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Carbon emissions, being embedded in sectorial production chains, need to be reduced
through targeted carbon emission reduction strategies. For such a reason, it is urgent to assess
the contributions of different influencing factors among different sectors for different supply
chains. Focused on China, being the world’s largest carbon emitter, this paper uses the latest
2018 China’s input-output table to assess different factors, at sectoral scale, related to
embodied carbon emissions. The analysis proved that the total final use factor prompted
the largest emission growth, while the input-output structure factor inhibited the emission
increase significantly. The gross fixed capital formation category was the largest contributor to
aggregate embodied carbon emission growth, followed by urban consumption and export
categories. The construction was identified as a key sector for its embodied carbon emission,
themost relevant intermediate inputs to construction sector are themanufacture of non-metallic
mineral products, the smelting and rolling of metals, and the production and supply of electric
power and heat power sectors. Results indicate that, in the case of China, low-carbon building
materials should be favored in the future. Meanwhile, energy-saving should be promoted
among urban residents to increase the effectiveness of carbon emissions reduction strategies.

Keywords: China, aggregate embodied carbon emission, structural path decomposition, transmission path, low-
carbon building materials

INTRODUCTION

The serious environmental problems caused by increasing carbon emissions attract the attention of
citizens all over the world. As the largest carbon-emitting country, China faces pressures in carbon
control and reduction works (Yang et al., 2020a). With this respect, the Chinese government has
made many arrangements and efforts for carbon emission reduction. On the general debate of the
75th United Nations General Assembly, held in September 2020, China made a clear commitment to
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achieve carbon peak in 2030 and carbon neutrality in 2060. China
is in a developing stage, which requires huge energy availability to
fulfill various production activities. Energy consumption and
carbon emission control guidelines are still emphasized in the
14th Five-Year Plan and Social Development and Vision 2035,
which reflects China’s determination to reduce carbon emissions.

In this context, it is particularly important to study the change
of China’s carbon emissions. The carbon emissions from industry
production activities are essential for carbon reduction targets,
which account for more than 90% of total carbon emissions
(Wang et al., 2017c). In addition to direct energy consumption,
which generates direct carbon emissions, the input-output
process of products among different sectors also emits huge
amounts of carbon.

The carbon emission of a product from its production process
to consumption is usually called “embodied carbon emission”
(Gao et al., 2021). Embodied carbon emissions are placed in the
“black box” of an economic system and can be quantified only
with the help of environmental economic tools. There are several
methods to evaluate embodied carbon emissions, such as the
input-output model and life cycle assessment (LCA) method.
Many scholars used them to study the aggregate embodied carbon
emissions of a region or country, such as the embodied carbon
emission in China exports calculated by the input-output method
from Gong et al. (2016), Zhu et al. (2020) also used the input-
output model to estimate the embodied carbon emission from
China’s building sector. Kayacetin and Tanyer (2020) assessed the
embodied carbon of the built environment by developing the
LCA method, Li et al. (2021a) adopted the LCA method to
calculate embodied carbon emission of straw bale rural houses.
It is generally confirmed that high amounts of indirect carbon
emissions are contained in the supply chain, even far exceeding
direct carbon emissions. However, due to the complexity of the
sectoral production chains in the economic system, embodied
carbon emissions evaluation alone is not sufficient for supporting
carbon control and reduction works. Thus, it is urgent to track
supply chains to find the key sectors and factors that contribute
significantly to embodied carbon emission changes and to
formulate efficient emission reduction measures according to
the characteristics of these key economic sectors.

Many research articles have studied the contributions of
different influencing factors on embodied carbon emissions,
and the number of embodied carbon emission path
decomposition analysis papers are increasing. However, there is
still a lack of research on the input-output relationship among the
sub sectors of key sectors after the identification of key
transmission paths of embodied carbon emissions. This topic is
worth studying because the sub sectors correspond to more
accurate product information, which has more detailed guiding
value for optimizing the input-output structure among key sectors.
This study uses the structural path decomposition method and
ecological network analysis to investigate the factors that influence
the transmission paths of China’s aggregate embodied carbon
emissions and to fulfill the literature gap on this topic, considering
a final user (consumer-side) and detailed sub sectoral perspective.
Specifically, in this study: 1) The latest 2018 China input-output
table is used to reveal the closest aggregate embodied carbon

emissions and their sectoral transmission chains. 2) Six final user
categories are studied to find their contributions to aggregate the
embodied carbon emission changes. 3) The key sub sectors are
further studied to identify their sectoral relationships. The study is
subdivided in four sections. Literature Review presents the relevant
research by literature review. Methods and Data describes the
methods and data used in this paper. Results and Discussion shows
the results and discussion. Conclusion gives the conclusion of
this paper.

LITERATURE REVIEW

The input-output analysis method is widely applied in
environmental studies, despite the fact that it was originally used
to analyze economic problems, such as policy simulation and
economic forecasting, when it was firstly proposed by Leontief
(1986). Based on checkerboard-type input-output tables, this
method is able to assess the environment-related variables
contained in supply chains of various sectors and to evaluate the
sectoral relationship impact on these variables by the Leontief
inverse matrix (Vukic et al., 2021). By introducing a direct
carbon emission coefficient, many scholars used this method to
calculate embodied carbon emissions which are difficult to observe
directly in the black box of the economic trade system, such as the
input-output method used by Huang et al. (2020) to assess the
embodied carbon emissions in China-Australia trade, andWei et al.
(2020) also used the method to calculate the embodied carbon
emissions in China’s interprovincial trade. The input-outputmethod
is often combined with other methods like structural decomposition
analysis, ecological network analysis, and structural path analysis.
Depending on the final scope of the study, these methods are used to
solve problems such as the contribution effect of influencing factors,
the positioning identification of sectoral ecological relations, detailed
information collection of different transmission layers, and the
extraction of key transmission paths.

The structural decomposition analysis method and index
decomposition analysis are two factor decomposition methods,
both of them are applied to study the contribution effects of
various influencing factors on environmental variables, such as
energy consumption and carbon emissions. The index
decomposition analysis can be further divided into Divisia
index decomposition analysis and Laspeyres index
decomposition analysis. The index decomposition method has
the convenience of data acquisition and it does not have to rely on
input-output tables like the structural decomposition method.
However, it cannot assess both the direct and indirect effects on
production chains (it can only study the direct effect), while the
structural decomposition method can well realize both (Hoekstra
and van der Bergh, 2003). Originating from energy system
analysis, the different index decomposition methods have
advantages in energy flows and energy balances analysis
(Wang et al., 2017b). In particular, the logarithmic mean
Divisia index method can effectively solve the problems of
incomplete decomposition and zero or negative values in the
decomposition process. Thus, it has gradually become the
mainstream index decomposition method in recent years,

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8420612

Xu et al. Embodied CO2 Critical Transmission Paths

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


scholars used it to assess the effect of various influencing factors
on carbon emission changes, such as the factor effects on the
carbon emission changes of China’s cement industry by Xu et al.
(2012), Xie et al. (2019) also used the method to study the carbon
emission changes in China’s power industry.

Unlike the index decomposition method, which mainly focuses
on single sector analysis, the structural decomposition method
mainly focuses on whole economy scope studies (Su and Ang,
2012). It contains an additive decomposition form, applied to
absolute variable studies (such as carbon emissions) and a
multiplicative decomposition form, applied to intensity variable
studies (such as carbon intensity). Compared with the
multiplicative decomposition form, the additive decomposition
form has more common applications. Many scholars used it to
study the contributions of various influencing factors to carbon
emission changes in different scopes. For example, Wei et al. (2017)
studied the contributions of technology factors, economic structure,
sectoral connection, and economic scale to carbon emission changes
in Beijing from 2000 to 2010. They found that the former two factors
inhibited carbon growth due to technological progress and economic
structure adjustment, while the latter two factors prompted carbon
growth due to the inefficient sectoral collaboration and rapid
economic development. Ma et al. (2019) studied the
contributions of energy structure, technical factor, final use
structure, and final use level to the carbon emissions of China’s
power sector from 2007 to 2015. Their results proved that the final
user level prompted a huge carbon emission increase, while the
technical factor and energy structure inhibited large carbon emission
growth. Due to the quantitative relationship among final use,
intermediate use, and total output in the input-output table, the
sectoral input-output structure, final use, and sectoral intensity are
generally the key systems influencing factors, as proved by relevant
literature. For example, Cansino et al. (2016) found that the input-
output structure factor and total final use factor contributed the
largest carbon emission increase in Spain from 1995 to 2009. The
carbon emission decomposition result in the Chinese construction
industry by Shi et al. (2017) indicated that the total final use factor
contributed most to the emission increase, while the intensity factor
offset the largest increase of the carbon emissions. The effective
inhibition contribution of the intensity factor on carbon emission
growth was also proved in the carbon emission study in Guangdong
province by Wang et al. (2017a). However, the decomposition
analysis of influencing factors in the above literature only hints at
carbon emission changes at the overall level and does not go into the
sectoral product supply chains.

Considering the complex links between sectors, it is important to
explore the carbon emission sectoral contributions, therefore
ecological network analysis and structural path analysis are the
most widely applied methods to meet this task. Based on the
input-output framework, ecological network analysis can
determine sectoral pair-wise relationships for a given economic
system (Fang and Chen, 2019). The sectoral pair-wise
relationships can be divided into an exploitation, competition,
and mutualism relationship by the integral utility intensity matrix
(Wang et al., 2019). Besides, the ecological network analysis can also
evaluate the stability and health of economic and environmental
systems, such as the energy (Zhang et al., 2010), carbon (Zhang et al.,

2019), water (Wu et al., 2016), and waste (Guan et al., 2019)
transaction systems. For the embodied carbon flows studies based
on ecological network analysis, the interregional carbon flows result
of Duan et al. (2018) shows that the northwest is the largest
controller for most regions in China; Chen et al. (2020) focused
on Dongguan city and they found that the manufacturing industry
has the largest embodied carbon flows. Compared with ecological
network analysis that focuses on evaluating sectoral pair-wise
relationships and system operation situations, the structural path
analysis, proposed by Lantner (1974), mainly studies the
transmission paths among sectors of different environmental
systems. It uses the Taylor series expansion of the Leontief
inverse matrix calculated by the input-output table to split the
input-output analysis results into various transmission layers.
Then, the transmission paths of carbon emissions among sectors
can be studied (Yang et al., 2020b). Many works applied structural
path analysis to study the transmission paths of carbon emissions,
like Shao et al. (2018) who used the method to address the carbon
imbalance issues in China, they found the higher transmission layers
carry larger embodied carbon emissions than the first transmission
layer. Shi et al. (2019) used the method to trace the carbon emission
flows among sectors in China, and the path results show the
electricity sector has the largest direct carbon emissions, and the
construction sector has the highest embodied carbon emissions.
Zhao et al. (2021) combined the path method with the multi-
regional input-output model to explore the carbon emission
transmit features of the electricity sector in China, and they
found intra-provincial trade had transmitted larger embodied
carbon emissions than inter-provincial trade. Combining the
structural decomposition analysis and structural path analysis, the
structural path decomposition analysis can identify the key
influencing factors and how their influence on the supply chain
paths can contribute to carbon emission changes (Wood and
Lenzen, 2009). However, there are a few articles that use the
structural path decomposition analysis to trace the contribution
of transmission paths driven by influencing factors to carbon
emission changes.

In addition to the common influencing factor analysis methods
mentioned above, there are still other methods such as the IPAT
method that focus on the contribution of population, affluence, and
technical factors on the changes of environmental variables (Ehrlich
and Holdren, 1971), and the STIRPAT method proposed by York
et al. (2002) which overcomes the limitation of the IPAT method
which can only be applied to qualitative research, it is a flexible
random regression analysis of the above three types of factors. The
grey correlation analysis can also be used to study the contributions
of influencing factors on carbon emissions, it studies the correlation
between various factors in an economic system dynamically based
on time series data (Li et al., 2021b). Some other econometric
models, such as the neural network model, are widely used to
predict the contribution of influencing factors on carbon
emissions. However, these methods are not like the structural
decomposition method which has advantages in studying the
impact of inter-sectoral production linkages on embodied carbon
emissions, let alone the structural path decomposition analysis which
can study the contribution of influencing factors on the embodied
carbon on various transmission paths. Based on the ecological
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network analysis, the production relationship between sectors can be
presented more intuitively, which provides a more comprehensive
interpretation of the path decomposition results.

In summary, although there is good compatibility among the
structural decomposition method, structural path analysis, and
ecological network analysis, only a few studies used a
comprehensive application of the above methods to study
critical transmission paths of China’s sectoral embodied
carbon emissions. This would allow us to connect the
contribution of different factors to study their effects on
different sector supply chains and to assess the embodied
carbon emission changes from a detailed sectoral perspective.
For such a purpose, this paper used the latest 2018 China’s input-
output table and the results were analyzed to propose some
recommendations on carbon emission reduction strategies.

METHODS AND DATA

The Path Decomposition Model
This study applied the structural decomposition analysis method.
The carbon emission changes from base year 0 to research year 1
can be calculated as:

ΔC � C1 − C0 � f1′X1 − f0′X0 (1)
where f is the sectoral carbon intensity vector, which reflects the
connection between sectoral carbon emissions and economic
activities and represents the emission efficiency of economic
production activities. The carbon emission changes can be
transformed by the two-polar decomposition method,
proposed by Dietzenbacher and Los (1998), as:

ΔC � (Δf′X0 + Δf′X1)
2

+ (f1′ΔX + f0′ΔX)
2

(2)

The input-output table we use is based on a competitive
assumption, which treats the input products as the same as
the domestic products. We used the input coefficient ui �
(xi − ei)/(xi − ei +mi) to eliminate the influence of input
products to domestic production activities. Then, the sectoral
output vector can be expressed as:

X � ÛAX + Yh � (I − ÛA)−1Yh � LYh (3)
whereA is an n × n technic coefficients matrix, n is the total number
of sectors, and L � (I − ÛA)−1 is the Leontief inverse matrix, which
reflects the input-output relationship in the intermediate product
input process among sectors.Y is an n × m final use matrix,m is the
category number of final use, and h is an m × 1 vector whose
elements are all 1. The changes of L can be further calculated as:

ΔL � L1 − L0 � [(I − Û1A1)−1(I − Û0A0) − I](I − Û0A0)−1
� (I − Û1A1)−1[(I − Û0A0) − (I − Û1A1)](I − Û0A0)−1
� L1Δ(ÛA)L0

(4)
and the final use Y can be further calculated as:

Yh � [Y(ĵ Y)−1](ĵ Y)h � TSh (5)

where j is a 1 × n vector whose elements all equal to 1, T �
Y(ĵ Y)−1 is an n × m matrix whose column represent the
proportions of one sectoral final use category to the total
final use category, so the change of T represents the
structural change of final use category. S � ĵ Y is an m × m
diagnose matrix whose elements are total values of different
final use categories, so the change of S represents the changed
value of total final use.

There are six categories of final use: rural consumption (RC),
urban consumption (UC), government consumption (GC), gross
fixed capital formation (GF), inventory increase (IR), and exports
(EX). It is obvious that ΔT � ∑m

r�1ΔT(r), where ΔT(r) is an n × m
matrix whose r-th column is the change of one final use category,
while elements in other columns are all equal to 1. Similarly, ΔS �∑m

r�1ΔS(r).
Based on the above equations, the change of carbon emissions

can further be decomposed as:

ΔC � 1
2
Δf′(L1Y1 + L0Y0)h (CI)

+ 1
2
(f0′ΔLY1 + f1′ΔLY0)h (LF)

+ 1
4
(f0′L0 + f1′L1)⎡⎣∑m

r�1
ΔT(r)(S0 + S1)⎤⎦h (FS)

+ 1
4
(f0′L0 + f1′L1)(T0 + T1)⎛⎝∑m

r�1
ΔS(r)⎞⎠h (TF)

(6)

The four polynomials in Eq. 6 represent the contributions of
four influencing factors to carbon emission changes: carbon
intensity factor (CI), input-output structure factor (LF), final
use structure factor (FS), and total final use factor (TF),
respectively.

By applying the Taylor expansion, carbon emissions can be
calculated as:

C � f′LYh � f′(I + A + A2 + A3 + . . . )TSh
� f′TSh + f′ATSh + f′A2TSh + f′A3TSh + . . .

(7)

Combining Eq. 7 and the two-polar decomposition method,
the carbon emission change can be calculated as:

ΔC � Δf′T1S1h + f0′ΔTS1h + f0′T0ΔSh+
Δf′A1T1S1h + f0′ΔAT1S1h + f0′A0ΔTS1h + f0′A0T0ΔSh+
Δf′A2

1T1S1h + f0′ΔA2T1S1h + f0′A2
0ΔTS1h + f0′A2

0T0ΔSh + . . .

(8)
Then, the contribution of different production layers to carbon

emissions can be analyzed by Eq. 8.
Many transmission paths cause embodied carbon emission

changes. In order to eliminate the paths with little contributions,
the threshold of 0.5% aggregate embodied carbon emission changes
during the research periodwas set to retain critical transmission paths
and eliminate the trivial transmission paths. The ecological network
utility analysis was used to study the pair-wise relationship among key
sub sectors, the detailed process can be found in Zheng et al. (2021).
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Data
The newest input-output table of China is the 2018 table. In
particular, we used 2007, 2010, 2012, 2015, 2017, and
2018 input-output tables to analyze China’s total sectoral carbon
emissions. Tomake input-output data in different years comparable,
we used the double deflation method to deflate the 2010, 2012, 2015,
2017, and 2018 data to the 2007 price level, the price indexes of
different sectors are obtained from China’s statistical yearbook in
different years. Due to the different divisions of the input-output
table and sectoral energy consumption data, we adjusted the input-
output sectoral classification to match the sectoral data. The sectors
in the original input-output table were integrated into 28 aggregate
sectors, their names and IDs are presented in Supplementary
Appendix SA. The carbon emission data issued by CEADs was
used to calculate the aggregate embodied carbon emissions.

RESULTS AND DISCUSSION

Contribution of Influencing Factors on
Aggregate Embodied Carbon Emissions
The aggregate embodied carbon emissions (AECE) of China have
increased sharply from 2007 to 2012. In particular, they increased
by 21.55% from 2007 to 2010, by 15.02% from 2010 to 2012, and
by 39.80% from 2007 to 2012. Despite the fact that carbon
emissions still show an increasing trend after 2012, the
growing rate has slowed down. In particular, it grew by 1.32%
from 2012 to 2015, by 0.37% from 2015 to 2017, by 3.27% from
2017 to 2018, and, surprisingly, by 5.01% from 2012 to 2018.

The changes of AECE were decomposed into contributions of
four influencing factors, as shown in Figure 1.

The contribution of the carbon intensity (CI) factor changed its
direction along the considered five research periods. In particular, it
inhibited the growth of AECE from 2007 to 2010 (by 889.47Mt CO2),
from 2012 to 2015 (by 2,420.94Mt CO2), and from 2017 to 2018 (by
615.96Mt CO2). However, it prompted the growth of AECE from2010
to 2012 (by 244.61Mt CO2) and from 2015 to 2017 (by
737.32Mt CO2).

The input-output structure (LF) factor had a strong inhibitory
effect on the increase of AECE from 2007 to 2018, especially from
2015 to 2017 (it restrained the growth of AECE from 2015 to 2017

by 1727.45 Mt CO2). Despite a tiny prompt effect on AECE
decline from 2007 to 2010 and from 2017 to 2018, a larger
inhibitory effect from 2012 to 2015 emerged as the key carbon
reduction factor among these four factors.

Compared with the LF factor, the final use structure (FS) factor
had a weaker inhibitory effect on the growth of AECE from 2007 to
2018. Even if it inhibited embodied carbon emissions from 2007 to
2012 and from 2015 to 2017, it prompted an increase of 188.71Mt
CO2 from 2017 to 2018. This contribution on carbon emission
growth in just 1 year means that more attention needs to be paid to
the changes of final use structure, especially when the contribution of
the total final use (TF) factor to AECE shows a critical promoting
effect in the five study periods (2454.68, 1703.32, 1873.89, 1251.42,
and 718.46Mt CO2 in five study periods, respectively). The
optimization of final demand structure may play a key role in
reducingAECE in the future. Considering the significant effect of the
TF factor, it was necessary to further analyze the impact of final use
on AECE.

From 2007 to 2018, the gross fixed capital formation (GF)
category contributed significantly to the growth of AECE in four
influencing factors. GF also played an important role in four
influencing factors in five sub research periods. In other words,
when these four influencing factors values changed, the GF
category would trigger a relatively larger AECE change
compared to other final use categories. It is worth noting that
the urban consumption (UC) category would trigger larger AECE
changes in the FS factor, as shown in Figure 2E.

Among rural consumption (RC), urban consumption (UC), and
government consumption (GC) categories, the UC category
contributed larger AECE changes than the other two categories.
Its contribution was similar to the export (EX) category. However,
from 2007 to 2018, the UC contributed more to the AECE growth
than EX in the TF factor. Thus, it can be inferred that the urban
consumption of China increased sharply, while the consumption-
driven economy had a steady development during the considered
research period.

For change trend, the UC category in the TF factor gave its
largest contribution in the research period from 2007 to 2010
(contribution ratio was 18.64%, 457.66 Mt CO2 increase). The
AECE growth driven by the UC category in the TF factor then
had small fluctuations from 2010 to 2015, while the amount

FIGURE 1 | The aggregate embodied carbon emission (AECE) decomposition results from 2007 to 2018.
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declined sharply after 2015. Similarly, the GF category in the TF
factor had its strongest prompt effect on AECE growth from 2007
to 2010 (contribution ratio was 59.47%, 1459.78 Mt CO2

increase), its pulling effect first weakened and then enhanced
from 2010 to 2015, while the AECE growth driven by it decreased
significantly after 2015. Although the GF category in the TF factor

FIGURE 2 | The contribution of influencing factors on the increase of aggregate embodied carbon emissions (AECE) by six final use categories. Figures refer to
different year periods: (A) 2007–2010; (B) 2010–2012; (C) 2012–2015; (D) 2015–2017; (E) 2017–2018; (F) 2007–2018.
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had less AECE growth after 2015 (706Mt CO2 from 2015 to 2017
and 348.07Mt CO2 from 2017 to 2018), its contribution ratio
maintained a level of about 50%, and the ratio even increased by
4.28% from 2015 to 2017. Thus, it can be inferred that the key
sectors, whose products are highly required by the GF category, may
have played a stronger effect on AECE changes. The largest prompt
effect of EX in the TF factor on AECE growth occurred during the
2010–2012 research period (contribution ratio was 20.52%, 349.5Mt
CO2 growth). Then, its prompt effect weakened after 2012.

It should be noted that there are different time spans in sub-
research periods. In fact, the last sub research period only contained
a 1-year span. Thus, the contribution effects of UC, GF, and EXmay
be magnified in the future. The FS and TF factors both directly
related to final use, the CI and LF factors both indirectly related to
final use, and GF, UC, and EX are three key final use categories in
these four influencing factors driving AECE changes.

Transmission Paths of Aggregate
Embodied Carbon Emission Changes
Among Sectors
The differences and changes in the contribution proportion of
various final uses lead to the further analysis of the transmission
layers among sectors driven by final use. As shown in Figure 3,

the strong prompt effect of the GF category on AECE was mainly
from “S25-Construction”, “S25-Construction” needed more
products from “S13-Manufacture of Non-metallic Mineral
Products” and “S14-Smelting and Rolling of Metals”. These
products delivery changes caused the growth of AECE, mainly
depending on the product provided by S13. These two
intermediate sectors needed products from themselves and
“S22-Production and Supply of Electric Power and Heat
Power”. Moreover, these products brought about the increase
of AECE. In other words, the prompt effect of the TF factor on the
AECE growth from 2007 to 2018 was mainly from the GF change
of “S25-Construction”. This change pulled the embodied carbon
emissions from the supply chains derived from “S25-
Construction”, “S13-Manufacture of Non-metallic Mineral
Products”, and “S14-Smelting and Rolling of Metals”, being
key intermediate sectors, whose input changes would cause
more AECE growth than other sectors. In parallel, the “S22-
Production and Supply of Electric Power and Heat Power” was
the key intermediate sector of S13 and S14.

Similar transmission paths also appeared on the CI and LF
factors. The inhibition effect of the CI factor on AECE was
mainly derived from the GF category. The contribution of the
GF category to CI factor was mainly dependent on “S25-
Construction”. Thus, under the products requirement of the

FIGURE 3 | The top 30 supply chains of aggregate embodied carbon emission (AECE) changes during 2007–2018. The left column shows different final uses, the
three columns on its right represent three transmission layers, the sectors in the rightmost column are also the upstream sectors of the supply chain (e.g., “S22.TF”
means S22-caused AECE changes under the effect of total final use factor). The dotted line is only used to distinguish paths. The paths which AECE changes less than
the threshold are not numbered.
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GF category, the carbon intensity change of “S25-
Construction” triggered the reduction of the largest AECE
among 28 sectors. The effect was not directly dependent on its
change, because the direct influence was relatively small on
AECE, while the intensity change triggered a huge AECE
decline on the intermediate product input from “S13-
Manufacture of Non-metallic Mineral Products”, as shown
in Figure 3. This critical carbon reduction path reflects that
the low-carbon evolution of on-site construction in the
construction industry has been fruitful. Due to the
improvement of production efficiency, the products
demand from the non-metallic mineral products sector also
saw an obvious carbon reduction effect from 2007 to 2018.

Although the LF factor displayed almost the same key
transmission paths as the CI factor, there was a tiny difference,
because the input-output structure among various sectors did not
appear on the first transmission layer. The input-output structure
from the second transmission layer to the first transmission layer
changed from 2007 to 2018. This change would inevitably pull
AECE changes. The change of structure related to intermediate
sectors on the second transmission layer, including “S13-
Manufacture of Non-metallic Mineral Products” and “S14-
Smelting and Rolling of Metals”, inhibited a larger AECE
increase, while the input-output structure change between “S22-
Production and Supply of Electric Power and Heat Power” and the
construction sector caused a 61.99Mt CO2 increase. The paths
among the construction sector and the above three intermediate
product input sectors indicate that the construction sector reduces
the demand for high-carbon non-metallic mineral products and
metal smelting products, and improves its own production
efficiency. However, the use structure of power and thermal
products in the construction industry is still not well optimized,
which leads to high embodied carbon emissions.

The transmission path originated by “S22-Production and
Supply of Electric Power and Heat Power”, driven by UC, also
carried significant AECE changes. The UC changes of “S22-
Production and Supply of Electric Power and Heat Power”
prompted large AECE growth directly (316.82 Mt CO2). This
change also affected the intermediate input of S22 to its own,
which also increased AECE growth. Correspondingly, the
changes of the UC ratio of “S22-Production and Supply of
Electric Power and Heat Power” to total sectoral UC inhibited
large AECE growth directly (105.56 Mt CO2).

It is worth noting that, if the “S22-Production and Supply of
Electric Power and Heat Power” appeared on the first
transmission layer, the sector on the higher transmission layer
of this transmission path must be “S22-Production and Supply of
Electric Power and Heat Power” too. This is because “S22-
Production and Supply of Electric Power and Heat Power”
needs some of its own products to fulfill its production
requirements, including some energy recycling processes. As
one of the largest carbon emission sectors, its embodied
carbon emission per unit is higher than other sectors which is
in accordance with the actual case, especially when its demand for
its own products is huge, the rise of the embodied carbon
emissions of the intermediate input process would be more
obvious.

For the GC category, the main transmission path with
apparent AECE changes came from “S28-Other Services”.
Specifically, the GC change of “S28-Other Services” prompted
the AECE to increase by 77.15 Mt CO2. This change further
triggered the change of the product input from “S22-Production
and Supply of Electric Power and Heat Power” to “S28-Other
Services”, which created an AECE increase of 83.68 Mt CO2. On
the other side, the carbon intensity changes of S28 reduced the
emissions by 70.1 Mt CO2 directly, and this change drove a
26.28 Mt CO2 reduction along the transmission path from the
intermediate input process of “S26-Transport, Storage, and Post”.

In the listed top 30 paths, the EX category only had two
transmission paths which were both from the export change of
“S14-Smelting and Rolling of Metals”, while the change of total
export and export proportion brought the opposite contribution
effects. The total export change of S14 created 78.33Mt CO2

directly, while its export ratio change inhibited the AECE
increase by 76.67Mt CO2, both further affecting the product
reuse process of S14, which, in turn, created 23.77 AECE
growth and inhibited the AECE increase by 23.27Mt CO2. For
the other two final use categories, RC and IR, no key transmission
paths among the listed top 30 paths were observed from 2007 to
2018. This is consistent with their weak contributions reflected in
Figure 2.

The top 30 supply chains in the five sub research periods are
presented in Supplementary Appendix SB and the total embodied
carbon emission values of these supply chains are presented in
Supplementary Appendix SC. Firstly, although there were
contribution changes of final use categories on AECE, the
largest AECE changes caused by influencing factors derived
from the GF category, then the UC and EX categories.
Secondly, for the other three final use categories, the RC
category did not have a supply chain in the listed top 30 supply
chains before 2012. During the last three sub research periods after
2012, the RC category had one or two supply chains, and its supply
chains all belonged to “S22-Production and Supply of Electric
Power and Heat Power”. Consequently, among all the 28 sectors,
the carbon intensity changes (from 2012 to 2015) and final use
structure changes (from 2012 to 2018) of S22 generated the largest
AECE changes under the demand of rural consumption. Similarly,
the supply chains of the GC category all belonged to “S28-Other
Services” in the selected five sub research periods, while the supply
chains of the IR category belonged to “S14-Smelting and Rolling of
Metals” from 2012 to 2017 (it did not have a supply chain in the
listed top 30 supply chains in other sub research periods). Thirdly,
despite relatively more diverse supply chains in GF, UC, and EX
categories, these three final use categories also had similar
characteristics of “key sectors” in their supply chains.
Specifically, under the products demand of the GF category to
“S25-Construction”, the carbon intensity, final use structure, and
the gross fixed capital formation changes of “S25-Construction”
always caused large AECE changes indirectly. Moreover, the input-
output structure changes among “S13-Manufacture of Non-
metallic Mineral Products”, “S14-Smelting and Rolling of
Metals”, “S22-Production and Supply of Electric Power and
Heat Power”, “S25-Construction”, and “S26-Transport, Storage,
and Post” also contributed to large AECE changes. For the UC
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category, its key sectors converged at “S22-Production and Supply
of Electric Power and Heat Power” and “S28-Other Services”. The
most evident AECE change was observed in the case of “S22-
Production and Supply of Electric Power and Heat Power”. For the
EX category, its key sectors on listed supply chains changed more
briskly in different sub research periods than other final use
categories. This reflects the changes in the trade situation and
risks faced by exports in different periods. From 2007 to 2010, its
key sector was “S14-Smelting and Rolling of Metals”, whose final
use structure change gave a larger contribution to AECE decline
under the demand of export. In particular, its key sector turned to
“S7-Manufacture of Textile” from 2010 to 2012. Then, “S13-
Manufacture of Non-metallic Mineral Products” and “S14-
Smelting and Rolling of Metals” were the key sectors from 2012
to 2017.

The contributions of the key transmission paths to AECE growth
changed from 2007 to 2018. The transmission path of
“S13→S13→S25→GF” driven by the total final use changes of
S25 prompted 361.32Mt CO2 AECE growth from 2007 to 2010.
Conversely, from 2010 to 2012 and from 2015 to 2017, this
transmission path only prompted 164.02 and 147.31Mt AECE,
despite the fact that it was still the largest contributor to AECE
growth. In the other two sub research periods, this transmission path
prompted 201.76 (from 2012 to 2015) and 68.49 (from 2017 to 2018)
Mt AECE growth, reducing its relevance as an AECE increase
contributor from 2017 to 2018. As one of the typical sectors with
significant indirect carbon emissions, the largest contribution to the
AECE growth, driven by the gross fixed capital formation changes of
construction sector, occurred at the second transmission layer,
consisting in the process from “S13-Manufacture of Non-metallic
Mineral Products” to “S25-Construction”. In parallel, the AECE
growth directly induced by the gross fixed capital formation of the
construction sector was tiny, as shown in the path diagrams. The
AECE contribution decline of this transmission path after 2012 was
due to the promulgation of a series of energy conservation and
emission reduction policies in the construction industry and the
rapid development of green buildings in recent years. The path
diagrams also show that, with the promotion of energy conservation
and emission reduction in the construction industry after 2015, the
energy efficiency of the construction industry has been improved,
the input-output structure between “S13-Manufacture of Non-
metallic Mineral Products” and “S25-Construction” has been
optimized, which inhibit significant AECE growth.

Apart from the above transmission paths, there are some other
paths that need special attention. For example, the GF change of
“S16-Manufacture of General and Special Purpose Machinery”
caused large AECE increase from 2007 to 2018, while its carbon
intensity change caused a large AECE decline, and the input-output
structure between this sector and S14 had a trend of prompting
AECE decline. This path result indicated that the optimization of the
use structure of metal smelting products in this sector can effectively
reduce AECE. In addition, the urban consumption changes of the
products from “S6-Manufacture of Foods and Tobacco” drove larger
AECE growth, and this contribution mainly occurred on the first
transmission layer, which indicates that the emission reduction
measures for urban food and tobacco consumption can
effectively reduce AECE, such as actions against food waste.

The second transmission layer gave a larger contribution to AECE
changes than the first transmission layer, as shown in Figure 4.

This is a practical demonstration that AECE changes mainly
resulted from high transmission layers. Instead, the carbon
emissions, which occurred on the direct product requirement
of final use, were lower compared to the carbon emission on the
sectoral products supply chains. This is true, especially, on the
second transmission layer, where each sector needs products
from other sectors to meet its final use requirement.

Bilateral Sub Sector Perspective
The above results have shown that several key sectors significantly
contribute to AECE changes. In particular, the second transmission
layer has the largest contribution on AECE changes. Consequently,
the detailed relationships among these key sectors are analyzed in
this section to show clearer path results.

Due to the different division schemes of input-output tables in
different years, in order to reflect the current sub sectoral
relationships, the 2017 and 2018 input-output tables are further
analyzed in this section. To reflect detailed sectoral relationships,
the integrated sectors, such as “S13-Manufacture of Non-metallic
Mineral Products”, were restored to multiple sub sectors, like cement,
lime and gypsum, brick, tile, stone, and other building materials. The
direct carbon intensities of these sub sectors were assumed to be the
same as their integrated sector, for the direct carbon emission data of
these sub sectors are missing. The sub sectoral names and IDs can be
found in Supplementary Appendix SD.

The ecological relationships and their strength among these sub
sectors reflected the key embodied carbon emission sources, as
shown in Figure 5. Considering the key exploitation
relationships, “S25-1-Building construction” mainly exploited the
products from “S13-2-Gypsum, cement products and similar
products”, “S13-3-Brick, tile, stone and other building materials”,
“S13-5-Ceramic products”, and “S14-2-Steel rolling products”. In
parallel, “S25-3-Construction installation” and “S28-Other Services”
mainly exploited the products from “S22-Production and Supply of

FIGURE 4 | The contributions of transmission layers to aggregate
embodied carbon emission (AECE) changes in different research periods.
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Electric Power and Heat Power” in 2017 and 2018. These
exploitation relationships are the concrete manifestations of the
key transmission paths that drove significant AECE changes.

There are also other important exploitation relationships derived
from the results represented in Figure 5. In detail, “S14-2-Steel rolling
products” exploited products from “S14-1-Steel”, while “S14-5-Non-
ferrous metal rolling products” exploited products from “S14-4-Non-
ferrousmetal and alloy”. However, these two exploitation relationships
are strict up-down industry relationships, considering that the
exploiting sector must rely on the products of the exploited sector
to carry out its production activities. Moreover, these relationships do
not drive larger AECE changes than the former exploitation
relationships.

The ecological relationships presented in Figure 5 also prove
the competition system among these key sub sectors, with a high
consistency between 2017 and 2018. Excluding the impact of
industrial cycle and research interval, input-output structure and
energy efficiency of these key sub sectors still have great room for
optimization to reduce embodied carbon emissions.

DISCUSSION

Growing research focuses on the study of embodied carbon emissions
on transmission paths among sectors. Compared with relevant studies
which use the structural path decomposition method such as Tian
et al. (2018) who studied China’s manufacture industry’s carbon
transmission paths from 1992 to 2012 and Li et al. (2021c) who
studied the critical embodied carbon emission path of China from
2002 to 2017, this paper presents a more detailed research with
multiple coherent study periods and all six different final use. The

ecological relationships of sub sectors of key intermediate product
input sectors with high embodied carbon emissions are further
analyzed to provide more detailed information of sectoral products’
contribution to embodied carbon emission changes.

In order to truly reflect the actual sectoral input-output situation,
the data processing must be rigorous to eliminate the influence of
some factors, such as price fluctuation or inconsistent division of
sectors, especially when the study contains several research years.
The price deflation process is important not just because one input-
output table is compiled at the current year’s price level, but the
choice of price deflation method will directly affect the follow-up
research results. The deflation process used the GDP index and
double deflation method which are two common methods to make
input-output tables in different years comparable, the GDP index
method is more simple and it retains the data proportion
relationships of the original table basically, while the double
deflation method considers the heterogeneity of sectors and has
more reliable results of comparable input-output tables. The GDP
index method was therefore used to find the discrepancy with the
result obtained above, and the corresponding chart results are in
Supplementary Appendix SE.

Compared with the double deflation method, the factor
decomposition result obtained by using the GDP index method
has minor changes, only the input-output structure factor has
changed its contribution direction from 2007 to 2010 and from
2012 to 2015, while the contributions of the other three
influencing factors only have numerical difference and no change
in their directions in each research period. The carbon intensity factor
has a weaker effect on inhibiting the AECE growth in the GDP index
deflation framework, while the inhibition effect of the input-output
structure factor and the prompt effect of total final use factor have

FIGURE 5 | The ecological relationships and relationship strength among key sectors. Both maps are diagonally separated, the upper left half corresponds to 2018
and the lower right half corresponds to 2017. The exploitation relationships (exploit and exploited) in (A) are illustrated from the row to the column (e.g., S7 exploits S13-2
in 2018, S13-4 is exploited by S6 in 2017). The color of the squares in (B) indicates the strength of the ecological relationship between sectors. The darker the color, the
stronger the ecological relationship.
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magnified.Nomatter the effect directions, thefinal use structure factor
has a small contribution value than that in the double deflation
framework. For the path decomposition results, the path
“S13→S13→S25→GF” carried the largest AECE changes from
2007 to 2018 under both deflation frameworks, and even if the
key path with largest AECE changed from “S13→S13→S25→GF”
during 2007–2012 to “S22→S22→S22→UC” during 2017–2018, this
change is also consistent in the two deflation frameworks. Besides, the
listed top 30 key transmission paths are almost the same in each sub
research and used the above two deflation method, only the AECE
change values on these paths are different. The comparison between
these two methods indicates that the choice of the two deflation
methods has a small impact on the identification of key transmission
paths ofAECE changes under the contributions of sectoral influencing
factors, but it will indeed affect the contribution value and even the
contribution direction of influencing factors, especially for the input-
output structure factor. So it is better to choose the double deflation
method to truly reflect the sectoral input-output relationships in
different research years at the same price level.

CONCLUSION

By analyzing the changes of the sectoral supply chains driven by the
final use and four influencing factors, this paper studied the
aggregate embodied carbon emission changes in China from
2007 to 2018. The results indicated that China’s aggregate
embodied carbon emissions increased from 2007 to 2012, and
slowed down from 2012 to 2018. The input-output structure
among sectors displayed an obvious optimization, which not only
showed the improvement of the sectoral production efficiency, but
also proved that the sectoral dependence on high-carbon products
has weakened during the research period. However, the sectoral final
uses changes triggered the embodied carbon emissions, depending
on the changes of gross fixed capital formation category, urban
consumption, and exports categories. The gross fixed capital
formation changes of the construction sector drove a huge
embodied carbon emission increase through the supply chains,
which contains the manufacture of non-metallic mineral products
sector, the smelting and rolling of metals sector, and the production
and supply of electric power and heat power sector as the key
intermediate products input sectors. From 2017 to 2018, urban
consumption changes influenced the production and supply of
electric power and heat power sector, which caused the largest
embodied carbon emission growth. The supply chains, driven by
the gross fixed capital formation changes of the construction sector,
still prompt a significant embodied carbon emission growth. The
demand of materials from the building construction sector caused
significant embodied carbon emissions. The demand from the
construction installation sector and other services sector, in
relation to the production and supply of electric power and heat
sector, contain large embodied carbon emissions, which provides a
reference for effective emission reduction measures.

Based on the above results, this study can impact on policy
recommendations. Firstly, the policy makers should consider the

innovation and application of low carbon building materials in
building construction. For example, promoting the production
technology innovation of building materials with high resource
consumption such as cement and ceramics, optimizing their
original production process, and looking for possible lower carbon
buildingmaterials products should be attempted. It is necessary to give
full play to the advantages of the building materials industry in
absorbing solid industrial waste and municipal waste and to
prompt the development of a circular and low-carbon economy by
eliminating outdated production capacity and adhering to continuous
technological innovation. Secondly, special attention should be paid to
the carbon emissions contained in the process of construction
installation and residents’ power and heat consumption. The
power and heat consumption on the construction and installation
site should be supervised strictly, and appropriate power supply
equipment should be selected on the basis of rigorous estimation
of power consumption. The power saving propaganda for urban
residents and novel power saving activities design should be enhanced.
Thirdly, structural transformation and development of emission
reduction technologies of the power industry should be prompted,
especially for the positioning adjustment of traditional coal power
generation and the technological innovation of new energy power
generation. These may have important contributions to China’s
carbon peak and carbon neutrality targets.
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