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During loading pattern (LP) optimization and reactor design, a lot of time consumption
spent on evaluation is one of the key issues. In order to solve this issue, the surrogate
models are investigated in this paper. The convolutional neural network (CNN) and fully
convolutional network (FCN) are adopted to predict the eigenvalue and the assembly-wise
power distribution (PD) for a simplified pressurized water reactor (PWR) during depletion,
respectively. For the eigenvalue prediction during depletion, the error in the begin of cycle
(BOC) and middle of cycle (MOC) is higher than that in the end of cycle (EOC). For the BOC
and MOC, the samples with discrepancy over 500 pcm are less than 1%, except four
burnup points. For the EOC, the fraction of samples with error over 500 pcm is less than
1%. As for the error of assembly power, the average absolute error is on the same level for
all test cases. The average absolute relative error in the center region and the peripheral
region is higher than that in the inter-ring region. The prediction results indicate the
capability of neural network to predict core parameters.

Keywords: surrogatemodel, convolutional neural network, reactor design, eigenvalue prediction, power distribution
prediction

1 INTRODUCTION

One of the key issues during loading pattern (LP) optimization and reactor design is time
consumption for evaluating millions of LPs. The purpose of evaluation is to give out the fitness
of each LP, which is commonly represented by the core key parameters. The conventional evaluation
method gives the fitness by executing core calculation repeatedly, and it is the main source of time
consumption. Therefore, a surrogate model, which rapidly produces the core key parameters, is
desired.

In the past research, the artificial neural network (ANN) has been used in predicting core key
parameters. Due to the constraints of computing resources, earlier studies apply the multi-layer
perceptron (MLP) as the prediction model. The linearized parameter or macro data in the core are
used as the input. Early examples of research into the model include the prediction of power peak
factor (Mazrou and Hamadouche, 2004; Souza and Moreira, 2006; Niknafs et al., 2010; Saber et al.,
2015), eigenvalue (Mazrou and Hamadouche, 2004; Saber et al., 2015), departure from nucleate
boiling ratio (Lee and Chang, 2003), and core reload program (Kim et al., 1993a; Kim et al., 1993b;
Hedayat et al., 2009). However, previous studies with the MLP model have failed to find any link
between the input data and the environment. Loss of spatial information is an inherent problem of
MLP, which is caused by the linearization of input parameters.
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Recently, researchers have shown an increased interest in
predicting core key parameters with the convolutional neural
network (CNN) (Krizhevsky et al., 2012). Unlike the MLP
neural network, the CNN directly uses the information related
to the problem as its input. In this way, the CNN avoids the

inherent problem caused by the linearization of input
parameters. Besides, the CNN uses the convolutional kernel
as its base unit, which is beneficial to the learning of local
features. Thus, in core parameter prediction, the CNN has a
higher potential than the MLP, which is composed of dense
layers. Surveys such as that conducted by Jang and Lee (2019)
have shown that the CNN has higher accuracy than the
conventional neural network, when they use the LP
information as input to predict the peak factoring and
cycle lengths. Further research (Jang and Lee, 2019) reveals
that there is still some potential of the CNN model. When
regularization and normalization are used, the prediction
accuracy could be improved. Unlike Jang and Lee (2019)
and Jang (2020), Zhang (2019) predicted the eigenvalue by
the CNN with the assembly cross sections (XSs) as its input.
The results indicate that the single freedom of XS as the input
of the CNN has better performance than the multiple of that.
In addition to lumped parameter prediction, Lee et al. (2019)
used the macroscopic XSs as input and predicted the
assembly-wise power distribution (PD). The results show
that the CNN model has better performance for the
problems similar to training data than the dissimilar
problems. This phenomenon could be mitigated by the
involvement of adversarial training data. Besides, the same
padding setting is used to ensure the unchanged data size
before and after through the convolutional layer. In the field of
PD prediction, Whyte and Parks (2020) took the LP
information as input to predict the pin-wise PD. Different
from the former, they achieved PD prediction by reshaping
normal CNN output to the LP size. However, to predict the
PD by the CNN, the original network needs some special
settings or changes. For example, Lee et al. (2019) involved the

FIGURE 1 | Computing framework of core parameter prediction.

FIGURE 2 | Geometry of the simplified PWR.

TABLE 1 | Burnup points.

BU (GWd/t) 27.5, 30, 32.5, 35, 37.5, 40, 42.5, 45, 47.5, 50, 52.5, 55, 57.5, 60, 62.5, 65, 67.5, 70, 72.5, 75, 77.5, 80, 82.5, 85, 87.5, 90,
92.5, 95, 97.5, 100
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same padding setting. Whyte and Parks (2020) reshaped the
normal output. To avoid further machinery, Long et al. (2015)
designed a fully convolutional network (FCN) to achieve

pixel-to-pixel prediction. For PD prediction, the pixel-to-
pixel predicting process is similar to the conventional core
calculation. They both use the pixel-like information as input
and output. The main differences include two aspects. The
first one is that the CNN uses the LP information as its input,
while the core calculation uses the assembly XSs as its input.
Another one is that the CNN predicts the PD by a neural
network, while the core calculation gets it by solving partial
differential equations. Therefore, the FCN is a natural choice
for assembly-wise PD prediction with the LP information as
its input. Zhang et al. (2020) modified the FCN to predict the
PD and flux distribution with the assembly XSs as its input.
Compared to the MLP, the FCN shows better performance.
This research reveals that the FCN has potential in distributed
parameter prediction. But there has been minimal
investigation of predicting the PD with the FCN during
depletion.

Therefore, in this study, the CNN and FCN are
implemented to predict eigenvalue and assembly-wise PD
during depletion, respectively. And a simplified PWR
problem with 13 burnup points is used to assess the
performance of the trained models. To simplify the input of
the neural networks, we choose the single freedom as the
model input. The LP is encoded as the index matrix to
serve as input of the models.

The remainder of this paper is organized as follows. The
methodology is introduced in Section 2. The numerical results
are presented in Section 3. Finally, Section 4 gives
conclusions.

FIGURE 3 | Assembly geometry.

FIGURE 4 | Geometry configuration of different cells.
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2 METHODOLOGY

2.1 Computing Framework Based on Neural
Network
In the evaluation process, the conventional method gets the
eigenvalue and PD by performing core calculation. But the
method used in this article predicts them with the CNN and
FCN models. It is the main difference between this research and
before. Neural network models are generated by training with the
datasets. The general computing framework is shown in Figure 1,
which comprises three parts:

(1) Dataset generation. First, multiple fuel assemblies with different
enrichment fuel and burnable poison rod quality are designed
and labeled with a unique ID. Second, the few-group constants
are generated by lattice calculation with the Monte Carlo code
Serpent (Leppänen et al., 2015). Third, the core LP is generated
by the random method. Finally, the core calculation is
performed with the in-house diffusion code to generate the
training and validation datasets. The details are described in
Section 2.2.

(2) Model training. For a neural network model, it achieves
learning knowledge by adjusting the parameters in its
network. The learning process is named training. The
architecture of the network decides the degree of learning.
In this study, the CNN and the FCN are adopted as
prediction models. They are introduced in Section 2.3.

(3) Model verification. The verification is performed to verify the
efficiency of the trainedmodels. And Section 3 gives the results.

2.2 Dataset Generation
The eigenvalue and the PD during burnup are determined by the
initial LP. In this study, the reflector is fixed. The LP is randomly
generated in a simplified PWR geometry in Figure 2, and the
repetitive one will be abandoned. This generation process stops
until the dataset size is reached. Then, the Serpent code is used to
generate assembly few-group constants with the reflective
boundary condition. Finally, the core calculation is performed
with the in-house diffusion code for these LPs to obtain the
eigenvalue and PD in each burnup point.

In order to preserve spatial information, the LP is encoded as
a two-dimensional matrix, which is comprised of assembly IDs.
Different assemblies have different fuel enrichments and
burnable poison rod quantities. They include 25 enrichments
varying from 12% to 18% divided into a constant interval of
0.25% and six different poison rod numbers including 0, 9, 13,
17, 21, and 25. The poison rods have the same 10B enrichment,
which is 95%. Through the arrangement and combination of
these settings, 150 different assemblies are formed. The
temperature of the different problems is fixed as 900K. The
fuel assembly is depleted to 100GWd/t, and the specific burnup
steps are listed in Table 1. The basic power density of the fuel
assembly is 0.5 MW/kg. In the designed assemblies, the

FIGURE 5 | Schematic diagram of the FCN structure.

TABLE 2 | Model parameters.

CNN FCN

Activation functions ReLU (rectified linear unit) ReLU
Loss function MSE (mean squared error) MSE
Optimizer Adam (adaptive moment estimation) Adam
Learning rate 1e-3 1e-4
Batch size 512 512
Epoch 700 700

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 8512314

Zhang et al. Surrogate Model in Reactor Physics

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


moderator is fixed as the 561K water without the void and
boron. The cladding material is fixed as the 600K stainless steel.
The gap is fixed as 600K oxygen. The compositions of the above

materials are given in Supplementary Appendix Table SA1.
Figure 3 and Figure 4 describe the geometry of fuel assembly
and the configuration of pin cell, respectively. As shown in

FIGURE 6 | Eigenvalue predicted accuracy of the BOC.
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Figure 3, there are four different groups of poison rod locations.
For the assembly with nine poison rods, the location of the
poison rod is marked with B1. For the assembly with thirteen

poison rods, the poison rods are placed not only in B1 but also in
B2. For the assembly with seventeen poison rods, the poison
rods are placed in B1 and B3. For the assembly with twenty-one

FIGURE 7 | Eigenvalue predicted accuracy of the MOC.
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poison rods, the poison rods are placed in B1, B2, and B3. For
the assembly with twenty-five poison rods, the poison rods are
placed in B1, B3, and B4.

In addition, considering that the eigenvalue in different
burnup points is not prior data, the eigenvalue is not
normalized.

FIGURE 8 | Eigenvalue predicted accuracy of the EOC.
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2.3 Model Description
Different problems need different models with different
architectures. In this study, two types of neural network
models are used. We performed some primary sensitivity
analysis on the network architectures used in this research.
The results indicate that the current networks are the best.
Any adjustment to them will worsen the prediction accuracy.
Besides, it is difficult to find the law between the adjustment and
the model performance. Thus, we do not report it in this
manuscript. A complete sensitivity analysis of the network
architecture requires a lot of iterations, which are difficult to
complete in this research and are considered for the future. Then,
the models used in this research are introduced. The first type is
the CNN, which is adopted to predict the eigenvalue. Its structure
comprises convolutional, pooling, and fully connected layers,
which are shown in Supplementary Appendix Table SA2.
The convolutional layer aims to take the spatial data into
account. The pooling layer summarizes the feedback of the
whole neighborhood and improves the efficiency of the
network. The network finishes up with the fully connected
layer, which connects the network and the object.

The second type is the FCN, which is a variant of CNN and is
presented diagrammatically in Figure 5. It is noticed that, at the
end of conventional CNN, several upsampling layers and
concatenate layers are added to achieve backward stride
convolution. They combine different feature layers and
generate the output of corresponding size to the input. Thus,
the FCN can predict the assembly-wise PD with the LP as its
input. The FCN structure, which is adopted in this study, is
shown in Supplementary Appendix Table SA3.Table 2 gives the
parameters used in the above models.

Furthermore, there are two points that need attention. First,
the models with different burnup points are trained separately,
which means that different burnup points have different neural
networks. Second, due to the computational load for training 50
neural networks, this study chooses several representative burnup
points. Thirteen burnup points are selected as representatives,

including 0, 0.2, 0.5, 1.0, 2.0, 35.0, 37.5, 40.0, 42.5, 92.5, 95, 97.5,
100.0 GWd/t, which represent the begin of cycle (BOC), middle
of cycle (MOC), and end of cycle (EOC).

In this study, the Keras framework (Chollet, 2015) is used to
establish neural network structures upon TensorFlow. The CPU
and GPU used in this work are 3.3 GHz Intel Core i9-7900X and
Nvidia GeForce GTX 2080Ti, respectively.

3 NUMERICAL RESULTS

3.1 Eigenvalue Prediction
In this section, the CNNs are trained to predict the eigenvalue in
different burnup points. The architecture shown in
Supplementary Appendix Table SA2 was used. 1 million
samples (0.8 million for training and 0.2 million for
validation, with no overlap between the two datasets) were
generated to train and validate the CNNs.

Figures 6–8 show the scattering plot of eigenvalue and the error
distribution of predicted eigenvalue. In the scattering plot, the red
line is the mean absolute error (MAE) ±500pcm. In the error
distribution histogram, the black line is the normal distribution
curve based on the prediction results. The σ symbol represents the
standard deviation of error distribution. The green region, the blue
region, the red region, and the black region are the normal
distribution range of 1σ, 2σ, and 3σ and the region out of 3σ,
respectively. Table 3 summarizes the detailed results.

As a result of validation, in different burnup stages, the error
distribution of the discrepancy between the predicted eigenvalue
and the reference is close to normal distribution. However,
compared to the normal distribution, the eigenvalue prediction
error of CNN models is higher within the 1σ range. This means
that the distribution of prediction error is more concentrated
around the average error. But in the region of error exceeding 1σ,
the distribution is wider than the normal distribution. The
average error in all cases is within 100pcm. There is no
obvious peak shift. Besides, the samples with the absolute

TABLE 3 | Eigenvalue prediction error of trained models.

Depletion (GWd/t) eavg
a estd

b Frac. with ec<200pcm Frac. with ec>500pcm

BOC 0.0 68 136 84.52 0.68
0.2 −27 237 64.84 4.40
0.5 −26 174 81.62 1.80
1.0 31 177 78.86 1.56
2.0 35 98 94.99 0.15

MOC 35.0 −16 176 88.42 2.61
37.5 12 64 99.00 0.07
40.0 16 78 98.08 0.16
42.5 55 128 87.68 0.52

EOC 92.5 −27 71 98.20 0.07
95.0 7 58 99.51 0.04
97.5 −19 58 99.58 0.04
100.0 33 144 84.90 0.55

a = average error (pcm).
b = standard deviation (pcm).
c = fraction of the eigenvalue with error (%).
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error over 500 pcm are less than 3%, except for the second burnup
point in the BOC. In general, the error in the BOC and MOC is
higher than that in the EOC. This is because the reactivity of

different assemblies varies greatly with poison depletion, which is
greatly affected by the location. It increases the difficulty of the
prediction process.

FIGURE 9 | Power distribution prediction result of the BOC. First line: assembly average power. Second line: mean absolute error. Third line: average value of
absolute relative error.
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3.2 Power Distribution Prediction
As a further test of neural network, the FCNs are trained to predict
PD. The architecture, shown in Supplementary Appendix Table
SA3, was used. 1 million PD samples, generated with the
eigenvalue, were used to train and validate the FCNs.

For the relative power of each assembly in different burnup
stages, Figures 9–11 give the assembly average power, the
assembly average absolute error, and the average value of the
absolute relative error. The color of figures is given according to
the assembly average power.

The average power of assembly decreases with the increase of
the distance from the core center. The average absolute error
shows the same trend. The error in the core center is higher than
that in the core periphery. But the error is in the same level. For

the average value of the absolute error, similar to eigenvalue
prediction, the error in the BOC and MOC is higher than that in
the EOC. In a specific burnup point, the error in the center region
and peripheral region is higher than that in the inter-ring region.
This phenomenon is caused by the spatial self-shielding effect. It
means that there is different performance in different positions,
even if the configuration is the same. Besides, the boundary
condition, the reflector, and the void region exist in the core
center and peripheral regions, which increases the difficulty of
learning in these regions.

3.3 Discussion on Efficiency
In the process of evaluating the accuracy of models, the
efficiency was also tested. During the diffusion calculation,

FIGURE 10 | Power distribution prediction result of the MOC. First line: assembly average power. Second line: mean absolute error. Third line: average value of
absolute relative error.
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each node was considered an assembly, and two-group
constants were used. A steady-state diffusion calculation
takes a few seconds, and the burnup calculation time can be

neglected. It takes nearly 2 days to generate 1 million samples.
However, for the neural network models obtained with
training, it takes 18 s and 14 s to generate 0.2 million
eigenvalues and PDs. The calculation efficiency is
remarkably improved. For the CNN and FCN models,
learning once (epoch) costs 23 s and 40 s, respectively. The
detailed time comparison is listed in Table 4.

Similar to the application of neural network in other fields, the
generalization of trained models is an issue. In the process of
training, each assembly was labeled with a unique ID. The
existing IDs cannot identify any new assembly. It directly
leads to the lack of generalization ability. This is the limitation
of neural networks in this study.

FIGURE 11 | Power distribution prediction result of the EOC. First line: assembly average power. Second line: mean absolute error. Third line: average value of
absolute relative error.

TABLE 4 | Time comparison.

Numbers (million) Time

Dataset generation 1 2 days
CNN/training/one epoch 0.8 23 s
CNN/validation 0.2 18 s
FCN/training/one epoch 0.8 40 s
FCN/validation 0.2 14 s
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4 CONCLUSION

In this study, the CNN and the FCN were adopted to predict the
eigenvalue and the power distribution for a simplified core during
burnup, respectively. The loading pattern is encoded as a two-
dimensional matrix as the models’ input. As a result of validating
for 0.2 million samples, the performance of the trained models for
the EOC is better than that for the BOC and MOC. For eigenvalue
prediction, the fraction of the eigenvalue with error more than 500
pcm is less than 1% for all burnup points in the EOC. But there are
third burnup points in the BOC and one burnup point in the MOC,
where the fraction is over 1%. This is caused by the changes of
reactivity balance between poison and fuel in the BOC and MOC.
However, in the EOC, the differences between different assemblies
become small as the poison nuclide depletes to a negligible level.
With regard to the power distribution, the performance of the
trained models for the EOC is better than that for the BOC and
MOC, too. The mean absolute error of assembly power follows that
the error decreases with the increasing distance from the core center.
But the error is in the same level. The average value of absolute
relative error in the center and peripheral regions is larger than that
in the inter-ring region. It is caused by the self-shielding effect, which
leads to the different performance in different positions, even if the
configuration is the same. Besides, the presence of boundary
condition and the fact that the same information is shared
among different fuel positions also increase the difficulty of learning.

This investigation indicates that the neural network has the
capability to predict core key parameters, such as the eigenvalue
and power distribution. Compared with the conventional diffusion
calculation, the introduction of neural network as the surrogate
model significantly reduces the computation time. However, the
error is influenced by the depletion and the assembly location. This
indicates that it is not appropriate to directly use the ID of assembly

as input in this research. The selection of themodel input needs to be
further analyzed.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/Supplementary Material, and further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

JZ: Writing-original draft, Visualization, Simulation. YZ:
Simulation. QZ (3rd author): Writing-review, Idea,
Supervision. XW: Resources. QZ (5th author): Resources.

FUNDING

This work was supported by the National Natural Science
Foundation of China (12105063), the Science and Technology
on Reactor System Design Technology Laboratory (HT-KFKT-
02-2019004), the Stability Support Fund for Key Laboratory of
Nuclear Data (JCKY2021201C154), and the Natural Science
Foundation of Heilongjiang Province of China (LH2020A001).

SUPPLEMENTARY MATERIAL

The SupplementaryMaterial for this article can be found online at:
https://www.frontiersin.org/articles/10.3389/fenrg.2022.851231/
full#supplementary-material

REFERENCES

Chollet, F. (2015). Keras. Available at: https://keras.io.
Hedayat, A., Davilu, H., and Sepanloo, K. (2009). Estimation of Research

Reactor Core Parameters Using Cascade Feed Forward Artificial Neural
Networks. Prog. Nucl. Energy 51 (6-7), 709–718. doi:10.1016/j.pnucene.
2009.03.004

Jang, H. (2020). Application of Convolutional Neural Network to Fuel Loading
Pattern Optimization by Simulated Annealing. Korea: Transactions of the
Korean Nuclear Society Autumn Meeting.

Jang, H., and Lee, H. (2019). Prediction of Pressurized Water Reactor Core
Design Parameters Using Artificial Neural Network for Loading Pattern
Optimization. Korea: Transactions of the Korean Nuclear Society Spring
Meeting.

Kim,H.G., Chang, S.H., andLee, B.H. (1993a).Optimal Fuel LoadingPatternDesignUsing
anArtificial NeuralNetwork and a Fuzzy Rule-Based System.Nucl. Sci. Eng. 115 (2), 152.
doi:10.13182/NSE93-A28525

Kim, H. G., Chang, S. H., and Lee, B. H. (1993b). Pressurized Water Reactor
Core Parameter Prediction Using an Artificial Neural Network. Nucl. Sci.
Eng. 113 (1), 70.

Krizhevsky, A., Sutskever, I., and Hinton, G. E. (2012). Imagenet Classification
with Deep Convolutional Neural Networks. Adv. neural Inf. Process. Syst.
25, 1097.

Lee, G.-C., and Heung Chang, S. (2003). Radial Basis Function Networks Applied
to DNBR Calculation in Digital Core Protection Systems. Ann. Nucl. Energy 30
(15), 1561–1572. doi:10.1016/s0306-4549(03)00099-9

Lee, J., Nam, Y., and Joo, H. (2019). Convolutional Neural Network for Power
Distribution Prediction in PWRs. Jeju, Korea: Transactions of the Korean
Nuclear Society Spring Meeting.

Leppänen, J., Pusa, M., and Valtavirta, V. (2015). The Serpent Monte Carlo Code:
Status, Development and Applications in 2013. Ann. Nucl. Energy 82, 142.
doi:10.1016/j.anucene.2014.08.024

Long, J., Shelhamer, E., and Darrell, T. (2015). “Fully Convolutional Networks for
Semantic Segmentation,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 3431–3440.

Mazrou, H., andHamadouche, M. (2004). Application of Artificial Neural Network
for Safety Core Parameters Prediction in LWRRS. Prog. Nucl. Energy 44 (3),
263–275. doi:10.1016/s0149-1970(04)90014-5

Niknafs, S., Ebrahimpour, R., and Amiri, S. (2010). Combined Neural Network for
Power Peak Factor Estimation. Aust. J. Basic Appl. Sci. 4 (8), 3404.

Saber, A. S. (2015). “Nuclear Reactors Safety Core Parameters Prediction Using
Artificial Neural Networks,” in 2015 11th International Computer Engineering
Conference (ICENCO) (IEEE).

Souza, R.M. G., andMoreira, J. M. (2006). Neural Network Correlation for Power Peak
Factor Estimation.Ann. Nucl. Energy 33 (7), 594. doi:10.1016/j.anucene.2006.02.007

Whyte, A., and Parks, G. (2020). “Surrogate Model Optimization of a ‘micro
Core’ PWR Fuel Assembly Arrangement Using Deep Learning Models,” in

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 85123112

Zhang et al. Surrogate Model in Reactor Physics

https://www.frontiersin.org/articles/10.3389/fenrg.2022.851231/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fenrg.2022.851231/full#supplementary-material
https://keras.io
https://doi.org/10.1016/j.pnucene.2009.03.004
https://doi.org/10.1016/j.pnucene.2009.03.004
https://doi.org/10.13182/NSE93-A28525
https://doi.org/10.1016/s0306-4549(03)00099-9
https://doi.org/10.1016/j.anucene.2014.08.024
https://doi.org/10.1016/s0149-1970(04)90014-5
https://doi.org/10.1016/j.anucene.2006.02.007
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Proc. Int. Conf. Physics of Reactors 2020 (PHYSOR 2020), Cambridge,
United Kingdom.

Zhang, Q. (2019). “A Deep Learning Model for Solving the Eigenvalue of the Diffusion
Problem of 2-D Reactor Core,” in Proceedings of the Reactor Physics Asia 2019
(RPHA19) Conference, Osaka, Japan, December 2–3, 2019.

Zhang, Q., Zhang, J. C., Liang, L., Li, Z., and Zhang, T. F. (2020). “A Deep Learning
Based Surrogate Model for Estimating the Flux and Power Distribution Solved
by Diffusion Equation,” in Proc. Int. Conf. Physics of Reactors 2020 (PHYSOR
2020), Cambridge, United Kingdom.

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors, and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Zhang, Zhou, Zhang, Wang and Zhao. This is an open-access
article distributed under the terms of the Creative Commons Attribution License (CC
BY). The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 85123113

Zhang et al. Surrogate Model in Reactor Physics

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Surrogate Model of Predicting Eigenvalue and Power Distribution by Convolutional Neural Network
	1 Introduction
	2 Methodology
	2.1 Computing Framework Based on Neural Network
	2.2 Dataset Generation
	2.3 Model Description

	3 Numerical Results
	3.1 Eigenvalue Prediction
	3.2 Power Distribution Prediction
	3.3 Discussion on Efficiency

	4 Conclusion
	Data Availability Statement
	Author Contributions
	Funding
	Supplementary Material
	References


