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A novel method for the prediction of three-dimensional (3D) spatial distribution of NOx in a
furnace is proposed and evaluated. Computational fluid dynamics (CFD) simulations are
conducted to generate the data sets of 3D NOx spatial distribution. The data sets are
partitioned based on NOx generation mechanisms to improve the model accuracy.
Combining the Pearson coefficient and mutual information (PMI), the model input
variables are optimized by feature selection. The prediction model of 3D NOx spatial
distribution in the furnace is established based on extreme learning machine (ELM). The
experiments are conducted considering a 350MW coal-fired boiler with a change in the
burner tilt angles under a rated load. The experimental results show that the data-driven
method based on PMI-ELM can realize the rapid prediction of the 3D spatial distribution of
NOx in the furnace with 12.84% mean absolute percentage error.

Keywords: three dimensional(3D) distribution of NOx, computational fluid dynamics simulation, coal-fired boiler,
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1 INTRODUCTION

Nitrogen oxides (NOx), released by coal-fired power plants, are one of the most harmful air
pollutants that tend to seriously impact the air quality and human health. New NOx emission
standards in coal-fired power plants list them to be below 100 mg of NO2/Nm3 at 6% O2 (dry-basis)
(Ministry of Environmental Protection of the PRC, 2011). There are two primary methods to
decrease NOx emissions: 1) flue gas denitration and 2) low nitrogen combustion (Fang Wang et al.,
2018). Flue gas denitration is a post-treatment method that is performed by adding denitration
devices at the tail flue. On the other hand, the low nitrogen combustion method utilizes low NOx
burners or fuel/air at the combustion stage. The essence of low nitrogen combustion is to change the
temperature field and component distribution in the furnace to reduce NOx formation. However, a
lack of means for effective on-line observation of temperature and component distribution hinders
the understanding of NOx formation. Rapid and accurate prediction of 3D spatial distribution of
NOx has become a necessity in order to control NOx emissions and optimize the combustion
process.

Two methods are usually used to obtain the NOx concentration in emissions of the coal-fired
power plants: 1) the mechanism-based method and 2) the data-driven method. Computational fluid
dynamics (CFD), a mechanism-based method, involves solving the partial differential equations
governing the combustion process to simulate it under the given boundary and initial conditions
(Dindarloo and Hower, 2015; Boyd and Kent, 1988; Xu et al., 2001). The calculation of NOx
emissions through CFD can be divided into two stages. The first stage includes evaluating the 3D
spatial distribution of the temperature field, velocity field, and products of combustion in the furnace.
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The second stage involves NOx distribution evaluation by means
of post-processing the already obtained combustion product data.
CFD simulations with regards to the NOx spatial distribution
mostly investigate the effects of a certain change in the working
conditions of a furnace. This may include variations in boiler
loads (Dindarloo and Hower, 2015; Boyd and Kent, 1988), swirl
arrangements and coal injection modes (Choi et al., 2020), air
staging combustion (Zhang et al., 2015; Wang and Zhou, 2020),
separated over-fire air (SOFA) ratio and location (Ma et al., 2015),
and tilt angles of the burner (Tan et al., 2017). CFD methods can
analyze the change in NOx spatial distribution based on different
input conditions and the relationships between various
parameters. There have also been some improvements over
the years with regards to the CFD combustion simulation
methods .Zhang et al. (2019) proposed a semi-empirical
modeling strategy with the large eddy simulation in which the
concentration of CO + H2 substituted CHi, which is difficult to
calculate to quantify NO homogenous reduction. The new model
can accurately predict different NOx evolution characteristics
under various conditions. Secco et al. (2015) coupled a genetic
algorithm with CFD calculations to automatically generate
optimal boiler configurations for minimizing NOx emissions.
CFD simulations can also be used to optimize the combustion
process. A drawback of using CFD simulations, however, is that
they involve a plethora of complicated calculations which
consume a large amount of time.

Another method to predict the NOx distribution is the data-
drivenmethod. This method is mainly focused on the NOx emission
of the exhaust gas. In this regard, numerous algorithms, including
statistical regression (Li et al., 2004; Chunlin Wang et al., 2018),
support vector machine (Wei et al., 2013; Zhou et al., 2012; Ahmed

et al., 2015; Lv et al., 2013), artificial neural network (ANN) (Chu
et al., 2003; Ilamathi et al., 2013; Preeti and Sharad, 2013; Jacob and
Tuttll, 2019), and deep learning (Li and Hu, 2020; Yang et al., 2020;
Tan et al., 2019; Xie et al., 2020; Kang et al., 2017; Wang et al., 2017)
are often used to predict the NOx concentration. Although
remarkable achievements have been obtained in this area, the
time complexity of support vector machines increases
exponentially as the sample size increases. This problem may be
attributed to quadratic programming problems.Moreover, the ANN
is easy to fall into the local minimum and has the risk of over-fitting.
The required data of data-drivenmodeling are usually collected from
the operation and experimental data of power plants. In this regard,
scholars have tried to combine CFD techniques with experimental
data to predict the NOx distribution in engineering applications
(Fang Wang et al., 2018; Yan et al., 2019). Currently, CFD data are
mainly used as the supplement of operation data, or it is combined
with historical data to obtain comprehensive data on the working
conditions. However, it is a challenge to analyze a huge amount of
3D data obtained from CFD simulation. On the other hand, simple
NOx prediction of the exhaust gas is not conducive to optimizing
combustion parameters and fault analysis.

In this study, a data-driven method is proposed to obtain the
3D NOx distribution based on the extreme learning machine
(ELM)method. Then, NOx distribution in the furnace is obtained
using CFD simulation. The obtained data are partitioned based
on the formation mechanism of NOx in the furnace. Meanwhile,
the Pearson coefficient and mutual information (PMI) is used to
obtain optimal inputs. Finally, the ELM is applied to establish a
3D NOx distribution model in the furnace, and the feasibility of
the method is verified through experiments. The proposed model
is expected to obtain the 3D distribution of NOx at any burner tilt
angle quickly and accurately and provide a guideline for
combustion optimization and NOx emission reduction.

2 DESCRIPTION OF THE PROPOSED
SYSTEM

2.1 Boiler Description
In the present study, a 350 MW once-through supercritical boiler
is selected as the research object. Figure 1 illustrates the
schematic layout of the boiler. The boiler is 58,300 mm high
and has a 14,627 × 14.627 mm cross section. Moreover, the depth
of the horizontal and tail flue gas duct is 53,200 mm and

FIGURE 1 | Schematic structure and burner arrangement of the studied
350 MW boiler. (A) Boiler structure (B) Arrangement of the burner and the
secondary wind.

TABLE 1 | Main boiler operating parameters at the rated power.

Parameter unit Values

Pulverized coal kg/s 53.75
Total air kg/s 370.64
Average excess air coefficient — 1.20
Primary air kg/s 110.07
Second air kg/s 260.54
SOFA kg/s 111.18
Primary air temperature °C 65.0
Secondary air temperature °C 356.0
Ambient temperature °C 30
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68,200 mm, respectively. The boiler adopts a new type of
tangential combustion. The main combustion area contains six
layers of pulverized coal air chambers and eight layers of auxiliary
air chambers. Each pulverized coal–air chamber has four nozzles,
which are arranged on the four planes of the water-cooled wall.
Four secondary air nozzles are arranged in each auxiliary air
chamber to surround it. Moreover, four SOFA layers are installed
in the corner above the main combustion area to replenish the
required air in the next stage of combustion.

Themain operating parameters at the rated power of the boiler
are shown in Table 1. Table 2 shows the chemical composition of
the coal.

2.2 Overall Modeling of Modeling
Obtaining the 3D distribution of NOx concentration in the
furnace mainly consists of four steps, including CFD

simulation, data preprocessing, feature selection, and ELM
modeling. The overall modeling process is shown in Figure 2.

Step 1: Input parameters and boundary conditions are set
according to the type of the boiler and unit load, and
then, CFD simulation is carried out.

Step 2: The 3D distribution data obtained from CFD simulation are
preprocessed; then, the data are partitioned into multiple
subsets based on the formation mechanism of NOx.

Step 3: Primary data are selected based on the formation
mechanism; then, the PMI is combined for feature
selection. Finally, variables with high correlation are
selected as modeling inputs.

Step 4: Predictionmodels of the NOx distribution of each subset are
established based on the ELM concept. It is worth noting
that different subsets have different optimal inputs.
Accordingly, multiple NOx prediction models can be
obtained for different conditions. Hence, all partial
models should be integrated into the final prediction model.

3 COMPUTATIONAL FLUID DYNAMICS
SIMULATION

Generally, CFD simulation consists of three steps, including pre-
processing, solving governing equations, and post-processing. The
main objective of pre-processing is to prepare the computational
domain and generate an appropriate mesh. Figure 1 shows that the
calculation domain includes the furnace and horizontal and rear
passes. In the present study, structured hexahedral meshes are used

TABLE 2 | Proximate and ultimate analyses of pulverized coal.

Coal properties Parameter Value

Ultimate analysis (%) Carbon 44.82
Hydrogen 2.68
Oxygen 10.26
Nitrogen 0.52
Sulfur 0.13

Proximate analysis (%) Moisture 31.75
Ash 9.84
Volatile 24.78
Fixed carbon 33.63

Low calorific value (kJ/kg) Qnet 16,310

FIGURE 2 | Modeling framework to obtain the 3D NOX distribution in the furnace.
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for the furnace body, while refined unstructured meshes are used in
the combustion zone to ensure the accuracy of calculations. Three
mesh resolutions, containing 2.82*106, 3.18*106, and
3.43*106 meshes, are used to perform the grid independence test.
Trading off between simulation accuracy and the computational
expense, 3.18*106 meshes are used in all simulations.

In this article, Fluent 15.0 software is used to study the
behavior of gas-solid two-phase flow and coal combustion.
Moreover, the k−ε model is used to solve the gas-phase
turbulent equations. Meanwhile, the stochastic tracking model
is used in the Euler–Lagrange method to simulate the two-phase
flow. In the combustion model, the volatile pyrolyzation model
adopts the two-step competitive reaction model, and the
diffusion/kinetics model is used to describe char combustion.
The discrete ordinates (DO) model is selected to model radiant
heat transfer in the furnace. The load, excess air coefficient, coal
quality, primary and secondary air distribution, and SOFA are
important and affecting parameters in the furnace. The imposed
boundary conditions are presented in Table 2.

To verify the CFD model, the simulation results of the 0°tilt
angle are compared with plant data at the rated point. Table 3
reveals that the absolute error of the outlet gas temperature (T1) is
6°C, which is equivalent to a relative error of less than 1%.
Furthermore, the absolute error of the gas temperature of the
platen superheater bottom is 32°C, which is equivalent to a relative
error of less than 3%. The relative error of O2 concentration at the
boiler outlet is 5.5%. The performed analyses demonstrate that the
CFD model can be applied to simulate combustion accurately.

CFD simulations are carried out for constant operating
conditions and different burner tilt angles. In this regard,
seven tilt angles (−30°, −20°, −10°, 0°, 10°, 20°, and 30°) are
considered, and the concentration of combustion products and
the flow field are obtained.

4 3D NOX EMISSION PREDICTION USING
EXTREME LEARNING MACHINE

4.1 Data Preprocessing
4.1.1 Data Acquisition and Normalization
First, the outliers should be processed. Based on the physical
mechanism, when an abnormal value of temperature or species
concentration is achieved, it is set to zero. On the other hand, when
an individual node has an extremely higher or lower value than the
surrounding nodes, the mean value of surrounding nodes is used
for it.

Meanwhile, different variables have different orders of
magnitude. The influence of data with high orders can be

highlighted in the modeling process, while other data with low
numerical values but great influence, such as O2 concentration,
may be ignored. In order to ensure the reliability of the model and
training speed, it is necessary to perform a Min-Max data
normalization process. This can be mathematically expressed
as follows:

x*i �
xi − xmin

xmax − xmin
, (1)

where xi is the original value, x*
i is the normalized value, and xmax

and xmin denote maximum and minimum values, respectively.

4.1.2 Data Partition Based on the NOx Formation
Mechanism
The formation of NOx in the furnace is a complex process that
involves numerous chemical reactions and thermal phenomena.
In a large-scale coal-fired boiler, more than 90% of the total NOx
originates from NO (Diez et al., 2017). On the other hand, NO
can be divided into three categories, including thermal NOx, fuel
NOx, and prompt NOx, according to different formation
mechanisms. Studies show that the concentration of prompt
NO in conventional burners and furnaces is very low so that
it can be ignored in calculations.

Thermal NOx refers to the nitrogen oxide generated by the
oxidation of N2 molecules of the combustion air at high
temperatures. In this reaction, NOx is created based on the
extended Zeldovich mechanism. The net formation rate of NO
can be calculated from the following expression:

d[NO]
dt

� k1[O][N2] + k2[N][O2] + k2[N][OH] − k−1[NO][N]
− k−2[NO][O] − k−3[NO][H].

(2)
To calculate the formation rate of NOx, the concentrations

of affecting radicals such as N, O, H, and OH should be
determined first. The partial equilibrium method can be
used to determine the concentrations of these radicals
(United States: Fluent Inc., 2006). In this method, it is
assumed that the generation rate and dissipation rate of
radicals in a short period of time are equal.

Fuel NOx refers to the oxidation of molecular nitrogen that
exists in the fuel structure (e.g., coal here). In this regard, the De
Soete mechanism is widely used to determine the formation and
depletion of fuel NOx. According to this mechanism, fuel-based
N can be classified into volatile N and char N. The formation of
fuel NOx is presented in Figure 3. It should be indicated that
HCN and NH3 are the main intermediates of volatile N and char
N. It is observed that the formation of fuel NOx is mainly affected
by the O2 concentration, fuel type, and char surface density.

The origin of coordinates of the geometric model is located at
the center of the furnace bottom. Axes of coordinates are shown
in Figure 1. In order to improve the accuracy of the results and
reduce the computational expenses, the data were divided into 11
subsets along the y-direction according to the combustion
mechanism. Table 4 indicates that subset 1 refers to the cold
ash hopper area. There are two main combustion areas, which are

TABLE 3 | The comparison between CFD results and experimental plant values.

CFD prediction Plant values Relative error

T1 (°C) 1,000 994 0.6%
T2 (°C) 1,297 1,329 −2.4%
O2 (%) 4.35 4.12 5.5%

T1: Furnace outlet gas temperature, T2: gas temperature of platen superheater bottom.
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divided into seven burner subsets. Subsets 9 and 10 denote the
transition zone and SOFA area, respectively. Moreover, subset 11
refers to the furnace top and the horizontal and tail flue heat
transfer zone.

4.2 Feature Selection Based on the Pearson
Correlation and MI
The selection of input variables directly affects the prediction
accuracy, computational expenses, and generalization of the
model. In the present study, 21 relevant variables are
preselected from CFD simulation data according to the NOx
formation mechanism. The input variables of 11 subsets are
reselected from 21 relevant variables based on the Pearson
coefficient and mutual information (PMI).

In the first step, the PMI variables are determined using Eq. 3.
When the correlation coefficient between the two variables is
ρxi,xj > 0.9, one of them can be removed to reduce the dimension
of input variables.

ρxi ,xj �
∑xi, xj − 1

n∑xi∑xj���������������������������������(∑(xi)2 − 1
n(∑xi)2)(∑(xj)2 − 1

n(∑xj)2)√ . (3)

The MI-based feature selection method can be applied to
obtain the optimal feature by maximizing the joint MI between
the input features and the target variable. The joint MI of NOx
and related inputs can be defined as follows:

I(x1, x2,/, xm; NOx) �
∑
x∈X

∑
y∈Y

p(x1, x2,/, xm; NOx)log p(x1, x2,/, xm,NOx)
p(x1, x2,/, xm)p(NOx),

(4)

where p(x1, x2,/, xm,NOx) is the variable joint distribution,
p(x1, x2,/, xm) is the marginal distribution of input variables,
and p(NOx) denotes the marginal distribution of NOx.

According to the PMI feature selection, except for three
variables (x-, y-, and z-coordinates), seven variables have a
relatively high correlation with NOx concentration. These
variables are listed in Table 5, according to the correlation
intensity. In addition to three coordinate variables, 10 CFD
variables of each subset are retained.

4.3 Obtaining the NOX Distribution
4.3.1 Extreme Learning Machine
ELM (Huang et al., 2017) is a single hidden layer feedforward
neural network (SLFN), which has remarkable properties such as
simple structure, fast learning, and superior generalization
performance. Accordingly, ELM is widely used in different
kinds of dimensional reduction or regression problems.
Figure 4 shows the structural block diagram of the ELM network.

In an ELM model, (Xi, ti), Xi � [xi1, xi2,/, xim]T ∈ Rn, and
ti � [ti1, ti2,/, tim]T ∈ Rm, are train sets, and g(x) is the
activation function. The output of the ELM can be expressed
as follows:

∑L

i�1βigi(ωi · xj + bi) � oj, (5)
where j � 1, 2,/, L, and L refers to hidden nodes; ωi is the
connection weight between the hidden and the input layers; βi is
the connection weight between the hidden and output layers; bi
denotes the offset of the ith hidden layer, and ωi · xj is the inner
product. When the optimal β, ω, and b, are optimized, then the
error reaches zero (∑N

j�1oj − tj � 0). Consequently, Eq. 5 can be
rewritten in the form below:

FIGURE 3 | Chemical reactions that lead to the formation of fuel NOx.

TABLE 4 | Partitioned data in the furnace.

Subset y-coordinate (m) Number of
meshes

Subset y-coordinate (m) Number of
meshes

1 [6.5, 19.5) 77,631 7 [27.0,28.3) 286,240
2 [19.5, 21.0) 345,750 8 [28.3,29.8) 356,409
3 [21.0, 22.4) 305,256 9 [29.8,34.2) 326,907
4 [22.4, 23.7) 311,906 10 [34.2,40.0) 275,240
5 [23.7, 25.5) 250,035 11 [40.0,64.8) 265,371
6 [25.5, 27.0) 383,153
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∑L

i�1βig i(ωi · xj + bi) � tj. (6)
Eq. 6 can also be expressed in the following matrix form:

Hβ � T, (7)
where H is the neuron output matrix, β is the output weight, and
T is the output of the neural network. In the ELM algorithm,
minimum norm least-squares (LS) are used to solve the SLFN.
When the activation function g(x) is infinitely differentiable, the
input weight ωi and hidden layer bias bi can be randomly set to t
(Huang et al., 2017). The training process of ELM consists of two
steps, including random feature mapping and linear parameter
solution. In ELM, the hidden layer is initialized randomly
through nonlinear mapping functions, and the data are
mapped to the feature space. Accordingly, the output weight
matrix β̂ can be obtained based on the least-squares regression.

β̂ � H+T, (8)
where H+ is the Moore–Penrose generalized inverse of the
matrix H.

4.3.2 Computational Environment and Parameter Setting
All calculations are carried out in the Python 3.5 environment,
installed. Configurations of the PC o Sun program are Windows7

(64 bit) and an Intel Core i5-9400F processor with 2.9 GHz
processor speed.

The input weight and bias value are randomly selected
according to the performed ELM analysis. “tanh” function is
selected as the activation function of ELM, and 100 neurons are
considered in the hidden layer.

4.3.3 Description of the Data Set
In this section, CFD simulation is carried out to study variations
of the tilt angle of a typical burner at rated power. In order to
investigate the NOx distribution at an arbitrary angle, training
and test data sets should be constructed. According to PMI
correlation analysis, NOx distribution is mainly affected by
seven factors. Moreover, there are 22 variables as the inputs of
the training set.

TABLE 5 | Feature selection of each subject.

Correlation rank Subsets 1 Subset2- subset 9 Subsets 10 Subsets 11

1 velocity-magnitude temperature molef-o2 molef-o2
2 y-velocity molef-o2 velocity-magnitude molef-n2
3 temperature molef-co temperature pressure
4 molef-o2 molef-n2 y-velocity y-velocity
5 heat-of-reaction velocity-magnitude molef-n2 temperature
6 dpm-concentration y-velocity molef-co molef-co
7 dpm-burnout pressure pressure z-velocity

FIGURE 4 | Structural diagram of the ELM network.

TABLE 6 | Construction of the training set and test set.

Data set Data set of
the input variables

Data set of
the output variable

Training set 1 −30°, −10° −20°

Training set 2 −20°, 0° −10°

Training set 3 −10°, 10° 0°

Training set 4 10°, 30° 20°

Test set 0°, 20° 10°
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The construction rules of the data set are shown in Table 6.
Four cases are combined to train the model, and one is used to test
it. In this study, the NOx distribution of the upward 10° tilt angle
will be predicted.

4.3.4 Performance Metrics
In order to evaluate the prediction performance of models, the
mean absolute percentage error (MAPE), root-mean-squared error
(RMSE), and correlation coefficient R-square (R2) are used as
evaluation indicators. These indicators are defined as follows:

MAPE � 1
m
∑m

i�1

∣∣∣∣∣∣∣∣yp(i) − yc(i)
yc(i)

∣∣∣∣∣∣∣∣ × 100%, (9)

RMSE �
�������������������
1
m
∑m

i�1(yp(i) − yc(i))2
√

, (10)

R2 � 1 −
[∑m

i�1(yp(i) − yc(i))2]/m
[∑m

i�1(�yp(i) − yc(i))2]/m , (11)

where m is the number of samples in the test set, and �yp(i)
denotes the average value of NOX distribution. Furthermore, yc

and yp are the calculated and predicted NOx concentrations,
respectively.

4.3.5 Prediction of NOx Distribution Based on Extreme
Learning Machine
3D distribution of NOx in 11 subsets are modeled respectively
adopting the aforementioned ELM model and then are tested by
the working condition of the upward 10° burner tilt angle. The
predicted results are shown in Table 6.

In this section, it is intended to model the NOx distribution in
11 subsets adopting the ELMmodel. Then, the results are verified
by the experimental data of the upward 10° burner tilt angle. The
performance indicators of the predicted results are shown in
Table 7.

Considering the required computational time for CFD
simulation, ELM can be applied to rapidly model the flow
and obtain the NOx distribution at an arbitrary tilt angle.

Compared with other subsets, R2 of subset 1 is relatively
small, indicating that the predicted value deviates from the real
value. This subset locates in the cold hopper area. Accordingly,
the NOx distribution is mainly affected by the ash fall and the
combustion in the upper zones. Meanwhile, cold air blowing to
the bottom of the furnace affects the field distribution and
species concentration. Accordingly, it is an enormous
challenge to predict the NOx distribution in this region.

TABLE 7 | Performance indicators in different subsets.

R2 MAPE RMSE Train Time
(s)

Test Time(s)

Subset1 0.49 8.19 36.20 3.03 0.22
Subset2 0.79 18.85 46.68 14.36 1.18
Subset3 0.82 20.55 61.25 15.35 1.37
Subset4 0.81 22.52 59.35 15.46 1.40
Subset5 0.73 12.12 58.35 12.18 1.09
Subset6 0.86 10.51 42.88 18.61 1.56
Subset7 0.85 20.24 51.59 14.12 1.18
Subset8 0.67 10.20 47.46 14.73 1.45
Subset9 0.75 4.62 25.39 13.48 1.13
Subset10 0.73 4.89 23.92 11.38 0.95
Subset11 0.86 2.56 10.23 11.27 0.91
Mean 0.76 12.29 40.49 13.00 1.00

FIGURE 5 | Contour of 3D distribution of NOX. (A) NOX concentration obtained from CFD simulation (B) NOX concentration obtained from ELM prediction (C)
Prediction error
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Table 7 indicates that theMAPE of subsets 3, 4, and 7 is about
20%, which is much larger than that of other subsets. These three
subsets locate in burner B, burner C, and burner E, respectively.
When the burner tilt angle is 10° upward, the combustion center
of the lower main combustion zone locates in subsets 3 and 4, and
the combustion center of the upper main combustion zone
locates in subset 7. Under this circumstance, large turbulent
flow and flame fluctuation decreases the prediction accuracy.
Figure 5 shows the overall contours of NOx distribution in the
studied furnace. It is observed that the NOx concentration in the
main combustion zone is relatively high, and the range of
variation is large. Consequently, the prediction error is
relatively large.

In subsets 9, 10, and 11, theMAPE and RMSE of the model are
small. This is because at the top of the furnace and the horizontal

flue, the combustion reaction has ended, and the turbulence
disappears. As a result, the distribution of the material
composition is stable.

5 VERIFICATION OF THE ALGORITHM

5.1 Analysis of Feature Selection
To verify the influence of PMI feature selection on the modeling
accuracy and efficiency, a comparative study is carried out on the
NOx distribution of 11 subspaces. There are 42 input variables before
feature selection, including 3 coordinates (x-, y-, and z-coordinates),
19 variables in each known working condition and the burner tilt
angle of an unknown working condition. The output is NOx
distribution in the desired working condition. Furthermore, there
are 22 input variables after PMI feature selection. Three evaluation
indicators are used to analyze the modeling effect.

Table 8 shows the mean index indicators of 11 subspaces. It is
observed that after feature selection, the mean R2 (MR2) increases by
14.5%, while the mean MAPE (MMAPE) and mean RMSE
(MRMSE) decrease by 20.9% and 17.2%, respectively. Moreover,
mean training time decreases by 3.9 s. It is concluded that predicting

TABLE 8 | Statistical indicators of the prediction using different methods.

MR2 MMAPE MRMSE Mean Train Time (s)

PMI-ELM 0.76 12.29 40.49 13.09
ELM 0.65 15.55 48.89 16.99

FIGURE 6 | Contours of NOX concentration along the height of the furnace obtained from different methods.
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the NOx distribution using the PMI feature decreases the prediction
data dimension and improves the prediction performance.

Considering the high temperature in the combustion zone and
the high-temperature gradient around the flame, it is a challenge to
simulate the flow accurately. The flue gas flow at the top and tail of
the furnace is relatively steady, so the predicted value of NOx
distribution is relatively accurate. Figure 6 shows the NOx
distribution in the horizontal cross section at four heights of the
furnace with an upward burner tilt angle of 10°. It is observed that at
the height of 22 m (burner region B), firing circles appear clearly, and
the predicted values using the feature extraction are more consistent
with the experimental data. At the height of 29m, airflow rotates and
the deviation of the NOx concentration in the furnace center is
smaller than that of the case where this feature is not selected. For the
SOFA area at 35m, the prediction accuracy of PMI-ELM is high. At
the top of the furnace, the NOx distribution can be accurately
predicted regardless of the feature selection. It is inferred that
prediction errors mainly appear in the high-temperature zone
and the bottom of the furnace. Except for the top region, the
prediction performance can be significantly improved using
feature extraction.

5.2 Comparative Analysis of Different
Algorithms
To verify the effectiveness of the ELM algorithm on predicting the
NOx distribution in the studied furnace, 11 subsets are modeled

using different algorithms, including the deep belief network
(DBN), deep neural network (DNN), multiple linear regression
(MLR), and echo state network (ESN). The average prediction
performances of different algorithms are compared in Table 9. It
is observed that the smallest prediction error and the largest R2

can be achieved from the ELM model. Moreover, the ELM has a
higher prediction speed than DBN and DNN models. The
comparison of error evaluation indices demonstrates that the
ELM model outperforms other models in predicting the NOx
distribution in the studied furnace.

Figure 7 shows the absolute error boxplot of the studied
algorithms. It is observed that the lowest absolute error can be
achieved from the ELM algorithm, while it has a tighter variation
bandwidth than the other algorithms. The variation of the
predicted results using the ELM algorithm is consistent with
that of the CFD simulation. It is concluded that the ELM-based
model has a reasonable fitting effect and prediction ability.

6 CONCLUSION

The ELM model has been established to predict the 3D NOx
distribution in the furnace using CFD simulation data at different
burner tilt angles. Based on the obtained results and performed
analyses, the main conclusions of this research can be
summarized as follows:

The mean R2, MAPE, and RMSE of the ELM-based data-
driven method are 0.76, 12.29%, and 40.49, respectively,
indicating that the proposed method can be used to accurately
predict the NOx distribution in the furnace.

1) Due to a large amount of CFD data, the data are partitioned
based on the combustion mechanism. PMI feature extraction
is used to select optimal variables of each subset. This
technique increased MR2 and MMAPE by 14.5 and 20.9%,
respectively, while reducing the MRMSE by 17.2%. It is

TABLE 9 | Mean performance indices of different algorithms.

DNN DBN MLR ESN ELM

R2 0.70 0.65 0.51 0.59 0.76
MAPE 17.09 15.28 22.28 20.75 12.30
RMSE 47.08 50.71 48.36 48.64 42.12
Average Train Time (s) 25684.97 7919.24 0.46 24.81 13.22

FIGURE 7 | Absolute error box plot of different algorithms.
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concluded that data partition and PMI feature selection can
effectively improve the prediction performance.

2) CFD simulation results at typical burner tilt angles are
used as the training set. Then, NOx distributions are
predicted at arbitrary tilt angles. It is found that the
proposed data-driven method can predict the NOx
distribution in the furnace online based on offline
modeling Xu et al., 2001.
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