spectra and (B) is the normalized PL spectra of MA1−xTBAxPbI3 where X % = (0%, 5%, and 10%) thin film.

TABLE 2 | Band gap variation of MA1−xTBAxPbI3 where X % = (0%, 5%,
and 10%).

Name Eg from PL Eg from UV Stokes shift

λ (nm) Eg (eV) λ (nm) Eg (eV) meV

MAPbI3 Pure 778 1.59 752 1.6 220
5% TBA doped 785 1.57 761 1.58 220
10% TBA doped 786 1.56 763 1.56 200

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8408175

Bouich et al. MA(1-X)TBAxPbI3, XRD, SEM, PL, and UV-VIS Analysis

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Figure 1D. The dominants two vibrational modes were identified
for MAPbI3 approximately at 68 cm−1 and 142 cm−1. The
intensities of the same vibrational mode increased after
incorporating 5% TBA content. The 68 and 142 cm−1 bands
matched with the obtained results from XRD that confirmed
the incorporation of TBA, which plays a vital role in the
formation of crystallinity (Fateev et al., 2018).

Figure 3 illustrates the SEM images of MA1−xTBAxPbI3 where
X % (0%, 1%, 2.5%, 5%, 10%). The undoped MAPbI3 shows a
small grain size with a smooth surface and good distribution of
lead and iodide (Chen et al., 2018). In the same way, the TBA
incorporation increase gradually grain size of 210 nm for pure
MAPbI3, 290 nm for the doped MAPbI3 with 1.0% TBA, 490 nm
for 2.50% TBA as well as with a higher value of 500 nm for 5.0%

TBA figure (a–d). This improvement of the grain size of doped
MAPbI3 can be due to the crystal growth by decreasing crystal
nucleation and lead to good surface coverage and higher
crystallinity, as shown by the XRD analysis (Banerjee and
Chattopadhyay, 2018; Liu et al., 2020). In this connection, the
enhanced crystallinity and grain size could be attributed to fewer
defects in the trap state, decreasing the non-radiative
recombination in the MAPbI3 surface (Guo et al., 2019).

The specimen preparation technique used for perovskite
samples prepared is tripod polishing for perovskite for high-
resolution TEM investigation, scratching the perovskite film
prepared and putting it in the special grid of aluminum to
characterize the samples with TEM analysis, Figure 4 displays
TEM analysis of pureMAPbI3 and doped with 5% TBA expose the

FIGURE 8 | SEM images of Fresh and aged pure and 5% TBA doped MAPbI3 layers.

FIGURE 9 | The XRD pattern of fresh and aged MAPbI3 and 5% TBA samples.
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scattered through lattice fringes spacing of 13.10 Å correspond to
[110] crystallographical plan as well as 7.60 Å match with [220]
crystallographical respectively. The selected portion of the electron
diffraction spectrum shows that pure and 5% TBA doped MAPbI3
films are polycrystalline, where is in good agreement with XRD
results (Giesbrecht et al., 2018; Jones et al., 2019).

Figure 5 showsAFM images with 2 and 3Dimension of undoped
and doped MAPbI3, where the measured roughness is varying, that
offers a change compared to doped and undoped MAPbI3 where

RMS= (147.7, 198, and 168 nm) calculated for the x% TBA where x
= (0, 5 and 10) respectively which is measured by the root-mean-
square (RMS) (Table 1). Moreover, the RMS value of 10% TBA
dopedMAPbI3 shows a slight decrease than the incorporation of 5%
of TBA, showing the optimum level for large grain size and high
roughness in the AFM analysis (Tombe et al., 2018).

OPTICAL AND PHOTOLUMINESCENCE
STUDY

This experiment performed the optical absorption and
photoluminescence measurements for MAPbI3 thin film doped
TBA to analyze the optoelectronic properties. Here, Figure 6A
illustrates the optical absorption of MAPbI3 pure and doped TBA
from 400 to 900 nm wavelength, where the optical bandgap was
estimated around 1.55–1.59 eV. Upon monitoring carefully, the
variation in the optical bandgap was observed by incorporating the
TBA amount (Smith et al., 2019). This significant improvement could
be related to pinhole-free TBAdopedMAPbI3 films, as shown in SEM
analysis (Sun et al., 2017).

Besides, Figure 7 shows the photoluminescence spectrum of
undoped MAPbI3 and doped TBA, where the FWHM intensity
progressively increases with the increase of TBA content. Doped
5% TBA represents a significantly higher red emission around 55 nm.
This emission is three times higher than undoped MAPbI3 thin film.
The results could be attributed to reducing trap density states with

FIGURE 10 | The absorbance of fresh and aged 5% TBA sample.

FIGURE 11 | (A) diagram of MAPbI3 based solar cell (B) Characteristics Parameters Comparison of MAPbI3 based solar cell (C) JV characteristics curves of
MAPbI3 based solar cell.
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decreased charge recombination, which improved the thin film’s
optoelectronic properties (Brennan et al., 2017; Ngo et al., 2018).

In this context, one of the essential parameters of semiconductor
materials is the stokes shift. This shift was observed between the
optical absorption edge and PL peak. The comparison of stoke shift
values is summarized in Table 2. The stoke shift describes the
reduction of lattice parameters in the crystals. The low value of the
stoke shift indicates the good photophysical properties of MAPbI3
(Bouich et al., 2021a; Bouich et al., 2021b).

DEGRADATION STUDY

The degradation of pure MAPbI3 and 5% doped TBA samples
were examined under a dark relative 60% humidity environment
where samples were stored for 15 days. Consequently, a
significant transformation from the black color to the yellow
color was observed for the pure MAPbI3 aged sample after
2 weeks which indicated the dissociation of MAPbI3 to PbI2
confirmed by yellow color compared to 5% doped TBA aged
sample was less affected (Figure 9).

Figure 8 illustrates the SEM images of the MAPbI3 surface
were affected by humidity and the water molecules over the grain
boundaries, which led to the degradation of MAPbI3 and the
formation of PbI2 and MAI. The TBA cation reduced the grain
boundaries to prevent the access of humidity into the film.
Furthermore, the 5% TBA doped MAPbI3 has shown a slight
crystal structure distortion than the pure MAPbI3 (Huang et al.,
2017; Kundu and Timothy, 2020).

Figure 9 displays the XRD patterns and the structural
variations through the degradation of the doped and undoped
MAPbI3 with the characteristic peak (110) of pureMAPbI3 shows
dramatically reduced; however, the 5% TBA doped MAPbI3 thin
film observed less affected by the environment as compared to
pure MAPbI3.

Furthermore, the environmental effect was studied from the
UV-Visible analysis of the 5% TBA doped MAPbI3; Figure 10
shows a slow-down variation in the absorption edge, and the
color changed from dark to brown of the sample after 2 weeks in
relative humidity (60%). The obtained results confirm that
incorporating TBA into the MAPbI3 could decrease the
degradation of the methylammonium lead triiodide absorber
for photovoltaic application.

Device Spiro/MAPbI3/TiO2/F.T.O Simulation
As we noticed a change in the bandgap of doped with 5% TBA
and undoped MAPbI3 has been observed. The effect of thickness

and bandgap variation of the absorber layer has a more significant
impact on the performance of solar cells. We simulate a proposed
solar cell having a model “Gold/SpiroOmTAD/MAPbI3/TiO2/
FTO/Glass” to keep this impact on the cell’s performance. Here
Gold is used as a front contact, OmTAD as ETL, MAPbI3 as an
absorber layer, TiO2 as HTL, F.T.O is working as a back contact,
and glass is a substrate (Kundu and Timothy, 2020; Mesbahi et al.,
2021; Quan et al., 2019).

Figure 11C show the J-V characteristics curve and clearly
show the effect of doped and undoped MAPbI3, Voc was 0.95V,
Jsc of 22.4 mA/cm2, FF of 87.1%, and Eta of 18.01% recorded.
Here we note that undoped is giving less performance, Voc, Jsc,
FF, and Eta were registered as 0.85V, 25.7 mA/cm2, 86.1%, and
20.42%, respectively, which was good as compared to the results
of the film growth and crystallinity (Table 3 and Table.1 in
Supplementary Materials).

CONCLUSION

To sum up, from the preceding discussion, it appears that the
doped with a small amount of TBA significantly increases the
morphology and stability of MAPbI3 thin film for photovoltaic
applications. The XRD analysis revealed that the crystallinity of
MAPbI3 thin film enhanced with TBA, the TBA affects leading
MAPbI3 film with a homogenous, highly rough surface and
large grain size, which could cause trap more light in the surface.
Similarly, the MA(1-X)TBAXPbI3 thin film shows better stability
in a relative humidity of ~60% after 15 days than pure MAPbI3
thin film. The obtained results are hoped to help delay the
degradation and to enhance the performance of the MAPbI3
thin film by doping TBA cations under ambient conditions.
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