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Improving the survivability of critical loads after extreme events is essential to enhance the
resilience of power systems, especially for distribution networks. A distribution network
with various operational resources can be separated into several sub-distribution networks
without electrical connections. Maintaining the power supply with acceptable power
quality to critical loads in such separated distribution networks is a challenging task for
the operators of power systems. In this paper, an optimization model is proposed to
maximize the ability to supply power to critical loads in distribution networks. Moreover, a
GPU was employed to accelerate the proposed model using genetic algorithm. With the
acceleration of the GPU platform, the solving time was reduced and the population size
can be enlarged to enhance the convergence rate and convergence quality of the
algorithm. Finally, case studies were carried out in IEEE 33-bus and 118-bus systems,
and the effectiveness of the method was validated by comparing the solution results on
GPU and CPU platforms.
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INTRODUCTION

In recent years, a number of extreme natural events have brought huge economic losses to the society
(Panteli and Mancarella, 2015a; Wang et al., 2016; Mohamed et al., 2019). Critical loads, such as
government buildings, communication systems, transportation systems, and the sensors and
controllers of power systems, are essential for the operation of power systems during extreme
natural events, as well as the restoration of power systems after such extreme natural events.
Improving the survivability of critical loads after these extreme natural events can enhance the
resilience of the power system. Resilience is defined as the survivability and the ability to defend
against extreme natural events. It is defined as the ability of the power system to survive, defend, and
recover from extreme natural disasters (Panteli and Mancarella, 2015b; Gao et al., 2016). Nowadays,
more andmore distributed generation resources, such as photovoltaic (PV) systems, small scale wind
turbines, and gas turbines are integrated into distribution networks. Moreover, most loads of power
systems, especially critical loads, are supplied by distribution networks. The operation of distribution
network during and after extreme natural events is essential to enhance the resilience of power
systems.

A huge challenge for the distribution network operation during and after extreme natural events is
the insufficiency of controllable operational resources. Conventional fossil fueled power generators
with large capacities may not be able to connect to distribution networks because of the damaged
transmission networks. In this case, all kinds of operational resources in distribution networks, such
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as distributed PV resources, distributed wind farms, small scale
energy storage systems, diesel generators, demand response
devices, and voltage support devices, should be well
coordinated to provide sufficient operation resources.

Currently, a large number of distributed PV stations, other
renewable resources, and energy storage systems with declining
costs are connected to the distribution network (Mahmud et al.,
2014). Comparing with traditional distribution networks, these
distributed resources make the operating environment of the
distribution network more complex and challenging (Wang et al.,
2020). As indicated in (Wang et al., 2020), the PV systems could
take effects on the voltage quality of distribution network in
different locations. On the other hand, these resources can be
survived after extreme natural events in most cases and bring
more flexible resources to the distribution networks and provide
new technical devices and methods to enhance power supply to
critical loads. All types of flexible operational resources should be
effectively involved in the operation of the distribution networks
to ensure a stable power supply of critical loads and support
restoration after extreme natural events (Utkarsh et al., 2021). An
operation framework is proposed in (Utkarsh et al., 2021) to
coordinate the demand response resources, such as the home
energy systems.

Regulating bus voltages within acceptable area is an important
operational target in distribution networks. Considering the
critical loads are sensitive to the voltage quality, the voltage
optimization model can improve the survival ability of critical
loads. The distribution networks should dispatch various types of
reactive power and voltage support devices, such as distribution
static synchronous compensators (D-STATCOMs), capacitor
banks, and line voltage regulators (LVRs). These devices have
different operational characteristics. For instance, the capacitor

banks (CBs) are ON/OFF-type devices and several discrete
control states are available for LVRs. While D-STATCOMs
can adjust its output power continuously. Thus, coordinate
these devices with different types of mathematic models is a
challenge for the operation of distribution networks. An optimal
operational model is proposed in this paper to coordinate the
operation of different types of devices with a multi objective
optimization model. The proposed model is a mixed integer
nonlinear programming (MINLP) model. These models can be
solved by traditional solution methods and commercial software,
such as the gradient based optimization algorithm (Nicholson
and H. Sterling, 1973; Mamandur and Chenoweth, 1981;
Grudinin, 1998), and decomposition approach (Deeb and
Shahidehpour, 1990). However, the nonlinear characteristics
and binary variables of the optimization model make the
global optimization results can not be achieved guaranteed.
The computing time is varied a lot depends on the proposed
mathematic models. The Genetic algorithms (GAs) are
metaheuristic algorithms and the first GA was proposed by
Professor J Holland in 1975. GAs are widely used to solve the
nonlinear programming (NLP) optimization models of power
systems and can achieve better robustness for various kinds of
mathematic models (Delfanti et al., 2000; Swarup and Yamashiro,
2002; Enacheanu et al., 2008; Queiroz and Lyra, 2009). However,
in solving MINLP problems with strong nonlinear objective
functions, the calculation time and convergence quality
requires a large population number and a long solving time.
In this way, the GA is not acceptable for practical applications.

Population size is an essential parameter for the performance
of the GA. By choosing a large initial population size, the
convergence rate and convergence quality of the algorithm can
be enhanced to obtain better results (Harik et al., 1999). However,
increasing the population size will greatly increase the computing
time, which significantly reduces the value of the algorithm for
practical projects. The genetic operation in the evolution process
has strong independence, and there is no data dependence
between individuals, so the algorithm can be computed
parallelly (Xing Chen et al., 2005). Based on this feature, Xing
Chen, F. Gonzalez Bulnes et al. used a distributed computing
method to calculate the population size generated on multiple
computers, and finally mixed the population to obtain the result
(Gonzalez Bulnes et al., 2013; de la Calle et al., 2015). However,
the distributed computing method needs to switch data results
among multiple computers, which requires powerful
communication capabilities and increase the total computing
time. The cost of setting up powerful control and
communication systems limits the application of distributed
and parallel GAs.

In this study, the proposed optimization model was solved by
GA and accelerated on a graphics processing unit (GPU)
platform by implementing a parallel computing structure.
With the rapid development and iteration of AI technologies,
such as deep learning and reinforcement learning, the hardware
performance of GPU platforms have increased rapidly. For
instance, the GPU of Nvidia 2080TI has Turing TU102
architecture, 11 GB GDDR6 memory, and the single precision
floating point computing performance can exceed 10 Tera

FIGURE 1 | Condition of distribution network after extreme natural
events.
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floating-point operations per second (TFLOPS). The GPU can
process large amounts of data in parallel in the form of single
instruction multiple data (SIMD) through its unique hardware
architecture, which greatly increases the computing speed of
artificial intelligence algorithms. This increased computing
speed, in turn, makes artificial intelligence algorithms widely
used (Topa et al., 2011a; Topa et al., 2011b). Thanks to the
powerful computing performance of GPU platform, a GPU and
GA combined structure was applied to solve the GA in this paper.
The GPU parallelization technology was used to improve the
convergence rate and convergence quality of the algorithm while
reducing the calculation time to ensure that the proposed method
can potentially be applied to practical projects. Currently, there
are some similar works about the parallelized GA algorithms on
GPU platforms (Tsutsui and Fujimoto, 2009; Jaros, 2012; Luo
et al., 2017). In (Tsutsui and Fujimoto, 2009), a standard
quadratic assignment problem was solved by GA on a GPU
platform parallelized. The results showed that the GPU can
accelerate the quadratic assignment problem with GA
effectively. Moreover, multiple GPUs are applied to improve
the performance for Gas on a knapsack problem in (Jaros,
2012). In (Luo et al., 2017), the GPU accelerated GA/MLP
algorithms are applied to extract and classify the features of
electrical signals of neural systems. These indicates the voltage
optimization problem is potential to be solved by the GA on GPU
platform. In this paper, an improved GA was used to solve the
proposed optimization model of the distribution network. This
work is a try to apply the parallelized GPU solved GA algorithms
for the voltage optimization problem in distribution network.

The major contributions of this paper are listed as follows:

1) An optimization model was proposed to coordinate the
different types of operational resources to maximize the
resilience of the distribution network. Power flow
constraints were also considered in the proposed model.

2) A parallel GA was proposed to solve the proposed model on a
GPU platform. The solving performance was improved by the
proposed method and has the potential to be applied in
practical projects.

3) The critical loads in the distribution network can be reliably
supplied with power using the proposed model in this study.
Multiple operational targets can be coordinated in the
proposed model.

The remainder of this paper is organized as follows: Modeling
Typical Reactive Power Compensation Devices presents the
models for various kinds of resources. Voltage Optimization
Model in Distribution Network presents an optimization model
of the distribution network, and describes the large population
genetic algorithm and the parallel computing architecture of the
GPU in detail. Then, in Case Studies, IEEE 33-and 118-bus
systems are tested, and the results demonstrate the
effectiveness of the proposed methods. Finally, Conclusion
draws the conclusions in this study.

MODELING TYPICAL REACTIVE POWER
COMPENSATION DEVICES

As shown in Figure 1, after extreme natural events, such as
typhoons, snow disasters and storms, distribution networks may
lose power supply from bulk power systems. Critical loads such as
hospitals, government agencies, and automatic devices associated
with the operation of power systems are directly connected to the
distribution networks. Once the power supply to these critical
loads is lost, the emergency repair and restoration speed of the
power systems will be affected and reduced. Moreover, cascading
failures may be occurred due to the lost of these critical loads. To
ensure a stable power supply of critical loads after extreme natural
events, it is necessary to dispatch all types of controllable
operational resources in the distribution networks to regulate

FIGURE 2 | Structure of the CBs.

FIGURE 3 | Structure of the LVR.
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bus voltages and maintain the system frequency. Modeling these
operational resources is an essential task for the proposed
optimization model in this paper.

Capacitor Banks
CBs are the cheapest reactive power compensation devices in
power systems. The CB is consisted of several group of capacitors
in both serial and parallel connection as shown in Figure 2.

Each group of capacitors can be connected and disconnected
from the power systems by the status of the switch. In this way,
the CB is a kind of ON/OFF controlled device and can bemodeled
as a 0/1 variable in mathematic models.

QC,out
i � QC(Ui

UN
)2

Ni
C (1)

0≤Ni
C ≤N

i
Cmax,∀i ∈ ΩC (2)

where QC,out
i is the output reactive power of the CB at bus i. The

Ui represents the voltage at bus i and UN represents the nominal
voltage. ΩC is the set of nodes where the capacitor banks are
arranged, QC is the rated output reactive power of each group
capacitors under the nominal voltage. Ni

C is the number of
switches to be closed to active the capacitors. Ni

Cmax is the
upper limit of the number of closed switches and is
determined by the group number of CBs.

Line Voltage Regulator
The LVR is consisted of a transformer and several solid-state
switches as shown in Figure 3. The LVR could regulate the bus
voltage to several setpoints with a fixed step, such as 2.5%, around

the nominal voltage. It is achieved by changing the status of the
solid-state switches to change the ratio of the transformer
connected with the bus.

In this way, the voltage of the bus connected with LVR can
be modeled as a positive discrete variable in mathematic
models.

Ui � U0 +Ni
LVRU

i
St (3)

−Ni
LVRmax ≤N

i
LVR ≤N

i
LVRmax,∀i ∈ ΩLVR (4)

where ΩLVR is the set of nodes where the LVR is arranged, Ui

represents the voltage of bus i, U0 is the nominal bus voltage, Ui
St

is the voltage step for the LVR installed at bus i, Ni
LVR is the

setpoint for the LVR at bus i and is a discrete variable.Ni
LVRmax is

the limit for the setpoint of LVR.

D-STATCOM
D-STATCOM could compensate the reactive power with fast
response and high accuracy. It is consisted of a full bridge power
converter and could adjust its output reactive power according to
the operation commands as shown in Figure 4. Different from
the CB and LVR, D-STATCOM can be modeled as a continuous
variable in mathematic models.

QS,out
i � Qi

S (5)
PS,out
i � 0 (6)

Where QS,out
i represents the output reactive power of

D-STATCOM installed at node i. Qi
S represents the reactive

output power of D-STATCOM for bus i. PS,out
i represents the

output active power of D-STATCOM installed at node i.
All of these resources need to be coordinated to regulate the

voltages of the distribution power systems.

VOLTAGE OPTIMIZATION MODEL IN
DISTRIBUTION NETWORK

Optimization Model
Determining the power flows in a distribution network is an
important task for the optimization of distribution networks.
The radial structure is the most common topology for
practical distribution networks, as shown in Figure 5. The
Distflow equation can be applied to determine the power flows
in the radial distribution networks as follows (Baran and Wu,
1989),

FIGURE 4 | Structure of the D-STATCOM.

FIGURE 5 | Radial network with active power flow.
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Pl,j � Pb,ij − ∑
k∈S(j)

(Pb,jk +
P2
b,jk + Q2

b,jk

U2
k

Rjk), (7)

Ql,j � Qb,ij − ∑
k∈S(j)

(Qb,jk +
P2
b,jk + Q2

b,jk

U2
k

Xjk), (8)

U2
j � U2

i − 2(Pb,ijRij + Qb,ijXij) + (R2
ij +X2

ij)P
2
b,ij + Q2

b,ij

U2
i

, (9)

where k ∈ S(j), the set S(j) refers to the set of child nodes of
node j.

The objectives of the proposed optimization model network
are to minimize the active power loss, voltage deviations of
buses, and operational costs by dispatching controllable
voltage regulating devices. It includes three main objectives
as follows,

1. Bus voltage: This is one of the most important targets for
ensuring a stable power supply to critical loads. Due to the
fluctuating output power of renewable resources, controllable
devices need to respond to fluctuating output power in a short
time to reduce voltage deviations.

2. Active power loss: The energy capacity of energy storage
systems is limited, and the distributed power generation is
random. To maintain power supply for as long as possible, it
is necessary to reduce the active power loss of the distribution
networks.

3. Cost of devices: Compared to D-STATCOM, capacitor
banks have smaller operational costs. To reduce the total cost

of the distribution network economy, capacitor banks will be
dispatched preferentially.

The optimization model of the distribution network is
proposed as follows,

min
Q1
S
,...,Qm

S
,N1

C
,...,Nm

C

γvC
VQ + γpC

ploss + γcC
cos t. (10)

such that

Cploss � ∑
(i,j)∈Nd

P2
b,ij + Q2

b,ij

U2
j

Rij (11)

CVQ � ∑
i∈M

(Ui − Uref)2 (12)

Ccos t � λc ∑
i∈Ω∩ΩS

(Q2
S)2 (13)

Pl,j � Pb,ij − ∑
k∈S(j)

(Pb,jk +
P2
b,jk + Q2

b,jk

U2
k

Rjk),∀j ∈ Nd (14)

Ql,j � Qb,ij − ∑
k∈S(j)

(Qb,jk +
P2
b,jk + Q2

b,jk

U2
k

Xjk), ∀j ∈ Nd (15)

U2
j � U2

i − 2(Pb,ijRij + Qb,ijXij) + (R2
ij +X2

ij)P
2
b,ij + Q2

b,ij

U2
i

∀(i, j) ∈ Nd

(16)

Ql,i � Qc
l,i − Qcom

l,i ,∀i ∈ Ω (17)

Qcom
l,i � Qi

S + QC(Ui

UN
)2

Ni
C,∀i ∈ Ω (18)

Uref − ξ ≤Ui ≤Uref + ξ,∀i ∈ Nd (19)
−Qi

Smax ≤Q
i
S ≤Q

i
Smax,∀i ∈ ΩS, (20)

0≤Ni
C ≤N

i
Cmax,∀i ∈ ΩC, (21)

and the constrains as in (Eqs. 1–7).
Where Nd is the set of nodes of the distribution network, M

is the set of critical nodes, Ω is the set of nodes where the
voltage regulation devices are arranged, ΩS is the set of nodes
where the D-STATCOM is arranged, ΩC is the set of nodes
where the capacitor banks are arranged, Cploss is the active
power loss of the distribution network, CVQ is the bus voltage
offset of critical loads, Ccos t is the D-STATCOM and CBs
operation cost, and γp, γv, γc are the weight coefficients. The
LVR is installed at the root node of the distribution network
and the voltage of the root bus can be controlled to several
discrete values as constrained by Eqs. 3, 4. Constraint (11)
represents the active power loss of the distribution network,
which is equal to the summation of the active power loss in all
branches of the distribution network. Constraint (12)
represents the bus voltage deviations of the critical loads,
which represent the voltage quality of critical loads. The
bus voltage deviations can be calculated based on the bus
voltage and reference voltage. The reference voltage is related
to the demands of critical loads and is set to 1 p.u. in most
cases. Constraint (13) represents the operational costs
associated with the operations of the D-STATCOMs, which
are related to the reactive power output of the D-STATCOMs.

FIGURE 6 | Calculation procedure of GA.
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Constraints (14–16) are the Distflow equations. Constraint
(17) represents the actual reactive power load of the node i,
which is related to the reactive power generated by the
voltage regulation devices. Constraint (18) represents the
reactive power generated by the voltage regulation devices.
The reactive power output of the capacitor banks is related to
the number of groups and the bus voltage of the
corresponding node. Constraint (19) guarantees that the
voltage of each node meets the operating standards of
distribution networks, Uref represents the nominal voltage
for all buses and ξ is commonly set to 0.1 p.u. This constraint
ensures the voltage deviations for all buses are within
secured region. The voltage deviations on the critical
loads can be minimized by the objective function
described in Eq. 12. Constraint (20) represents the upper
and lower limits of the reactive power output of the
D-STATCOM at node i. Constraint (21) represents the
upper and lower limits of the number of capacitor banks
that can be switched at node i.

Improved Genetic Algorithm
As shown in Figure 6, the standard GA consists of the
following parts: population initialization, code, fitness

function, selection operator, crossover operator, and
mutation operator.

The current mainstream coding methods include binary coding
and real number coding. Although binary encoding is simple to
operate and can prove the convergence of GA through the mode
theorem, The hamming cliff problem is still existed and the binary
variable takes up a lot of storage. To avoid these problems, the real
number encoding method was chosen in this study.

Population Initialization
Although the GA is widely used to solve various types of
optimization model problems, the performance of the standard
GA is not good enough to be applied in practical projects that
have a large number of variables and strong nonlinear
characteristics as an MINLP problem. The convergence quality
of the standard GA is poor and it easily converges to local optimal
solutions. Population size is the main factor that determines the
convergence rate and convergence quality of the GA. When the
population size is small, the diversity of individuals is insufficient,
and the search space is small. In particular, for the optimization
model with a large number of variables, the solution space of the
initial individuals covered is limited. Once an individual obtains a
local optimal solution, majority of individuals will converge to the
solution after several iterations of evolution, and it will be difficult
to jump out of the local optimal solution by the operation of the
crossover or mutation operator, which results in the prematurity
phenomenon. In addition, the penalty function leads to the
degradation phenomenon in the early stage of the iteration,
which significantly reduces the evolution speed.

Increasing the population size can increase the diversity of the
individuals, making the initial solution cover a larger area. This
initial solution not only restrains the degradation of the
individuals in the early iteration, but also improves the
convergence rate, and expands the solution space of the
individuals covered. This, in turn, significantly improves the
search ability of the GA. Consequently, there is a high
probability of obtaining a global optimal solution.

Fitness Function
The fitness function is essential to the performance of the GA,
which evaluates the excellence of an individual. The fitness
function is closely related to the objective function of the
optimization model, whereas the constraints in the
optimization model cannot be neglected. Hence, the fitness
function will be constituted by two parts: the first part is the
objective function written in Eq. 10, and the other part is the
penalty function established to satisfy the constraints. The fitness
function can be described using the following equation.

f � 1

γpC
ploss + γvC

VQ + γcC
cos t + λu ∑

i∈Nd

ΔU2
i

(Umax−Umin)2
(22)

Where λu is the coefficient of penalty function, is described as:

ΔUi �
⎧⎪⎨⎪⎩

Umax − Ui,
0,
Umin − Ui,

if
if
if

Ui >Umax

Umin ≤Ui ≤Umax

Ui <Umin

(23)

FIGURE 7 | The calculation procedure of improved GA.
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The most common selection operators are the roulette,
tournament, and elite methods. In this study, the selection
operator is composed of the tournament method combined
with the elite method to ensure convergence of the algorithm.
In addition to good time complexity, the tournament method has
a greater probability of selecting better individuals than the
roulette method.

Crossover and Mutation Operation
The crossover operation is a search process. Individuals can
gradually approach the global optimal solution with the
crossover operation. Because the coding method is based on
real number coding, the simulated binary crossover (SBX) was
selected as the crossover operator. This can be described by the
following equations.

c1 � 0.5[(1 + β)p1 + (1 − β)p2], (24)
c2 � 0.5[(1 − β)p1 + (1 + β)p2], (25)

where is calculated as:

β �
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(2uc)1/(ηc+1) uc ≤ 0.5

( 1
2(1 − uc))

1/(ηc+1)
uc > 0.5,

(26)

p1, p2 are the parents to be crossed; c1, c2 are the offspring
generated by the cross operation; β is the spread factor; uC is
a random number between 0 and 1; ηc is the cross-distribution
index. From Eqs. 18–20, it can be seen that the difference between
the values of the offspring and the parent is inversely proportional
to ηc, which affects the convergence rate and the convergence
precision of the GA. The standard GA is usually set ηc � 2 to
maintain the balance of the convergence precision and
convergence rate. However, in the early stage of evolution, a
smaller ηc would lead to larger individual change steps to improve
the convergence rate. In the later stage of evolution, when the
population has gathered near the global optimal solution, more
attention is paid to the convergence accuracy, and a larger ηc can
make the search more accurate. In addition, due to the differences
in variable types, such as 0/1 variables and continuous variables,
the value of the cross-distribution index needs to be set separately.
Hence, the value of the cross-distribution index before iiter is
ηc,0/1, ηc,conti, and the value of the cross-distribution index after
iiter is η’c,0/1, η

’
c,conti.

The mutation operation aims to avoid premature
convergence of solutions by expanding the existing search
space. A polynomial mutation was selected as the mutation
operator. This can be described by the following equation.

]’k � ]k + δ(uk − lk), (27)
Where δ is calculated as

δ � {[2um + (1 − 2um)(1 − δ1)ηm+1]1/(ηm+1), um ≤ 0.5

1 − [2(1 − um) + 2(um − 0.5)(1 − δ2)ηm+1]1/(ηm+1), um > 0.5.
(28)

The δ1, δ2 is described as:

δ1 � (]k − lk)/(uk − lk), (29)
δ2 � (uk − ]k)/(uk − lk), (30)

where ]’k is the offspring generated by the mutation operation, ]k
is the parent to be mutated, uk is the upper limit of the variable k,
lk is the lower limit of the variable k, δ is the coefficient of
variation, um is a random number between 0 and 1, and ηm is the
variation distribution index. Similar to the crossover operation,
the variation distribution index also needs to be set separately.
Before iiter, the value of the cross-distribution index is ηm,0/1,
ηm,conti and after iiter, the value of the cross-distribution index is
η’m,0/1, η

’
m,conti.

The calculation procedure for the improved GA is
illustrated in Figure 7. Modifying the individuals that do
not meet the constraints, preserving the optimal solution of
each iteration and setting the distribution index by stages
are added.

Parallel Computing Structure of GPU
Although increasing the population will effectively improve
the performance of the algorithm, the population size is
generally set from 50 to 100 due to the linear increase in
computation time. The typical time intervals are several

FIGURE 8 | Calculation procedure of fitness function on GPU platform.

FIGURE 9 | IEEE 33-bus distributed network topology.
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seconds or minutes depending on the control systems of the
distribution networks, which require that the solving time of
the optimization model for the distribution networks cannot
be too long to update the operation commands. Considering
that the calculation time of the fitness function takes up to 90%

of the total calculation time for the GA algorithm, which is not
a logical and temporal correlation between individuals, it is
essential to reduce the calculation time of fitness functions in
parallel computing to make the GA algorithm available for
practical projects.

FIGURE 10 | IEEE 118-bus distributed network topology.

TABLE 1 | Configuration of test systems.

Test system Critical load node Node of compensator Compensator Volume of compensator

IEEE 33-bus 11 7 Capacitor Banks 12 Groups/0.15 MVAR
15 10
21 18
27 22 D-STATCOM −2~2 MVAR
33 25

33

IEEE 118-bus 35 54 Capacitor Banks 15 Groups/0.15 MVAR
62

51 76
105

71 113
25 D-STATCOM −2~2 MVAR

95 75
85

111 91
111
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At present, artificial intelligence algorithms, such as deep
learning and reinforcement learning, are widely used in
various fields. To take advantage of AI algorithms, a large
amount of data is required to train the model. Hence, new
structures of computing systems, such as GPUs and field
programmable gate arrays (FPGAs), that can quickly process
massive data parallelly, have been developed in recent years.

The GPU has a unique hardware structure. Compared with the
CPU, the GPU abandons a large number of storage and control
units to configure additional computing units. Hence, compared
to the CPU, which is good at processing complex logic operations,
GPUs are better at processing large amounts of data with the
same instructions. These computing units are called streaming
processors (SPs). Multiple SPs form a streaming multiple
processor (SM). Each SM has an independent share memory,
and all SMs share the global memory and constant memory.
Thus, the data in different SMs can be shared. When solving a GA
on a GPU platform, each individual can be assigned to different
computing cores for parallel computing, and the population size
can be set to a larger value than a CPU platform. As a result,
increasing the population size of the GA has less effect on the
computing time than the CPU platform.

Figure 8 shows the process of using a GPU to accelerate the
GA. The data of individuals are transmitted from the host
(CPU side) to the device (GPU side), and then a large number
of threads are opened on the device to be prepared for
calculation. Each thread is responsible for calculating the
fitness function of an individual. All the fitness functions of
individuals are calculated in parallel mode on the GPU.
Finally, the results were transmitted from the device back to
the host.

CASE STUDIES

To verify the effectiveness of the proposed optimization model
and solving method, two distribution network systems, IEEE 33-
bus and IEEE 118-bus as shown in Figure 9 and 10 respectively,
were selected for case studies. The computing system includes an
Intel i9-9900K CPU, Nvidia 2080 Ti GPU, 32GB RAM, 12GB
GPU RAM, and CUDA version 10.2.

Table 1 shows the configuration of the test systems, including
the nodes of the critical load and compensators, as well as the type
and capacity of the compensators. The parameters of the GA are
selected as follows: n generation � 500, crossover probability
Pc � 0.85, mutation probability Pm � 0.1, iiter � 20, ηc,0/1 � 3,
ηc,conti � 6, ηm,0/1 � 1, ηm,conti � 3, η’c,0/1 � 5, η’c,conti � 9,
η’m,0/1 � 2, η’m,conti � 5.

When the population size is 50, the solution results are poorly
convergent and the maximum standard deviation of the variables
is 0.4. Although the standard deviation of the objective function is
0.00064, the binary (discrete) type variables cannot converge to a
unique solution. Then, the population size was increased from 50
to 5,000, while the other parameters remained the same. The
optimization model is solved again, and new solution results are
obtained with different population sizes.

Figure 11 shows a comparison of the convergence speed of the
algorithm with different population sizes. This indicates that as
the population size increases, the initial solution and convergence
speed of the algorithm become better.When the population size is
5,000, the convergence of the solution is completed at the 18th
generation, while the population size of 50 achieves convergence
of the solution at the 35th generation. In addition, the values of

FIGURE 11 | Comparison of consequence speeds with different
population size in IEEE 33-bus system. FIGURE 12 | Comparison of consequence speeds with different

population size in IEEE 118-bus system.
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the objective function will be smaller when the population size is
larger. This means that better optimized results can be achieved.
When the population size increases to 5,000, the convergence
quality of the algorithm is improved. The binary (discrete) type
variables can converge to a unique solution, while the maximum
standard deviation of continuous variables is 0.00088, and the
objective function can converge to the same value. The results of
control variables of CBs installed at bus 7, 10, 18 are 5, 2, and 1,
respectively. The output reactive power of D-STATCOMs
installed at bus 22, 25 and 33 are 0.08MVar, 0.283MVar, and
0.543MVar, respectively.

However, increasing the population size will greatly increase
the calculation time of the algorithm, as mentioned before. When
the population size is increased from 50 to 5,000, the running
time is also changed from 2.18 to 180.69 s, which is an increase of
90 times.

Table 2 shows the comparison of computing time on both the
GPU and CPU platforms with different population sizes in the
IEEE 33-bus and IEEE 118-bus system. The GA algorithm
computed on the GPU platform has been revised to
parallelized to enhance the computing performance. For the
IEEE 33-bus system, on the GPU platform, the growth in the
population size had almost no effect on the running time.
Compared with the population size of 50 and the population

size of 5,000, the difference in calculation time is only 1.15 s. This
means that within a certain population size range, the larger the
population size, the better the acceleration effect of the GPU. The
algorithm is accelerated by parallel computing on the GPU
platform, which greatly reduces the running time and
effectively improves the practicality of the algorithm. In testing
the IEEE 33-bus system, increasing the population size of the GA
can effectively enhance the convergence ability of the algorithm.
The long computing time caused by the large population size was
effectively reduced through parallel computing on the GPU
platform.

Furthermore, the IEEE 118-bus system was emulated to test
the effect of the method and the speedup effect of calculating on
the GPU platform in solving the optimization model of the larger
scale distribution network. As shown in Figure 12, in the
optimization model of the larger scale distribution network,
increasing the population size can also improve the
convergence speed of the algorithm. Consider the IEEE 118-
bus system contains more buses than the IEEE 33-bus system, the
maximal size of population is set to 20,000 as shown in Figure 12
to improve the convergence performance. The results of the
population size under 20,000 is marked as the line with
rhombus. When the population size is 20,000, binary
(discrete) type variables of the result can converge to a unique
solution, and the maximum standard deviation of the continuous
variables is only 0.011. When the population size is 50, the binary
(discrete) type variables cannot complete convergence, and the
maximum standard deviation of continuous variables is 0.137.
The results of control variables of CBs installed at bus 54, 62, 76,
105, and 113 are 11, 13, 4, 10, and 10, respectively. The output
reactive power of D-STATCOMs installed at bus 25, 75, 85, 91,
and 111 are 0.32MVar, 0.23MVar, 0.17MVar, 0.36MVar
0.18MVar, and 0.44MVar, respectively. Table 2 also shows in
the IEEE 118-bus system, the calculation time for different
population sizes on the CPU and GPU platforms. It can be
seen that in the IEEE 118-bus system, the speedup effect was
further improved, and the speedup ratio reached 247 times when
the population size was 20,000. The results show that the effect of
speedup in solving the optimization model of a larger scale
distribution network will be more powerful.

TABLE 2 | Computing time of CPU platform and GPU platform with different
populations (IEEE 33-bus system and IEEE-118-bus system).

Test system Population size CPU(s) GPU(s) Speed-up ratio

IEEE 33-bus 50 2.18 2.22 0.98
200 8.99 2.41 3.73
500 17.93 2.37 7.57
2000 63.28 2.53 25.01
5,000 180.69 3.37 53.62

IEEE 118-bus 50 30.29 31.72 0.95
200 110.65 30.93 3.58
500 310.47 33.01 9.41
2000 1341.32 32.77 40.93
5,000 2877.40 37.84 76.04
20,000 11,437.81 46.26 247.25

TABLE 3 | The voltage comparison of the critical loads before and after optimization.

Test system Critical load node Node voltage before
optimization (p.u.)

Node voltage after
optimization (p.u.)

IEEE 33-bus 11 0.928 0.954
15 0.917 0.944
21 0.992 0.994
27 0.945 0.962
33 0.917 0.948

IEEE 118-bus 35 0.934 0.955
51 0.915 0.944
71 0.884 0.911
95 0.946 0.954
111 0.905 0.932
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Finally, Table 3 shows the bus voltage comparison of the
critical loads before and after optimization. By dispatching the
voltage regulation devices, the voltages of the critical loads are
increased, which guarantees the stable and secure operation of the
critical loads. Meanwhile, the active power loss of the system was
reduced. The active power loss of the IEEE 33-bus system was
reduced from 0.2056 to 0.1353 MW, which is a decrease of
34.14%. The active power loss of the IEEE 118-bus system was
reduced from 1.289 to 0.9236MW, which is a decrease of 28.34%.

CONCLUSION

This paper proposes an optimization model for distribution
networks to dispatch controllable operational resources, which
aim to improve the resilience of the distribution networks after
extreme natural events. A GPU-based parallelized GA method
was proposed to solve the proposed MINLP type model for the
operations. A large population size of the GA, and setting the
value of the distributed index by two stages can improve the
convergence quality and consequence speed of the GA.
Meanwhile, the GPU can also accelerate solving of the fitness
function of the GA method with large populations, which
effectively reduces the excessive calculation time. Finally, case
studies with IEEE 33-bus and 118-bus were carried out to show
that the proposed GA method can be solved effectively and
accelerated to enhance the resilience of distribution networks.
The GPU platform can improve the calculation performance
and facilitate GA algorithms to be applied in practical projects.
Further work will consider adding the electrical vehicles to the

optimization model, whose limited energy needs to be
allocated on multiple time scales to achieve the best
optimization results.
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