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With increases in the penetration of renewables in grids, there is an increasing demand for
coal-fired power plants to operate flexibly. Regulation of reheat steam temperature is of
great importance for the safe and efficient operation of coal-fired power plants. However,
the difficulty of reheat steam temperature regulation increases largely during flexible
operation due to the large delay and nonlinear properties, especially those units
designed to shoulder base load and with limited regulating strategy. A multistep
prediction model on the reheat steam temperature of a 660-MW coal-fired utility boiler
was developed based on long short-term memory. The results show that the multistep
prediction model performs well. The average root mean square error and mean absolute
percentage error values of the five-step prediction results are less than 0.52°C and 0.07%,
respectively. The correlation coefficients of the five-step predictions are all greater than
0.95. With a sample interval of 30 s, the model provides an accurate prediction of reheat
steam temperature within 2.5 min, which could supply an important reference for the
reheat steam temperature regulation.

Keywords: reheat steam temperature, long short-term memory, multistep ahead prediction, coal-fired boiler,
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INTRODUCTION

As the largest contributor to global greenhouse gas emissions, the energy supply sector needs tomake
great changes to mitigate the climate change, for example, from traditional fossil fuel-based energy
system to renewable energy-based energy system (Kang et al., 2020). The renewable energy
generation capacity has increased rapidly in recent years (Verzijlbergh et al., 2016; Meysam
et al., 2017; Shahbaz et al., 2020; Wang et al., 2020a; Zheng et al., 2021). However, renewables,
such as solar and wind, are variable and intermittent, making them difficult to meet the stable and
sustainable energy demand. Dispatchable and flexible power is urgent to balance the electrical
supplies and demands (Wang et al., 2018; Zhao et al., 2018). Given the technological limitation of
large-scale energy storage, conventional thermal power plants must compensate for the demand in
the grid. In China, the large-scale existing coal-fired power plants have become an important pillar in
balancing the demand and supply in grids. Traditionally, large coal-fired units were designed to
operate at 6,000 to 8,000 full-load hours per year based on the designed conditions. Frequent load
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transients represent significant challenges to the operation of
coal-fired plants with regard to safe operation and efficiency
improvement (Zeng et al., 2019; Wang et al., 2020b).

The reheat steam temperature is an important factor that
affects the safe, efficient, and economical operation of coal-fired
unit (Zhu et al., 2019). Low reheat steam temperatures lead to
decreases in the thermal efficiency and the operation safety of the
unit because of the increase in humidity at the end of steam
turbines. High reheat steam temperatures impact the strength of
the metal tube, making it less safe. Frequent changes in load have
a significant influence on the stability of reheat steam temperature
(Fan et al., 2021; Wang et al., 2020c; Wang et al., 2020c; Fan et al.,
2021). The reheat steam temperature has the characteristics of
large delay and large inertia and is affected by many factors, such
as unit load, coal quality, desuperheating water flow, fouling and
slagging, coal-air distribution, and excess air coefficient. The
reheat steam temperature object exhibits nonlinear and time-
varying characteristics under various disturbances, making it
difficult to control (Li et al., 2019).

To improve the regulation of steam temperature, scholars have
carried out extensive researches. Sanchez-Lopez et al. designed a
model-based controller (dynamic matrix control), and an
intelligent controller (fuzzy logic control) has been and
implemented for steam temperature regulation of a 300-MW
thermal power plant (Sanchez-Lopez et al., 2004). The results
indicated that the fuzzy logic controller had a better performance.
The overshoot was reduced, and the regulation of the steam
temperatures was tighter. Hýl and Wagnerová (2016) presented
standard cascade control with two PI controllers and added feed
forward control for disturbance measurement, compensation of
level change in steam production, and compensation of valve
nonlinearity. Ma et al. (2012) presented a predictive optimization
control method based on improved mixed-structure recurrent
neural network (RNN) model and a simpler Particle Swarm
Optimization algorithm for superheated steam temperature
control. Muhammad et al. (2012) presented a model predictive
control (MPC) to implement at plant steam distillation pot with
induction heating system and found MPC is able to control the
steam temperature in more efficient way using a first-order ARX
model. Lee et al. (2009) develop an Inverse Dynamic Neuro-
Controller (IDNC) by utilizing the inverse dynamic relationship
of the superheater system for a large-scale ultra-supercritical
boiler unit and found the convergence speed of the IDNC is
faster than the conventional cascaded PID control scheme. Best
control result can be acquired by the IDNC together with a simple
PID feedback compensator. Wang (2014) proposed a fuzzy-PID
control scheme for main steam temperature control. Sun et al.
(2017) upgraded the outer-loop PI controller to active
disturbance rejection controller (ADRC) to eliminate the
sluggish response to the external load disturbances and
introduced multiobjective optimization to improve the
superheater steam temperature control performance and thus
to enable the load being quickly adjusted in a wider range. Wu
et al. (2019) proposed a modified ADRC is to enhance the control
performance of superheated steam temperature in a 300-MW
circulating fluidized bed.Wang et al. (2020c) proposed a modified
reheat steam control that takes the change of heat storage in metal

and the deviation of reheat steam temperature into account,
which is helpful to stabilize the steam temperature in the
transient process. Although the regulation of primary steam
temperature has attracted a lot of concerns, studies on reheat
steam temperature is still lacking.

Owing to the complex combustion and heat transfer in coal-
fired boilers, it is challenging to develop a full-scale dynamic
model of coal-fired boilers based on the first principles of energy,
mass, and momentum conservations. Fortunately, machine
learning techniques, which are powerful in complex process
modeling (Wu et al., 2020), offer an alternative approach. The
novel methods extract the interrelationships among operational
variables and target variables from historical operational data
without the need to solve complicated conservation equations.
With the rapid development of computer science and machine
learning, application of intelligent algorithm in industrial process
is possible. Meanwhile, large-scale power plants have abundant
measuring points; a lot of operation data are recorded in
distributed control system and supervisory information system
(SIS). Therefore, data-driven modeling and predictive control
with high requirements for data volume and computing power
are increasingly applied to the improvement of control systems in
coal-fired power plants. The data-driven methods have been
widely applied in combustion prediction and optimization (Li
et al., 2014; Li and Niu, 2016; Cheng et al., 2018), NOx emission
prediction and reduction (Smrekar et al., 2013; Song et al., 2016;
Yang et al., 2016; Tan et al., 2019; Xie et al., 2020; Kang et al.,
2021), wall temperature prediction (Dhanuskodi et al., 2015; Xie
et al., 2020), estimation of exhaust steam properties (Guo et al.,
2016; Laubscher, 2019), boiler–turbine coordinated control (Wu
et al., 2013; Wu et al., 2014a; Wu et al., 2014b), and so on.
However, the application of machine learning on steam
temperature prediction is rare. The essential problem in steam
temperature regulation is the large and variable time delay. A
multistep ahead prediction model may serve as a feedforward
signal to improve the steam temperature regulation in flexible
operations.

In this study, the long short-term memory (LSTM)
(Hochreiter and Schmidhuber, 1997), which has a good
performance on modeling dynamical systems (Zarzycki and
Ławryńczuk, 2021), was introduced to carry out the multistep
prediction modeling of reheat steam temperature with actual

FIGURE 1 | Structure of RNN and LSTM.
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operation data of a 660-MW subcritical tangential pulverized
coal-fired utility power plant.

BRIEF INTRODUCTION ON LSTM
ALGORITHM

RNN is a class of artificial neural networks where connections
between nodes form a directed or undirected graph along a
temporal sequence as shown Figure 1. This allows it to
represent temporal dynamic behavior. LSTM is an important
variant of traditional RNN. It is augmented by adding recurrent
gates called “forget gates” as shown in Figure 1, where
information can be selectively remembered or forgotten,
making it effectively solve problems with long-time
dependence (Li et al., 2019). It is observed as the most
effective RNN in industrial applications. The specific formula
of LSTM is listed as follows:

Forgetting gate:

ft � σ(Wf · [ht−1, xt] + bf) (1)
Input gate:

it � σ(Wi · [ht−1, xt] + bi) (2)
State updating:

gt � tanh(Wc · [ht−1, xt] + bc) (3)
Ct � ft*Ct−1 + it*gt (4)

Output gate:

ot � σ(Wo · [ht−1, xt] + bo) (5)
ht � ot*tanh(Ct) (6)

where f, i, C, and o are the forget gate, input gate, cell state, and
output gate activation vectors, respectively; W represents the
connection matrix; xt is the input vector at moment t; ht-1 is
the output of the hidden layer at moments t-1; b is the bias vector;
and * represents element-wise multiplication. σ and tanh are
activation functions.

The function of “gate” is to filter information, which solves the
information redundancy problem by strengthening the weight of
the main information and weakening the weight of irrelevant
information. The “gate” prevents LSTM from gradient vanishing
or exploding.

The prediction model in this work needs to add a full
connection layer on the basis of the single-layer LSTM. To
increase the number of LSTM layers, only the LSTM layer
needs to be added before the fully connection layer. Figure 2
is a single-layer LSTM model for multistep prediction of reheat
steam temperature.

MODELING REHEAT STEAM
TEMPERATURE WITH LSTM

The studied object of this work is a 660-MW subcritical tangential
pulverized coal-fired utility boiler. The continuous rating is
2,100 t/h. The rated reheat steam temperature is 542.7°C, and
the allowable deviation from the rated value during operation
ranges from −10°C to +8°C. The arrangement of heat exchangers
is illustrated in Figure 3. It should be noted that the low-
temperature reheater, marked as R1 in Figure 3, is arranged
on the front wall above the elevation of furnace arch. It is radiative
heat exchanger. The steam flows to the rear suspension reheater
after leaving the low-temperature reheater and then flows to the
front panel reheater. In the back flue, the low-temperature
superheater and economizer are arranged successively. As the
boiler was designed to undertake the base load, the reheated
steam temperature adjusting measures is limited. Adjusting the
elevation of the high-temperature zone in the furnace is the
primary measure on the combustion side, specifically including
adjustment of burner tilt position, excess air coefficient, and the

FIGURE 2 | Schematic diagram of single-layer LSTMmodel for multistep
prediction model.

FIGURE 3 | Schematic diagram of the arrangement of heat exchangers.
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distribution of secondary air. Desuperheating water is the only
adjusting measure on the steam side.

The reheat steam temperature in a coal-fired boiler is affected
by many variables, which could be primarily divided into fire side
and water and steam side. According to the basic knowledge of
the coal-fired boiler and the engineers’ suggestions, a total of 11
variables are used as the input of the multistep prediction model.
These variables include total fuel flow rate, burner tilt position,
pressure difference between furnace and wind box, excess air
coefficient, SOFA damper opening percentage, secondary air
damper opening percentage, feed water flow rate, feed water
temperature, superheat desuperheating water opening
percentage, reheat desuperheating water opening percentage,
and reheat steam temperature. Among these variables, furnace
pressure difference represents the furnace wind speed, secondary
air damper opening percentage represents the furnace wind flow
rate, and the excess air coefficient is calculated by the oxygen
content. Unit power load is a very important variable. However,
the load is given for coal-fired units and is correlated with other
variables. The unit power load is not taken as the input variable in
this work. Because the output of the model is the predicted value
at the future moment, rather than the regression value at the
current moment, the output value at the past moment can also be
regarded as input variables. Thus, the input of the multistep
prediction model is {[XY]t−(K−1), [XY]t−(K−2) . . . [XY]t}, the
output is {Yt+1, Yt+2 . . .Yt+5}, and the time step of output is
five. Unit and range of each variable are shown in Table 1.

In total, 360,000 sets of data, obtained from the SIS at a
sampling frequency of 1 Hz, were used for modeling. The first
70% were set as the training set for the model training process,
whereas the remaining 30% were set as the test set for the
validation of the model. The test data were kept away from
the model training process. In order to ensure that the two
datasets have different distribution, the two sets were collected
from two different operation periods.

Before modeling, data preprocessing was required. First,
manual examinations of noise and outliers were conducted to
improve the quality of the dataset. Second, variables that remain
unchanged throughout the sampling period were removed, and
variables with multiple measurement points were averaged.

As the actual operating environment of the power plant is
relatively harsh, electromagnetic interference and measurement

fluctuation are inevitable. Noise or spike usually exists in the
original data, which affect the modeling performance. Data
filtering is necessary to further remove data noise. As boiler
operation data are a deterministic signal, the finite impulse
response (FIR) digital filter (Neuvo et al., 1984) was used. In
the filtering process, Hanning window was applied with cutoff
frequency of 0.02 to 0.03 Hz. The filter order was set as 50, and
single filter data segment length was 4,000. The original and
filtered pressure differences between furnace and wind box are
illustrated in Figure 4. As seen, the filtered data keep the primary
dynamics but filter out minor fluctuations, demonstrating that
the filtering process is necessary and effective. Considering the
time scale of reheat steam temperature is minute level.
Occasionally, the response time could even be up to 10 min.
In order to capture the dynamic characteristics of reheat steam
temperature, resampling was carried out after filtering.
Resampling process with intervals of 10 s, 30 and 60 s were
conducted comparatively. Both 10- and 30 s resampling
intervals can follow the primary dynamics of the reheat steam
temperature, whereas the 60-s resampling interval may lose some
small fluctuations. After a comprehensive consideration of the
model complexity and the effectiveness for reheat steam
temperature regulation, 30 s was finally used. After filtering
and resampling, min–max normalization was used to decrease
the effect of the magnitude differences of input variables on the
model performance, and the variables was scaled to [0, 1].

The Keras library (Chollet, 2015) with a TensorFlow (Abadi
et al., 2016) backend was used to build the LSTM-based multistep
ahead steam temperature prediction framework in this study.
EarlyStopping (Prechelt, 1998) and Dropout (Srivastava et al.,
2014) are used in the model to prevent overfitting. EarlyStopping
is used to monitor the training process of model. When the
change amplitude of loss of training set is small enough, the
training will be stopped in advance, which can effectively reduce
the model training time and prevent from overfitting caused by
the continuous training of model. The role of Dropout is to
randomly set a part of the unit to 0 when the model training is
updated to prevent the model from relying on individual units.
When increasing the number of LSTM layers, Dropout is used for
each layer. The model uses Adam training method, the learning

TABLE 1 | Unit and range of each parameter.

Variables Unit Range

Unit power load MW 228 to 660
Total fuel flow rate % 39 to 110
Burner tilt position ° −9.5 to 12.6
Pressure difference between furnace and wind box mBar 3.6 to 17.7
Excess air coefficient − 1.1 to 1.6
SOFA damper opening percentage % 24.4 to 30.6
Secondary air damper opening percentage % 24.8 to 74.1
Feed water flow rate kg/s 170 to 561
Feed water temperature °C 214 to 267
Superheat desuperheating water opening percentage % 0.4 to 100.0
Reheat desuperheating water opening percentage % 0 to 39.95
Reheat steam temperature °C 502 to 545

FIGURE 4 | Curves before and after FIR filtering.
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rate is 0.001, and the learning target is mean square error. Three
evaluation criteria, for example, root mean square error (RMSE),
mean absolute percentage error (MAPE), and correlation
coefficient (r), were introduced. Their formulas are as follows:

RMSE �
������������
1
n
∑n
i�1
(ŷi − yi)2

√
(7)

MAPE � 1
n
∑n
i�1

∣∣∣∣∣∣∣∣∣∣ŷi − yi

yi

∣∣∣∣∣∣∣∣∣∣ (8)

r � Cov(Ŷ, Y)�������������
Var[Ŷ]Var[Y]√ (9)

where ŷi represents the predicted value, and yi represents the
actual value. Cov and Var are the covariance and the standard
deviation, respectively.

In order to reduce the impact of parameter magnitude on
model performance, it is necessary to optimize model parameters.
As the five outputs of the model are predictive values of reheat
steam temperature at different time steps, the RMSE of the output
is in the same standard, and its mean value is significant. The
RMSE value can better represent the model performance than the
correlation coefficient (r) value, so the mean value of RMSE is
used as the evaluation standard for the parameter adjustment of
the multistep prediction model. For parameter calculation, the
Dropout parameter is 0.3, and the length of the data set is 6,000.
The first 70% is used as the training set, and the remaining 30% is
used as the test set. After adjusting the model parameters and
structure, the cutoff time step is selected to be 390 s; the number
of LSTM hidden layer nodes is 256, and the number of LSTM
layers is 1.

RESULTS AND DISCUSSION

Model Development
The performance of a data-driven primarily depends on the
quality of data and the hyperparameter of the used model. As

for the LSTM, the principal hyperparameters include the look-
back time step, the number of LSTM layers, and the number of
nodes in each layer. The look-back time step limits the depth of
LSTM unfolding over time and determines the maximum length
of the input data. It should be noted that the look-back time step
in LSTM is different from the delay time order in conventional
time-series forecasts. Theoretically, LSTM can automatically
determine the delay time order through the gate structure in
the memory cell if the preset time step is big enough. However, an
elaborately determined look-back time step can prevent from
underfitting or overfitting, reduce the difficulty of the training
process, and speed up convergence. In this study, 19 trials of look-
back time step, for example, 2, 3, . . . , 20, were conducted to
obtain the optimal look-back time step while studying the effect
of look-back time step on the performance of reheat steam
temperature. As the weight matrices of LSTM are randomly
initialized and the primary weight matrices have nonnegligible
influences on the final prediction performance, five experiments
were conducted for each look-back time step, and the average
RMSE values of the five experiments were compared. As seen
from Figure 5, the average RMSEs of training data change little
with different look-back time steps, which indicates the LSTM
model has an excellent representation ability upon the dynamics
of reheat steam temperature. The average RMSEs of test data are
much bigger those of training data, and the changes of average
RMSEs with different look-back time steps are significant. This
indicates that the look-back time step has an important influence
on the generalization capacity of the model. Generally, the
average RMSE decreases initially and then stabilizes as the
look-back time step increases. In consideration of model
complexity and computational cost, the look-back time step
was set as 13.

The number of LSTM layers is an important hyperparameter
that determines the structure of the neural network. Generally,
the representation capacity increases with the increase in the
layers of neural networks. However, the training difficulty
increases exponentially. Besides, too many hidden layers may
lead to overfitting. Thus, the best choice of hidden layers is
different for a specific problem. In this study, two trials with
one and two LSTM layers were conducted to obtain the best
neural network structure. Similarly, five repeated experiments
were conducted for each trial to improve the reliability. The
results are summarized in Table 2. Obviously, the network with
one LSTM layer performed better than that with two LSTM layers
upon both the average RMSEs of training data and test data.
Therefore, one LSTM layer was finally selected.

The number of LSTM nodes is another important
hyperparameter for the LSTM. Eight trials on the number of
nodes in LSTM layer, for example, 8, 16, 32, 64, 128, 128, 256, 512,

FIGURE 5 | Average RMSEs with different look-back time steps.

TABLE 2 | Average RMSEs with different number of LSTM layers.

No. of LSTM layers Average RMSE (°C)

Training data Test data

1 0.5763 2.1694
2 0.8906 2.9375
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and 1,024, were conducted with the previously determined look-
back time step and number of LSTM layers. Five trials were
conducted for each experiment. As seen from Figure 6, the
average RMSE decreases initially and then slightly increases
with the increase in the number of LSTM nodes. The average
RMSE is smallest when the number of LSTM nodes is 256. Thus,
256 LSTM nodes were used in the final reheat steam temperature
prediction model.

Through optimizing the hyperparameter and structure, the
LSTM-based multistep ahead prediction model of reheat steam
temperature was finally established. Thirteen look-back time

steps and one LSTM layer with 256 hidden nodes were used
eventually. The number of predicted steps was 5.

LSTM Modeling Performance
The predicted reheat steam temperatures versus the measured
temperatures from the test data are illustrated in Figure 7. The
red dashed line in the figure is the prefect line, on which the
predicted results are equivalent to the measured values without
error. The blue points, which correspond to the measured data,
represent the predicted value. The five plots present results of
different predicted steps, for example, from steps 1 to 5. As seen,

FIGURE 6 | Average RMSEs with different number of hidden nodes.

FIGURE 7 | Results of predicted temperatures versus measured temperatures from test data.

FIGURE 8 | Distribution of the absolute errors on training data.
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most points in the five plots are closely distributed near the red
dashed line, which implies that the developed model possesses a
good capability of reheat steam temperature prediction. The
performance deteriorates from t+1-step prediction to t+5-step
prediction. This is reasonable and expectable as the later the
prediction moment is, the more difficult it is to predict.

The absolute error distributions of the training data and test
data are further illustrated in Figures 8, 9, respectively. For the
training data, the absolute errors of 93.9% cases on t+1-step
prediction are within 0.5°C. The ratios on t+2-, t+3-, t+4-, and
t+5-step predictions are 83.7%, 75.0%, 66.0%, and 60.0%,
respectively. The absolute errors of all cases are within 2°C
when the predicted time step is 1. The numbers of cases, of
which absolute errors are greater than 2°C, are 5, 30, 99, and 167
on t+2-, t+3-, t+4-, and t+5-step predictions, accounting for
0.07%, 0.43%, 1.42%, and 2.36%, respectively. The maximum

absolute error appears on t+5-step prediction and is 4.55°C. As for
the test data, the absolute errors of 97.1%, 92.5%, 85.3%, 77.7%,
and 67.9% cases on t+1-, t+2-, t+3-, t+4-, and t+5-step
predictions are within 0.5°C. The ratios of cases to absolute
errors over 2°C are 0.00%, 0.03%, 0.20%, 0.37%, and 0.47%,
respectively. The maximum absolute error appears on t+5-step
prediction and is 4.78°C.

Quantitative evaluation of the developed multistep ahead reheat
steam temperature prediction model is further conducted, and the
results are summarized in Table 3. The RMSEs of both the training
data and the test data on t+1-time-step prediction are less than
0.27°C, and theMAPEs are less than 0.035%. The RMSEs of both the
training data and the test data at t+5 are within 075°C, and the
MAPEs are less than 0.101%. The correlation coefficients of
measured temperatures and predicted temperatures, denoted as r,
are 0.962 and 0.901, respectively. In general, the multistep prediction
model of reheat steam temperature performs well. In terms of
training and test data, the average RMSE, MAPE, and r of the
five-step prediction results are all within 0.52°C, 0.07%, and greater
than 0.95, respectively. The good prediction performance on training
data and test data demonstrates that the developed model has
excellent accuracy and strong generalizability.

Comparative Study
The performance of LSTM and the widely used support vector
machine (SVM) was further compared in this work. Multi-output
SVM from scikit-learn framework (Pedregosa et al., 2011) was
used. The radial basis function was selected as the kernel function.
Fivefold cross-validation coupled with grid search was introduced
to determine the kernel parameter g and the plenty factor C. A
total of 208 pairs of exponentially growing sequences (g, C) were
attempted, that is, g = 2−9, 2−8, . . . , 20, . . . , 23; C = 2−2, 2−2, 20, . . . ,
213. The delay time order was set as 13, being consistent
with LSTM.

FIGURE 9 | Distribution of the absolute errors on test data.

TABLE 3 | Performance of multistep prediction model based on LSTM.

Steps RMSE (°C) MAPE (%) r

Training set Test set Training set Test set Training set Test set

1 0.261 0.220 0.035 0.032 0.996 0.992
2 0.401 0.282 0.056 0.037 0.990 0.978
3 0.524 0.393 0.071 0.052 0.982 0.957
4 0.647 0.487 0.088 0.066 0.972 0.929
5 0.750 0.580 0.101 0.080 0.962 0.901
Average 0.517 0.392 0.070 0.053 0.980 0.951

TABLE 4 | Performance of multistep prediction model based on SVM.

Steps RMSE (°C) MAPE (%) r

Training set Test set Training set Test set Training set Test set

1 0.085 0.829 0.013 0.123 0.999 0.990
2 0.085 1.067 0.014 0.165 0.999 0.983
3 0.086 1.512 0.015 0.233 0.999 0.967
4 0.088 2.246 0.015 0.337 0.999 0.929
5 0.089 2.748 0.015 0.422 0.999 0.885
Average 0.087 1.680 0.014 0.256 0.999 0.951
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The optimal (g, C) pairs were found to be (210, 2−2) according
to grid search. The average RMSEs of the training data and test
data are 0.087°C and 1.680°C, respectively. The corresponding
MAPEs are 0.014°C and 0.256%, and the R values are 0.999 and
0.951. Detailed results are demonstrated in Table 4. As seen, the
performance of the SVM-based model on the training data is
better than that of the LSTM-based model. However, the
performance on the test data obviously deteriorated. This
indicates the generalizability of is not good enough, and the
SVM-based model may suffer from overfitting. Comparing the
prediction performance of the two models developed in this
study, the LSTM-based model outperforms the SVM-based
model. LSTM exhibits a stronger capacity to make a multistep
ahead reheat steam temperature prediction in the studied coal-
fired boiler than SVM.

CONCLUSION

This study proposed a multistep prediction model on reheat
steam temperature of a 660-MW coal-fired utility boiler with
LSTM. There were 360,000 sets of actual operation data obtained
from the SIS used to develop the model. The FIR digital filter was
used to filter the noise and spikes in the operation data. The
hyperparameters, for example, the look-back time step, and the
model structure, including the number of LSTM layers and the
number of nodes in each layer, were adjusted and optimized. The
five-step prediction model performs pretty good. The average

RMSE, MAPE, and R values of the five-step prediction results are
less than 0.52°C, less than 0.07%, and greater than 0.95,
respectively. The model can accurately predict the change of
reheat steam temperature within 2.5 min. Themodel may serve as
an important feedforward signal for the reheat steam temperature
regulation.
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