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Onshore wind farms are usually connected to the power grid by 35 kV transmission lines.
Due to the high altitude of the wind turbines and their associated long transmission
corridors, lightning activities are more frequent for onshore wind farms compared to the
power plant in plain areas. In addition, the insulation levels of 10-35 kV distribution lines are
generally low. All these facts make proper lightning strike protection a technical challenge
for onshore wind farms. Taking a typical onshore wind farm as the testing object, the
structure of the 35 kV distribution line connected to this wind farm is modeled by EMTP
software in this paper. The leakage current and absorbed energy of the arrester at the head
tower when lightning currents of different amplitudes inject into the overhead line are
studied. By calculating the energy accumulated in the arrester within 100 us, the causes of
the lightning trip and damage to the arrester of the distribution line, i.e., the energy
accumulation mechanism, are clarified. Eventually, the lightning protection updating
scheme for this distribution line is proposed: a combination of refitting the porcelain
cross arm at the head and end of the tower and filling the grounding body of the tower with
a drag-reduction agent, which shows that the lightning resistance level of the distribution
can be improved by 50 times in maximum.

Keywords: onshore wind farm, surge protection, electromagnetic transients, lightning arrester, energy absorption

INTRODUCTION

The construction of wind farms has increased gradually in the past decades, particularly the onshore
wind farms with large capacities ranging in MW ~ GW (Pipelzadeh et al., 2018). The wind turbines of
onshore wind farms have 0.69 kV outputs, which are connected to 35 kV distribution transmission
lines via 0.69/35kV step-up transformers. Therefore, for the electrical topology of onshore wind
farms, 35 kV overhead lines are very common. In this case, lightning strikes have become the primary
cause of transmission and distribution line fault in wind farms, particularly in high elevational areas
that suffer from thunderstorm seasons, and the safe operation of power facilities in wind farms has
become a severe challenge. Once a lightning strike occurs, a system trip is the main harm to the safe
and stable operation of the 35 kV distribution network, and in the worst case, this can cause a failure
in the line arrester for the distribution network (Martinez and Castro-Aranda, 2009; Shariatinasab
etal,, 2014a). According to relevant data statistics, in February 2021 alone, there were 33 line arrester
failures of 35 kV overhead lines due to lightning strikes in a typical onshore wind farm (Tang et al.,
2021).
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FIGURE 1 | Statistical chart of annual lightning arrester failure times and
main causes.

As mentioned above, the lightning arrester is the most
important  lightning protection equipment for 35kV
distribution lines (IEEE, 2020; Shariatinasab et al., 2014b). It
bears the threat of system overvoltage and long-term power
frequency operating voltage. However, it is difficult to
guarantee the service life of lightning arresters due to the lack
of regular inspection and means of maintenance. In general, the
breakdown of ordinary gapless zinc oxide arresters would directly
lead to the tripping of the single-phase grounding fault of the line.
The damaged arrester needs to be replaced after line
troubleshooting before the line can be put into operation
again, with a large maintenance workload and huge cost
(Zheng and Lin, 2006).

The function of the line arrester in a distribution network is to
absorb lightning overvoltage energy and reduce line tripping. At
the same time, the high energy generated by overvoltage
discharge would greatly increase the deterioration rate of
arrester performance (Nakada et al., 1999; Tsuboi et al., 2015).
The most used Zinc oxide arresters have excellent nonlinear
characteristics and can respond to overvoltage in a very short
time without adding air gaps in series (Seyyedbarzegar and
Mirzaie, 2016). However, previous studies have shown that the
removed air gaps would cause this type of arrester to be affected
by power frequency and transient overvoltage (Wanderley Neto
et al,, 2009). An excessive voltage applied to the arrester may
reduce its thermal and electrical stability, thus its energy
absorption capacity is seriously declined (Cai et al, 2020).
Since the performance of Zinc oxide arresters mainly depends
on their energy absorption capacity, it is necessary to precisely
estimate the lightning discharge energy and lightning current
characteristics that the arrester may absorb during a surge
accident (Shariatinasab et al., 2018).

In this paper, a 35kV distribution line is modeled in EMTP
software based on the actual structural parameters obtained from
a distribution line connected to an onshore wind farm. The
leakage current and absorbed energy of a lightning arrester at
the head tower of the network are calculated when lightning
current with different amplitudes were injected into the overhead
line. The reasons for the lightning trip and damages to the
lightning arrester were clarified by comparing the energy
accumulated in the lightning arrester over 100 ps. Finally, a

Wind Farm Surge Protection Scheme

new lightning protection scheme according to the criterion of
energy absorption reduction for this distribution line is proposed.
Research in this work provides a reference for the lightning
protection upgrades to onshore wind power transmission
systems.

BACKGROUNDS
Statistics of Lightning Strike Faults

Lightning strike faults are one of the main causes of lightning
arrester failure in 35kV distribution networks. Research
proposals show that in 2020, 835 insulator failures occurred in
a typical distribution network in China (SL and JY, 2019),
including 780 lightning breakdown failures and 55 lightning
arrester failures caused by mechanical force, as shown in
Figure 1.

As can be seen from Figure 1, in terms of time distribution, in
2020, there were 780 lightning breakdown faults, with a monthly
average of 65, of which there were a large number in April,
August, and September, followed by March, May, June, and
September. This is consistent with the lightning activity in this
distributed power grid. There are 55 lightning arrester failures
caused by mechanical force, with an average of 5 per month. The
monthly distribution of the whole year is relatively average.
Mechanical force failures in lightning arresters are related to
external force damage, short drainage wire caused by
construction quality, stress on lightning arresters, small
animals, and other factors. From this analysis, most of the
faults of lightning arresters are breakdown faults.

As illustrated in Figure 2, when lightning strikes the ground
wire, it causes insulator flashover, and the overvoltage propagates
toward the wind turbine in the form of traveling electromagnetic
waves, damaging the insulation of the electrical equipment. When
the insulator is connected in parallel with a metal oxide varistor
(MOV) surge arrester at terminals, it can effectively suppress the
occurrence of overvoltage and protect the safe and stable
operation of wind farms.

Failure Mode and Effects Analysis

According to the operational data, at 23:09 on 28 February 2021, a
tripping fault occurred on the observed 35 kV distribution line.
Due to the heavy rains at that time, it is predicted that the line was
possibly hit by a lightning strike. On the next day, it was found
during inspection that the lightning arrester on phase C at the
user’s side was broken, with the body of the lightning arrester
disintegrated and scattered and the jumper suspended.

The distribution transformer uses a gapless zinc oxide arrester
with a disconnector. The breakdown of the main body of the
arrester in phase C is the cause of this trip accident. The whole
arrester is broken with the conductor suspended, and
consequently, the arrester at fault is disconnected from the
system. Therefore, the power on the line is successfully
restored. Further analysis indicated that the reason for the
main body of the arrester to be broken was that the
disconnector of this arrester failed to act. In addition, the
jumper of the arrester in phase B was also broken during the
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accident. The conductor joint was bound at the lower end of the
fuse, and the residual part after the action of the disconnector is
still connected to the down lead of phase B.

It can be seen from this lightning strike fault that the lightning
protection of 35KkV distribution lines is still the top priority for
onshore wind farms, and the fragmentation of lightning arresters
is mostly due to the absorption of large energies that exceed their
capacity to withstand. Therefore, it is necessary to reduce the
energy absorption of lightning arresters when designing novel
lightning protection schemes for 35kV distribution lines
connected to onshore wind farms.

Electrical Structure of Distribution Lines

As mentioned above, the most valuable part of the onshore wind
power transmission system is the distribution lines between the
substation and wind turbines. The tower configurations for this
section of lines are shown in Figure 3. The voltage from the wind
turbine is reduced by a step-down transformer and supplied to a
frequency converter. The frequency converter supplies the
rectified power into the 35kV substation through the
transmission line corridor. All the towers in the corridor are
fully protected by overhead ground wires. The operation mode
for the wind farm is one for end-user and one for standby, and the
operation mode is switched once a month. In this paper, the main
power supply loop is taken as the research object. Three zinc
oxide arresters are installed on the top of the head tower, and a

steel bar with a diameter of 12 cm is grounded at the bottom of
the tower. Three phases of the line are arranged in a mountain
shape, with a span of about 60 m, and the tower has a 12 m high
conical cement pole on the top. The end tower is located at the top
of a 30 m high slope close to the wind turbines, equipped with
three lightning arresters, and the down lead is also a stainless-steel
bar with a diameter of 12 cm.

METHODOLOGY FOR EMTP MODELING

In order to accurately simulate the rupture accidents of lightning
arresters when a 35 kV distribution line is hit by a lightning strike,
the 35 kV distribution line described above is modeled by EMTP
software to study the influence of lightning current amplitude on
the performance of lightning arrester. Further, the improvements
in the service performance of the whole system by measures to
reduce the energy absorption are discussed.

Modeling of Lightning Surge Current

The lightning waveform can be described by lightning current
amplitude and the lightning wave head and wave tail times
(Shariatinasab et al., 2014a), which are generally described by
the following formula (Eq. 1):

I = AL, [exp(—at) — exp (—ft)] (1)
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TABLE 1 | Voltammetry characteristics of MOA.

Model Calculated cross-sectional DC resistance
area mm?
Aluminum Q/km
LGJ-70/10 68.05 11.34 0.432
GJ-25/10 / 24.71 1.118

Where a and 8 are determined by the above three characteristics
of lightning. The main parameters in the EMTP simulation are
defined as follows: The simulation adopts the double exponential
wave function to define the standard lightning current waveform
2.6/50 us, where wave head time is set as T; = 2.6 ps, wave head
time is set as 50 ps. Accordingly, o can be calculated as 1590,
whereas f is 712,000 and A is 1.1157. I, is the amplitude of
lightning current signals.

Modeling of Towers and Lines in

Distribution Network
In the simulation, the tower span of 35 kV Transmission line is set
as 60 m, and the lumped parameter inductance model is used to
simulate the tower. The concrete pole without stay wire is selected
to simulate the pole and tower, and the height of the pole and tower
are set to 9 m. Details of the structures of the tower and line in the
simulation are shown in Figure 4. The equivalent concentrated
inductance model is adopted, and the inductance is set as 0.84 pH/
m, with grounding resistance changes in the range of 5-20 Q.
The outer diameter of the conductor is set as 11.4 mm, and the
DC resistance is set as 0.4217 Q/km. In this paper, the multi-
coupler LCC subroutine of the JMarit model varying with

Wind Farm Surge Protection Scheme

TABLE 2 | Wire position of 35 kV overhead line.

Horizontal distance/m Wire suspension height/m Sag/m
L1 phase L2 phase L3 phase
1.5 9 9.8 9 1.13

Lightning current model

S LCCLGJ-70
LC

@ Fp g

Calculation of energy
s absorbed by arrester
4

1#Tower

FIGURE 5 | Wiring diagram of double circuit line simulation
calculation model.

frequency is used to build the overhead line model, and the
line parameters are injected into the software to automatically
generate the line module that meets the requirements of a
distribution line. The main parameters of the three-phase
conductor and lightning conductor of the overhead line are
shown in Table 1 (Suimin and Wei, 2007).

It can be seen from Figure 3 that the height data of the
relevant conductor from the ground is required when modeling
the overhead conductor. According to the typical data
provided in the literature [Andreottiet al., 2013], the layout
position of the actual conductor on the tower is shown in
Table 2.

Modeling of Insulator and Arrester
The line flashover caused by lightning is the most serious
challenge for the design of line insulation. The lightning
flashover rate of the distribution line needs to consider two
factors, ie., the flashover criterion of the insulator, which is
determined by the lightning impulse breakdown voltage Usgo,
of the insulator (Wang and Ren, 2020), and the calculation of
induced lightning overvoltage (Andreotti et al., 2013; De Conti
et al,, 2010).

In the lightning protection design for the 35 kV overhead line,
zinc oxide arrester is selected referred to the practical
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FIGURE 6 | Maximum overvoltage waveform of 10 KA lightning current
amplitude invading #1 overhead line near tower.

applications. Energy absorbed by lightning Arrester during
lightning strikes is eventually calculated as the key parameter
for the system breakdown analysis and design of the protective
scheme. However, the distribution line model created in EMTP
cannot be directly used to calculate the energy absorbed by a
component during the entire simulation time. Therefore, the
third-party module namely MODEL is used to solve this problem
by using the integral calculation formula of the absorption energy
of the lightning arrester. Since the EMTP software is mainly used
for transient calculation, the energy absorbed was calculated at
every time step. The interval for the calculation of energy
absorption is decomposed and fits the time steps strictly.
Eventually, all the calculated values are accumulated. The
realization of this model is shown in Figure 5.

SIMULATION OF ENERGY ABSORBED BY
LIGHTING ARRESTER UNDER DIFFERENT
LIGHTING OVERVOLTAGE

In general, lightning would directly strike the tower or line when
the hitting point is within 65 m from the line. When there are
high buildings or other shielding near the distribution network,
the probability of a direct lightning strike is very small. About
20% of the lightning strikes on distribution lines are direct
lightning strikes, mainly in the suburbs or nearby places
without high building shielding. However, about 80% of
lightning events are induced lightning (Han et al., 2008). This
paper mainly studies the energy absorption of line arresters under
the accidents of induced lightning overvoltage of 35kV line.

Lightning Strikes Under Different Lightning
Current Amplitude

It is indicated from the simulation that induced lightning occurs
near the head tower. The probability of a lightning current with
amplitude greater than 88 kA is about 10%, and the probability of
a lightning strike greater than 100 kA is about 7.3%. Therefore,
the impact of lightning current less than 100 kA on the line is

Wind Farm Surge Protection Scheme

mainly considered when studying lightning protection measures
(Tang et al., 2012).

When induced lightning is injected into the overhead line near
tower 1 with a lightning current amplitude of 10kA, the
overvoltage waveform at different positions of the overhead
line is shown in Figure 6.

It can be seen from Figure 6 that when the amplitude of 10 kA
lightning current intrudes into the overhead line, the overvoltage
borne by the overhead line is small, i.e., the maximum overvoltage
is only 36.5 kV, which is far from reaching the flashover voltage of
the insulator. Moreover, the attenuation of the lightning intrusion
wave is obvious in the propagation process. When the intrusion
wave propagates to the side of the wind farm’s high-voltage
cabinet, the overvoltage is very small. In consideration of the
most serious cases of lightning invasion, five cases of lightning
current with amplitude no less than 10 kA, i.e, 1, 30, 50, 70, and
100 kA are considered in the simulation. The simulation results
are shown in Table 3.

It can be seen from Table 3 that with the increase of lightning
current amplitude over 10 kA, the induced overvoltage level of
overhead line is significantly enhanced, and the number of poles
and towers with insulator flashover is also increasing. When the
induced lightning current amplitude is between 30 and 70 kA,
only tower 2 suffers from flashover. It is as predicted because the
flashover of the insulator on tower 2 splits most of the lightning
current through this tower. However, when the amplitude of
induced lightning current reaches 100 kA, the distortion of
lightning surge current only by insulator on tower 2 insulator
is not enough, so the insulator on tower 2 begins to suffer from
flashover.

The reason why there is no flashover for the insulator on the
head tower, which is the nearest to the lightning strike location, is
due to the quick response of the lightning arrester with reasonable
energy absorption ability (Liao et al., 2018), and the limitation of
the simulation, ie., the judgment basis for the failure of the
lightning arrester, which cannot be properly set in the software. In
order to precisely study the complete process and the
mechanisms of the lightning strikes on the distribution line,
the energy absorbed by the lightning arrester when the
lightning current amplitude reaches 100 kA should be further
discussed.

The relationship between the maximum leakage current from
the arrester at the pole of tower 1 and the amplitude of the
lightning current is shown in Figure 7. It can be seen from
Figure 7 that with the increase of lightning current amplitude, the
leakage current flowing through the lightning arrester installed on
tower 1 rises linearly. When the induced lightning current
amplitude reaches 100kA, the maximum leakage current of
the lightning arrester can reach 19.12kA in less than 10 ps,
which could cause great damage to the lightning arrester.
Therefore, it is necessary to analyze the impact of the
absorbed energy on the performance and service life of the
lightning arrester.

Energy Absorptions in Lightning Arrester
In the case that the induced lightning occurs near tower 1, the
change of energy absorbed by the arrester on tower 1 in a short
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TABLE 3 | Insulator flashover at each tower under different lightning current amplitude intrusion.
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FIGURE 7 | Comparison diagram of leakage current of #1 tower line
arrester under different lightning current amplitudes.
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FIGURE 8 | Comparison diagram of absorbed energy of #1 tower line
arrester under different lightning current amplitude intrusion.

time is measured with the change of lightning current amplitudes.
The results of the accumulated energy were imported into
MATLAB software for processing.
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FIGURE 9 | Schematic diagram of replacing tower cross arm.

The changing trend of energy absorption is shown in Figure 8.
It can be seen from Figure 8 that when induced lightning intrudes
into overhead lines, the leakage current flowing through the
arrester at tower 1 in a short time would generate huge energy
in the arrester. Taking the induced lightning intrusion with the
amplitude of 50 kA lightning current as an example, the energy
on the arrester rises fastest within 50 us, and the energy value
reaches 90.5 k] at 50 ps. The energy accumulated in such a short
time would produce a large amount of thermal effect on the
arrester, making the lightning arrester burn out.

ENERGY ABSORPTION BASED
PROTECTIVE SCHEME

According to the field investigations and simulation results, the
terrain of the 35kV overhead line connected to wind farms is
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relatively high and vulnerable to lightning strikes. Although line
arresters are installed at both ends of the line, there is still a high
potential for lightning trip and power failure accidents to occur,
which directly affect the normal power supply of wind farms,
which shows serious deficiencies in the existing lightning
protection measures of this type of power supply system.

The conventional solution for the lightning protection
upgrade is to replace insulators with models with better
performance or simply increase the number of insulator
strings, but the replacement cost is high, and increasing the
number of insulator strings could lead to the increase of tower
head clearance and increase the tower head size and insulation
cost in consequence. Therefore, it is necessary to make a novel
protective scheme to suppress dangerous lightning trips without
much spending.

Retrofitting the Cross-Arm With Alternative

Materials

The structures of the porcelain cross-arm are shown in Figure 9.
The porcelain cross arm itself is not conductive, so the insulator
installed on the porcelain cross-arm is not likely to suffer from
single-phase flashover when subjected to lightning strikes, and
only phase-to-phase flashover with a stable power frequency arc
might cause this type of cross-arm breakdown, which is much
more unlikely than conventional single-phase flashover
conditions (Sekioka, 2018; Sekioka, 2010; Mahmood et al.,
2015).

Inspired by the outstanding performance of porcelain cross-
arm, the porcelain cross-arm is tried on the distribution line, and
its performance against lightning strikes is compared with the
iron cross-arm. Figure 10 shows the simulation results when the
lightning current amplitude is 30 kA and the induced lightning
invades the overhead line, where the maximum leakage currents
of the arrester at tower 1 with the cross-arm constructed in the
two materials are compared.

Metal grounding down

lead ground

60cm back fill

<«— Drag reducer

260cm

|~ Metal grounding
electrode

20cm

FIGURE 11 | Installation diagram of single improved grounding
electrode.

It can be seen from Figure 10 that the materials of the cross-
arms have a great impact on the leakage current flowing through
the arrester. When the lightning current amplitude is 30 kA and
the induced lightning invades the overhead line, the current
flowing through the arrester can be greatly reduced by using
porcelain cross arms, which can be reduced by 50 times in
maximum.

However, the energy absorption caused by lightning
current has not changed. For the optimized
implementation of the porcelain cross-arm, it is necessary
to install the porcelain cross-arm on the whole line otherwise
the energy still can pass through other towers. Additional
protection measures need to be considered to reduce the line
updating costs.

Updating Tower Grounding Body With
Drag-Reduction Agent

The grounding resistance of the line is directly related to the
lightning resistance level of the line (Takahashi et al., 2010). The
function of the lightning arrester is that when the line is struck by
lightning, the lightning arrester acts preferentially and lead the
lightning current to the Earth through the grounding device, to
protect the insulator and avoid flashover. According to relevant
calculations, the grounding resistance of the head and end towers
of the original line is about 29 ), so it is necessary to reduce the
grounding resistance to further improve the protection ability
against surge accidents.

A specially designed upgradation scheme for the tower
grounding body is shown in Figure 11. The grounding
electrode is filled with drag-reduction agent mixed with water
in the ratio of 3:2. It is noted that the grounding electrode must be
fully contacted with the drag-reduction agent. After the agent is
solidified, welding the galvanized steel pipes at the four corners of
the underground slotted through flat steel to make them
connected into the tower body. All underground connections
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must be welded, and the welding length shall be greater than or
equal to 10 cm.

The measured grounding resistance by using this novel
installation method 1is calculated to be within 15Q.
Simulation on the leakage current flowing through the
lightning arrester of tower 1 when the lightning current
amplitude is 30 kA is carried out, under the conditions of
grounding resistance with 29 and 15, respectively, as
shown in Figure 12. After reducing the tower grounding
resistance, when the lightning current amplitude is 30 kA
and the induced lightning intrudes into the overhead line,
the leakage current flowing through the arrester on tower 1
is obviously higher in the case of grounding resistance in 15 Q,
which can split more lightning energy into the ground and
reduce the peak value of lightning surge current during a
potential flashover. By combing the protective measures of
updating cross-arm of head tower with the grounding body
with reduced resistance, the effective lightning protection can be
achieved for onshore wind farms without huge investments.
Simulation results confirm that the lightning protection
performances are almost the same for the tower body of the
whole lines are updated with the agent together with only the
head and end towers are equipped with porcelain cross-arms,
compared with all the towers equipped with porcelain cross-
arms.
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