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With the development of cloud and edge computing, data-driven methods for estimating a
Li-ion battery’s state of health are becoming increasingly attractive. However, existing
data-driven estimation methods have problems of low accuracy and weak robustness that
need to be solved. Focusing on these points, this paper proposes a parallel attention
network combining multivariate time series to extract the mapping relationship between
the selected health features and the state of health. First, multivariate time series are
extracted, which can describe battery aging characteristics at different scales. Then, a
novel parallel learning framework is designed by integrating long short-term memory cells
and an attention mechanism, which can make full use of the health features and help to
solve the challenging issues of estimation accuracy and robustness. Experimental results
show that the proposed model is able to obtain estimation results for different batteries
with a mean absolute percentage error of less than 1%. Compared with existing methods,
the maximum error of the proposed model is 38% lower on average. Furthermore, even
under measurement noise injections of 50 dB, a preferable estimation result (maximum
error of 3.36%) can still be achieved.
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1 INTRODUCTION

Electric vehicles (EVs) are attracting more attention around the world. Due to their high energy
density, long service life, and low environmental pollution, Li-ion batteries (LIBs) have been widely
applied as a power supply for EVs (Li et al., 2020c; Yan et al., 2020). EV batteries must have high
reliability, which will have high economic value and efficiency. However, LIBs are associated with an
increased risk of performance degradation with time, which could result in problems concerning
safety and reliability (Xiong et al., 2020). Accurate state of health (SoH) estimation can play an
important role in applications such as charging management and thermal management. However, it
is a difficult task due to the complex and nonlinear underlying mechanisms of LIBs (Tan et al., 2021a;
Fan et al., 2021). Therefore, accurate and robust SoH estimation of LIBs has been an important
research topic.

Generally, SoH estimation methods can be divided into three categories: 1) Direct measurement
methods, 2) model-based methods, and 3) data-driven methods.

Direct measurement methods mainly estimate the SoH of LIBs based on terminal voltage,
measured current, and impedance, such as coulomb counting and electrochemical impedance
spectroscopy (EIS) (Pastor-Fernández et al., 2017; Islam and Park, 2020). A limitation of using this
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kind of method is that it requires a unique current profile and
complicated equipment, which are hard to obtain in real
operational scenarios (Zhang et al., 2019).

Model-based methods involve equivalent circuit models and
electrochemical models. Circuit models define an electrical circuit
with various components to simulate a cell’s electrical dynamics
(Li et al., 2020d; Wu et al., 2021). An electrochemical model is
another important research direction. Li et al. (2020a) analyzed
the parameter sensitivity of an electrochemical model under both
the charging process and real-world driving cycles. Li et al.
(2020b) explored a state observer based on an extended single-
particle model to control battery behavior by monitoring the
internal states in electrochemical processes. Tang et al. (2019)
presented a systematic method combining experimental and
computational approaches for key parameter acquisition of an
electrochemical model. However, model-based estimation
requires fundamental knowledge of electrochemical behaviors
inside the battery and heavily depends on the model’s accuracy
(Sheng et al., 2021).

To this end, data-driven methods are becoming a common
trend because the input (features) can be mapped directly to the
output (SoH) without necessarily having to choose a physical
model. Much effort has been made from the perspective of health
feature (HF) extraction and data-driven modeling. In addition to
obtaining direct measurement features such as voltage and
current (Ouyang et al., 2021), second-order processing features
converted from voltage curves can also be used as HFs. The curve
peak area was calculated to estimate the SoH (Wang et al., 2021).
Four features extracted from the charging voltage were selected
for SoH estimation (Yang et al., 2018). Relationships betweenHFs
and the SoH can be performed with data-driven models. Deep
neural network (DNN)-based approaches (Yang et al., 2020;
Bhattacharya et al., 2021) extracted the features from raw
charging curve data to obtain the SoH as an output. Recurrent
neural networks (RNNs) were adopted to process an input time
sequence and obtain the nominal capacity (Ansari et al., 2021;
Cheng et al., 2021). Convolutional neural network (CNN)-based
models (Yang, 2021; Zraibi et al., 2021) were utilized to obtain an
estimation result. Tan et al. (2021b) trained a support vector
regression (SVR)-based model to perform SoH estimation. A
Gaussian process regression (GPR) model was designed to
capture the battery cyclic capacity dynamics (Liu et al., 2019).

The above studies show that data-driven approaches can achieve
health state assessment based on historical data samples. However,
the work mentioned above suffers from two major drawbacks
awaiting further improvements. 1) Due to the complexity of the
degradationmechanism and the diversity of reasons for battery aging,
the measurable signals that can reflect the internal electrochemical
characteristics can show a complex nonlinear variation trend with
battery aging. Therefore, to track such complex changes, multiple
features should be extracted and analyzed. 2) Different features have
distinct influences on the final results. However, existing SoH
estimation network models are mostly single-branch models,
namely using the same model to deal with different features,
which limits the performance of extracting various aspects of
battery data. Moreover, it is not reasonable to assume that the
input features make equal contributions to the estimation results.

To address the above problems, this paper proposes a parallel
attention network (PANet) combining multivariate time series.
First, direct measurement features and second-order processing
features from the battery charging curves were chosen, which can
describe battery aging characteristics at different scales. Then, a
novel parallel learning framework was designed to further
improve the generalization capability, accuracy, and robustness
of the estimation results by integrating long short-term memory
(LSTM) cells and an attention mechanism. The parallel structure
makes full use of HFs and helps to solve the challenging issues of
estimation accuracy and robustness.

2 EXPERIMENTS AND HEALTH FEATURE
EXTRACTION

With the development of information technology such as the
Internet of Vehicles (IoV) and cloud computing, more recent
attention has focused on intelligent cloud battery management
systems (BMSs). The battery parameters in EVs are collected and
uploaded to the cloud in real time, and the battery state is
estimated through a data-driven model. BMSs make it possible
to manage the battery and improve the safety of EVs. This paper
focuses on the SoH part of an intelligent cloud BMS, including HF
extraction and the implementation of a parallel-structured neural
network model, as shown in Figure 1.

2.1 Aging Experiments
Five commercially available 2 Ah, 18650 LIBs were selected as the
test objects, and the specifications are displayed in Table 1. The
battery aging dataset utilized in this work was obtained from
experiments on a battery cycling life test platform. The platform
consists of a charge/discharge tester, a programmable constant
temperature and humidity chamber (SANWOOD SMG-150-
CC), and a computer to record data, as shown in Figure 2A.

Capacity is used as the SoH indicator in this paper. The SoH is
defined as the ratio of the current maximum available capacity of
the battery pack to the rated capacity (Li K. et al., 2020). The
formula is as follows:

SoH � Cc

CR
(1)

where Cc represents the current maximum available capacity and
CR represents the rated capacity. The performance of a battery
will degrade exponentially when its capacity fades by 20% or 30%
of its nominal value. When it reaches this threshold, the battery is
considered an unreliable power source and should be replaced
accordingly.

The historical operational data of the batteries, such as the
voltage, current, and temperature, were collected to set up the
database. The practical capacities were calculated by integrating
the discharge current over the discharge cycle duration as the
benchmark values. Figure 2B shows the curve shapes of the
charge voltage and current of a battery, and Figure 2C shows the
SoH data of the five tested battery cells.

The cells were aged with the same cycling profile, including the
battery pretreatment cycle, aging cycle, and capacity calibrating
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cycle. The specific steps are provided in Figure 3 and Table 2. All
the cells were cycled in a humidity chamber at a constant
temperature of 25°C.

2.2 Health Feature Extraction
HF extraction is a key step in the SoH estimation of LIBs, as it not
only affects the algorithm’s computational effort but also enables
the determination of the accuracy.

The common feature inputs for an SoH estimation problem can
bemainly classified into two categories: Directmeasurement features
and second-order processing features. Direct measurement features,
such as the number of cycles, voltage, current, and temperature, are
recorded by the sensors in the BMS. They can be measured easily
and precisely, and reflect the short-term characteristics of batteries.
Features obtained by a simple calculation of the direct measurement
features are referred to as second-order processing features. Second-
order features can extract the long-term dependency after they have
been processed. These two types of features are combined in this
paper to improve the estimation model’s performance.

2.2.1 Direct Measurement Features
The terminal voltage and current of the battery during the
charging process were measured as the direct measurement
features in this paper.

Compared with the discharging process, the charging process is
stationary. Generally, the discharging process is heavily influenced
by load profiles. Different discharging currents result in different

FIGURE 1 | Diagram of an intelligent cloud battery management system (the SoH part) based on a connected vehicle intelligent management platform.

TABLE 1 | Specifications of the tested 18650 batteries.

Item Specification

Maximum capacity (Ah) 2.0
Cathode material LiNiCoMnO2

Anode material Graphite
Nominal voltage (V) 3.6
Maximum charge voltage (V) 4.2
Cutoff voltage (V) 2.5
Cell weight (g) 43.0
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FIGURE 2 | (A) The test platform. (B) Voltage and current response. (C) SoH data of the tested battery cells.

FIGURE 3 | The cycling steps for battery aging. (A) Battery cell pretreatment period. (B) Aging cycle period. (C) Capacity calibration period.

TABLE 2 | Cycling profile for battery aging.

Step Cycling profile

1 Repeat the battery cell pretreatment period 5 times
2 Repeat the aging cycle period 50 times
3 Repeat the aging cycle and capacity calibration cycle 20 times (approximately 1000 cycles)
4 Cycling completed
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discharging voltage differences during the same time interval, which
makes the discharge features less ideal for SoH assessment, especially
in highly fluctuating online applications. In addition, the charging
process is normally controlled by the BMS. Therefore, using data
from the charging process can effectively eliminate the impact of
random working loads on the measurement results.

The essential attributes of a battery can be expressed through its
external characteristics. The battery properties change as the SoH
varies. Accordingly, batteries with different cycle lives or cycle
numbers have different internal properties and external
performance, resulting in different terminal voltages and currents.
Furthermore, obtaining the observed voltage and current for any
battery is simple, ensuring the generalization of the proposedmethod.

2.2.2 Second-Order Processing Features
In addition to direct measurement features, second-order processing
features are receiving increasing attention and are obtained by
transforming the charging or discharging voltage curve. As the
battery cycle proceeds, the battery capacity will gradually decay,
and the battery charging voltage curve will also change. The trend
of the battery charging voltage curve remains the same, but the
charging time inCCmode decreases as the cycle number increases. In
other words, the time duration of the equal terminal voltage interval
gradually decreases as the cycle number increases in the CC charging
step, as shown inFigure 4A. Specifically, for a batterywith a high SoH
value, the charging voltage rises slowly (the blue part of the curve).
When the battery is used for a long period of time with a lower SoH
value, the charging voltage rapidly rises (the red part of the curve).

Based on this characteristic, the method of calculating the
cumulative time of the charging voltage is suitable to estimate the
SoH value for different cycles.

Therefore, in this work, nine features (Tan et al., 2020) are
extracted based on the voltage curve measured during the charging
process for the SoH estimation of LIBs, as shown in Figure 4B.

The charging voltage curve, which can reflect the internal
electrochemical characteristics, is divided into four intervals

based on voltage variation. The first interval is from the start
voltage to 3.85 V. The 3.85 V was mainly set to include the
maximum start voltage for a battery. The last value is 4.2 V,
which is the maximum charge voltage of the battery. Considering
that the curve slope of previous parts changes more, the resulting
curve is split into 2:3:5 based on the voltage value.

Therefore, these nine features are defined as follows. The first
feature F1 is the initial value of the curve. The second to fifth
features are the charging time when the measured voltage reaches
3.850, 3.920, 4.025, and 4.200. These four features are represented
as F2, F3, F4, and F5.

The remaining four features are the integration of the voltage
with respect to time in the four intervals, which represent the
magnetic flux and can reflect the power supply, and these four
features are recorded as F6, F7, F8, and F9. The mathematical
formulation of these nine features is presented as Eq. 2.⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F1 � V(0)
F2 � min t, s.t.V(t)≥ 3.850
F3 � min t, s.t.V(t)≥ 3.920
F4 � min t, s.t.V(t)≥ 4.025
F5 � min t, s.t.V(t)≥ 4.200

F6 � ∫F2

0
V(t)dt

Fi � ∫Fi−4

Fi−5
V(t)dt, i � 7, 8, 9

(2)

2.3 Evaluation Criteria
The root-mean-square error (RMSE),mean absolute percentage error
(MAPE), andmaximumerror (MaxE) are utilized as the performance
evaluation metrics with the equations given below. The MAPE and
RMSE highlight the average accuracy of the model’s estimation. The
MaxE highlights the consistency of model estimations. These three
scores indicate better performance with lower values.

FIGURE 4 | (A) Voltage curves during the aging cycles. (B) Nine features extracted from the charging voltage curve.
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RMSE �
��������������������������∑n

j�1(SoHj
measured − SoHj

estimated)2
n

√
× 100% (3)

MAPE � 1
n
∑n

j�1

∣∣∣∣∣∣∣∣∣SoHj
measured − SoHj

estimated

SoHj
measured

∣∣∣∣∣∣∣∣∣ × 100% (4)

MaxE � max(∣∣∣∣SoHj
measured − SoHj

estimated

∣∣∣∣) × 100% (5)
where SoHmeasured and SoHestimated are the measured and
estimated values, respectively, and n is the sample size.

3 PROPOSED METHOD

The proposed method for SoH estimation comprises two stages:
offline model training and online SoH estimation. For offline
training, historical data were collected to set up a database. In the
online estimation process, the well-trained PANet model, which

can extract the mapping relationship between the features and the
SoH, is applied for SoH estimation.

3.1 PANet Model Method
The primary task in achieving battery SoH estimation is to
develop estimation networks. To address this problem, this
paper proposes an intelligent SoH estimation method based on
a PANet model. The architecture of the proposed PANet model is
shown in Figure 5A.

As discussed in Section 2, two kinds of HFs were chosen. One
is direct measurement features that can reflect short-term
characteristics, and the other is second-order processing
features that can extract long-term dependency. Motivated by
the wide and deep model (Karatzoglou and Hidasi, 2017), which
utilizes two modules to handle two different features to perform
efficient feature extraction, it is reasonable to design a parallel
structure to deal with direct measurement features and second-

FIGURE 5 | (A) The structure of PANet. (B) The structure of LSTM. (C) The structure of the attention mechanism.
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order processing features. However, as the aging of batteries is a
gradual degradation process, this inspired us to introduce an
LSTM network to solve the SoH estimation problem.

The proposed PANet contains two modules, i.e., a deep-LSTM
module and an attention module. Two kinds of HFs are
calculated after obtaining the battery information extracted
from the online measurements. Direct measurement features
are fed into the deep-LSTM module, while the second-order
processing features are fed into the attention module. To obtain
the final estimation result, the outputs of the two modules are
concatenated and fed into a multilayer perceptron (MLP). By
jointly training the twomodules, PANet has the ability to perform
efficient feature extraction. Therefore, the properly learned
feature representations help to solve the challenging issues of
estimation accuracy and robustness.

3.2 Deep-LSTM Module
The deep-LSTM module contains two types of operations,
i.e., MLP and LSTM. The input to this module is the direct
measurement features, which can be denoted as
D � [V1, V2,/, Vt;A1, A2,/, At]T, and t denoting time steps.
The deep-LSTMmodule extracts features from the sequence data
across the time steps and encodes them into a vector, resulting in
an encoding H for the direct measurement features.

H � LSTM(MLP(D)) (6)
The input is first projected into a 256-dimensional space using

an MLP layer with ReLU as the activation function. The ability of
the model to handle unseen features can be developed by learning
a mapping relationship between the low-dimensional input and
the dense embedding vector.

Then, the embedding vector is fed into the LSTM cell (Tan
et al., 2020). The LSTM network was introduced for its ability to
process time-series data efficiently, as it has an internal structure
that can collect key historical degeneration. The LSTM
architecture is shown in Figure 5B.

The LSTM network has three gate structures to increase or
eliminate the information of cell stateCt. In each inference step of
LSTM, the input gate, forget gate, output gate, and modulated
input are updated as:

it � σ(Wi · [ht−1, xt] + bi) (7)
ft � σ(Wf · [ht−1, xt] + bf) (8)
ot � σ(Wo · [ht−1, xt] + bo) (9)

~Ct � tanh(WC · [ht−1, xt] + bC) (10)
where σ is the sigmoid function, expressed as f(x) � 1/(1 + e−x),
xt is the input at time step t and ht−1 is the historical information.
W and b are the network weights and biases for each gate. Each
equation consists of an affine transformation and a nonlinear
activation. Then, the memory cell and hidden state are
updated as:

Ct � ftpCt−1 + itp~Ct (11)
ht � otptanh(Ct) (12)

where p is the element multiplication operator for the vectors.

Voltage and current, although easy to measure and obtain, are
often accompanied by unpredictable measurement noise. This
uncertainty can result in unseen feature combinations. Thus, an
MLP layer is first applied to improve the model’s generalization
by learning a dense embedding vector. The embedded vector is
then fed into an LSTM cell, as LSTM is adaptable to handling
sequential data and can reduce the noise sensitivity to assist in
achieving robust estimation performance.

3.3 Attention Module
The second-order processing features are fed into the attention
module. The input to this module can be denoted as
S � [F11, F12,/, F1t;F21, F22,/, F2t;/;F91, F92,/, F9t]T,
where the first subscript represents the index of the features and
the second subscript represents the time step. This module
contains the attention mechanism, which adjusts the weights
based on the importance of the battery features and extracts the
long-term dependencies.

The attention mechanism was first proposed for translation
tasks (Bahdanau et al., 2015), and it shows the ability of attention
to extract the long-distance dependencies of words in a sentence.
The popular self-attention base transformer (Vaswani et al., 2017)
has been proposed as a new way of thinking about sequence
modeling and has achieved great success. An attention function
can be described as mapping a query and a set of key-value pairs
to an output, where the query, keys, and values are vectors
transformed from the original input. The attention
architecture is shown in Figure 5C.

The attention mechanism assigns different weights to the
input sequence to select the most relevant information
features. The mathematical expressions of the attention
mechanism are as follows:

et � vT(WeSt) (13)
αit �

exp(eit)∑K
j�1exp(ejt) (14)

Yt � ∑T

i�1α
i
tSi (15)

where v and We are parameters to learn. et is the alignment
model through which the compatibility of the query and the
corresponding key is computed. Eq. 14 is the formula of the
softmax operation. The output Yt is computed as a weighted
sum of the second-order processing features at time step t,
where the weight assigned to each value is obtained by
computing αit.

The second-order processing features are calculated from the
voltage curve according to specific rules. Handcrafted features
with domain knowledge can convey additional information for
the estimation of the SoH. Compared with the direct
measurement features (voltage and current), they reflect the
characteristics of different periods in a cycle and have different
contributions to the estimation results.

The attention mechanism enables the network to focus on
specific parts of sequences. Specifically, we allow the model to
learn to pay attention to different features in a sequence of
charging cycles based on their relevance in the SoH estimation
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task and to determine the information in each charging cycle to
be incorporated into the estimation.

4 EXPERIMENTAL RESULTS AND
ANALYSIS

4.1 Experimental Settings
After obtaining the raw data, the SoH measurements were
interpolated to create a supervised learning dataset. In this

research, cell 1 and cell 2 were selected as the training cells,
while the remaining three cells were used as test cells. To train the
network, the mean square error (MSE) function was chosen as the
loss function. Then, the network was optimized using the
gradient descent method with a sufficient Adam learning rate.
An early stopping mechanism was adopted to prevent model
overfitting. Specifically, the training process is terminated if the
monitored validation loss does not decrease for k time points. In
particular, min-max normalization was utilized to rescale the data
in the range of [0, 1] using Eq. 16. It is beneficial for a model if the

TABLE 3 | Performance comparison of different schemes.

Battery number Error criterion FS1 FS2 FS3 Proposed

Cell 3 RMSE (%) 1.40 ± 0.16 1.23 ± 0.13 1.12 ± 0.16 0.94 ± 0.08
MAPE (%) 1.32 ± 0.23 1.13 ± 0.11 1.02 ± 0.15 0.85 ± 0.08
MaxE (%) 3.77 ± 0.41 3.37 ± 0.35 3.37 ± 0.44 2.77 ± 0.23

Cell 4 RMSE (%) 1.45 ± 0.09 1.18 ± 0.11 1.19 ± 0.13 0.87 ± 0.06
MAPE (%) 1.27 ± 0.11 1.16 ± 0.14 1.14 ± 0.14 0.81 ± 0.08
MaxE (%) 3.30 ± 0.15 2.82 ± 0.24 3.05 ± 0.26 2.62 ± 0.27

Cell 5 RMSE (%) 1.27 ± 0.10 1.11 ± 0.07 1.21 ± 0.07 0.94 ± 0.10
MAPE (%) 1.04 ± 0.10 1.03 ± 0.07 1.06 ± 0.10 0.85 ± 0.08
MaxE (%) 3.97 ± 0.22 2.85 ± 0.45 3.69 ± 0.25 2.61 ± 0.22

FIGURE 6 | SoH estimation results and errors of different schemes for cell 3, cell 4, and cell 5

TABLE 4 | Performance comparison of different methods.

Battery number Error criterion Bi-LSTM DCNN FNN RF Proposed

Cell 3 RMSE (%) 1.62 ± 0.11 1.56 ± 0.16 1.11 ± 0.10 1.47 ± 0.09 0.94 ± 0.08
MAPE (%) 1.61 ± 0.17 1.41 ± 0.21 1.03 ± 0.12 1.47 ± 0.12 0.85 ± 0.08
MaxE (%) 3.69 ± 0.28 4.96 ± 0.60 6.35 ± 0.58 4.09 ± 0.39 2.77 ± 0.23

Cell 4 RMSE (%) 1.51 ± 0.07 1.64 ± 0.21 1.13 ± 0.07 1.57 ± 0.07 0.87 ± 0.06
MAPE (%) 1.35 ± 0.09 1.41 ± 0.19 0.99 ± 0.09 1.48 ± 0.14 0.81 ± 0.08
MaxE (%) 3.57 ± 0.22 5.89 ± 0.77 5.23 ± 0.43 3.43 ± 0.31 2.62 ± 0.27

Cell 5 RMSE (%) 1.20 ± 0.15 1.49 ± 0.15 1.43 ± 0.10 1.32 ± 0.08 0.94 ± 0.10
MAPE (%) 1.00 ± 0.09 1.32 ± 0.11 1.20 ± 0.11 1.16 ± 0.16 0.85 ± 0.08
MaxE (%) 3.62 ± 0.36 4.66 ± 0.49 4.66 ± 0.38 3.61 ± 0.35 2.61 ± 0.22

Frontiers in Energy Research | www.frontiersin.org February 2022 | Volume 10 | Article 8449858

Tan et al. SoH Estimation for Li-Ion Batteries

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


FIGURE 7 | SoH estimation results and errors of different methods for cell 3, cell 4, and cell 5

TABLE 5 | Performance comparison of noisy inputs.

Battery number Error criterion No noise SNR = 70 dB SNR = 60 dB SNR = 50 dB

Cell 3 RMSE (%) 0.94 ± 0.08 1.05 ± 0.08 1.09 ± 0.14 1.29 ± 0.18
MAPE (%) 0.85 ± 0.08 0.99 ± 0.09 1.00 ± 0.14 1.24 ± 0.22
MaxE (%) 2.77 ± 0.23 2.85 ± 0.33 2.95 ± 0.38 3.36 ± 0.29

Cell 4 RMSE (%) 0.87 ± 0.06 1.00 ± 0.09 1.05 ± 0.10 1.16 ± 0.15
MAPE (%) 0.81 ± 0.08 0.99 ± 0.12 1.03 ± 0.10 1.08 ± 0.17
MaxE (%) 2.62 ± 0.27 2.58 ± 0.18 2.66 ± 0.26 3.14 ± 0.42

Cell 5 RMSE (%) 0.94 ± 0.10 1.02 ± 0.15 1.05 ± 0.15 1.13 ± 0.15
MAPE (%) 0.85 ± 0.08 0.86 ± 0.20 0.94 ± 0.19 1.02 ± 0.16
MaxE (%) 2.61 ± 0.22 2.86 ± 0.23 2.90 ± 0.24 3.30 ± 0.37

FIGURE 8 | SoH estimation results and errors of noisy inputs for cell 3, cell 4, and cell 5.
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data are normalized before being fed into the model, as it enables
faster convergence during the learning process.

Xnormi �
Xi −min(X)

max(X) −min(X); i ∈ {1,/, n} (16)

where n represents the sample size.

4.2 Analysis of Different Feature Selection
Schemes
Data-driven estimation accuracy is closely related to the feature
selection scheme. As discussed in Section 2, direct measurement
features and second-order processing features were chosen as
HFs, and a parallel learning framework was designed. The deep-
LSTMmodule receives the direct measurement features, while the
attention module receives the second-order processing features.
To verify the effectiveness of this scheme, three alternative feature
selection schemes were created for comparison. Direct
measurement features are fed into both modules, represented
by FS1, while second-order processing features are fed into both
modules, denoted as FS2. In addition, the inputs are exchanged to
ensure that the deep-LSTMmodule and the attention module are
suitable for various features, i.e., second-order processing features
are fed into the deep-LSTM module, while direct measurement
features are fed into the attention module. This scheme is denoted
as FS3.

The experimental results of a variety of feature selection
schemes are presented in Table 3. The results are reported as
the ‘mean ± standard deviation’. The SoH estimation results and
estimation errors are shown in Figure 6.

According to Table 3.

1) as seen from the results of FS2, which denotes that only
second-order processing features are used as the model’s
input, the performance of this scheme is acceptable with
RMSEs of 1.23, 1.18, and 1.11%. As such, it is reasonable
to say that the second-order processing features have a strong
correlation with battery aging.

2) When comparing the results of FS3 and the proposed scheme,
it can be observed that the proposed scheme has better
performance on the three test cells under the three criteria.
This suggests that the two modules play different roles in the
estimation process and that the proposed scheme is effective.

3) The feature selection scheme proposed in this paper has good
adaptability for batteries of the same type. When the model
established using the training dataset is used to test other batteries
of the same type, it can achieve a high accuracy estimation.

4.3 Estimation Results of Different Methods
To verify the effectiveness of the proposed SoH estimation method,
the performance of the proposed PANet was compared to that of
certain published methods and a classic machine learning method,
such as Bi-LSTM (Li et al., 2021), FNN (Kaur et al., 2021), DCNN
(Shen et al., 2020), and random forest (RF) regression. These models
were reimplemented and trained following the author’s description
and supplement, including specified data extraction and loss
functions. The models were all trained and tested on the same

dataset (cell 1 and cell 2 were used as the training cells, while the
remaining three cells were used as test cells).

Table 4 lists the results of the SoH estimation achieved by the
Bi-LSTM, FNN, DCNN, and RF methods in terms of the RMSE,
MAPE, andMaxE. Figure 7 shows the SoH estimation results and
errors produced by different methods for three cells.

In Figure 7, the proposed model can be seen to precisely track
the SoH fading pattern. The model proposed in this paper
estimates the SoH of the three cells with RMSEs of 0.94, 0.87,
and 0.94%, MAPEs of 0.85, 0.81, and 0.85%, and MaxEs of 2.77,
2.62, and 2.61%. From the perspective of the RMSEs, MAPEs, and
MaxEs in individual trials, the performance of PANet
outperforms that of the Bi-LSTM, FNN, DCNN, and RF
methods. As a result, it is acceptable to conclude that the
proposed model is capable of making more accurate SoH
estimations than the other considered methods.

4.4 Analysis of Robustness
Sensors frequently interfere with data acquisition in real-world
applications, making it critical to evaluate the robustness of the
estimation model. Therefore, an analysis was carried out to test
the model’s robustness when dealing with noisy data.

In the real world, noise can be divided into two aspects:
measurement noise and systematic error (Zheng et al., 2018).
Measurement noise, different from systematic error, is an
unpredictable variation in the measured signal. Therefore,
white Gaussian noise, a kind of noise that has uniform power
across the frequency band but has a zero mean value, is applied to
the terminal voltage in this paper to simulate the measurement
noise in real battery signal measurements.

The degree of added noise is notated as the signal-to-noise
ratio (SNR), defined as:

SNR � 10log10(Pv

Pn
) (17)

where Pv and Pn are the average power of the noise-free voltage
and the noise, respectively.

In Table 5, the mean and the standard deviation of the
estimated performance under different SNR measurement
noise injections are displayed and plots are presented in Figure 8.

The estimation results of various noise conditions suggest that
the proposed model has strong robustness. The estimation results
with no noise added are more accurate. As the noise level rises,
the error level rises as well. Even so, a preferable estimation result
can still be achieved since the RMSEs are still well within 1.3%
when the noise is 50 dB. During the entire operation, the SoH
estimation error for the three tested batteries is within 3.5% of the
boundaries. This demonstrates the efficiency of the developed
methodology when the noise has a Gaussian distribution.

5 CONCLUSION

This paper presents an intelligent state of health estimation
method combining multivariate time series. Below are some of
the study’s highlights.
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1) A novel feature selection scheme is proposed in this paper. To
extract more information from battery data, direct measurement
and second-order processing features are combined. The
experimental results show that the proposed scheme improves
the accuracy of the state of health estimation.

2) An intelligent health estimation method is proposed to build a
relationship between the selected features and the state of health.
Experimental results show that the proposed model can estimate
the state of health of different batteries with a mean absolute
percentage error of less than 1%. Compared with four other
models, the maximum error is 38% lower on average.

3) The model’s robustness is demonstrated experimentally by
adding noise to the input. Under measurement noise
injections of 50 dB, a preferable estimation result
(maximum error of 3.36%) can be obtained.

In general, the proposed model is suitable for electric vehicles
with a cooperative vehicle infrastructure system. It is worth
noting that, in addition to neural networks, health feature
analysis and screening also deserve further attention to
improve the accuracy and real-time performance. In future
work, more health feature analyses and screening methods will
be studied and compared.
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