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Energy system planning tools suggest that the cost and feasibility of climate-stabilizing energy
transitions are sensitive to the cost of CO2 capture and storage processes (CCS), but the
representation of CO2 transportation andgeologic storage in these tools is often simple or non-
existent. We develop the capability of producing dynamic-reservoir-simulation-based geologic
CO2 storage supply curves with the Sequestration of CO2 Tool (SCO2T) and use it with the
ReEDS electric sector planning model to investigate the effects of CO2 transportation and
geologic storage representation on energy system planning tool results. We use a locational
case study of the Electric Reliability Council of Texas (ERCOT) region. Our results suggest that
the cost of geologic CO2 storage may be as low as $3/tCO2 and that site-level assumptions
may affect this cost by several dollars per tonne. At the grid level, the cost of geologic CO2

storage has generally smaller effects compared to other assumptions (e.g., natural gas price),
but small variations in this cost can change results (e.g., capacity deployment decisions) when
policy renders CCS marginally competitive. The cost of CO2 transportation generally affects
the location of geologic CO2 storage investmentmore than the quantity of CO2 captured or the
location of electricity generation investment. We conclude with a few recommendations for
future energy system researchers when modeling CCS. For example, assuming a cost for
geologic CO2 storage (e.g., $5/tCO2) may be less consequential compared to assuming free
storage by excluding it from the model.
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ACRONYMS

All acronyms used in this paper are defined in Table 1.

INTRODUCTION

Motivation, Literature Review, and Research Gaps
Greenhouse gas (GHG) emissions, principally carbon dioxide (CO2), drive climate change and thus
pose substantial risk to human health and economic growth (Intergovernmental Panel on Climate
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Change, 2018). GHGs are primarily emitted from human
activities that burn fossil fuels for energy. For example, the
energy system—electricity, transportation, heat—collectively
emitted ~90% of all GHG emissions in the United States in
2018 (Environmental Protection Agency, 2020). As a result,
addressing climate change will require transitioning from the
current energy system to one that is comprised of technologies
that emit substantially fewer GHGs (Intergovernmental Panel on
Climate Change, 2014; Rogelj et al., 2018).

Energy system planning tools are often used to gain insight
into prospective energy transitions. For example, Integrated
Assessment Models (IAMs) are increasingly being used as
energy planning tools given their ability to link climate and
energy systems together (Intergovernmental Panel on Climate
Change, 2014; Rogelj et al., 2018; Vinca et al., 2018). Additionally,
electricity sector Capacity Expansion Models (CEMs) are often
used to investigate pathways to decarbonizing electricity
specifically, because they can provide more targeted guidance
on electricity infrastructure investment decisions. For example,
CEMs can be used to determine which technologies should be
deployed to supply electricity demand at least cost under a grid-
wide CO2 emission limit or a CO2 price that increases the cost of
technologies that emit CO2 to the atmosphere (Wise et al., 2007;
Frew et al., 2016; MacDonald et al., 2016; Mileva et al., 2016;
Pleßmann and Blechinger, 2017; Koltsaklis and Dagoumas, 2018;
Sepulveda et al., 2018; Dagoumas and Koltsaklis, 2019; Bistline
and Blanford, 2020; Jayadev et al., 2020).

Results from these tools generally suggest there is uncertainty
on the extent to which any single technology will be deployed
throughout an energy transition given the inherent uncertainties
about the future. For example, the deployment of one technology
may be affected by the availability and cost of another (Fais et al.,
2016). Despite this uncertainty and complexity, results from both
IAMs and CEMs suggest that the cost and feasibility of
decarbonization transitions are sensitive to the cost and
availability of CO2 capture and storage (CCS) processes (Krey
et al., 2014; Kriegler et al., 2014; Yang et al., 2015; Dessens et al.,
2016; Sepulveda et al., 2018; Gambhir et al., 2019; Bistline and

Blanford, 2020; Jayadev et al., 2020; Baik et al., 2022). In CCS
processes, CO2 that would otherwise be emitted to the
atmosphere is instead captured and compressed, possibly
transported, and then injected into the subsurface for
permanent storage in deep geologic formations that are
naturally porous and permeable (Intergovernmental Panel on
Climate Change, 2005). Some studies suggest that climate-
stabilizing energy transitions will require injecting up to
~1,200 GtCO2 globally by 2,100 (Rogelj et al., 2018). And in
the United States specifically, the Princeton Net Zero America
study demonstrates that at a minimum, 0.9 GtCO2/yr of CO2

injection is required to decarbonize by 2050, which is 1.3 times
larger than the country’s oil production on a volume equivalent
basis (Larson et al., 2020; Jenkins et al., 2021).

While important, robustly representing CCS in energy system
planning tools is challenging. For one, estimating the cost and
capacity of geologic CO2 storage over the geographical scope of
energy systems (e.g., state, continent, globe) is difficult. The
subsurface properties that define the geology at any given CO2

storage site influence its capacity and cost but are always
uncertain. These properties also vary geospatially, which
means the capacity and cost of geologic CO2 storage can vary
substantially by location. Moreover, the capacity and cost of
geologic CO2 storage can also vary due to site-level factors
that can be independent of geology. For example, the diameter
of the well casingmay constrain themaximumCO2 injection rate,
thus the CO2 storage capacity, more than geology (Middleton
et al., 2020b). But the cost and capacity implications of these site-
level factors are understudied, and even though there are no
substantial technical challenges to CCS deployment (Akerboom
et al., 2021), there are very few geologic CO2 storage sites in
existence for which to base site-level assumptions.

Additionally, representing CCS in energy system planning
tools also requires assumptions about CO2 transportation
because it is possible to transport captured CO2 long
distances, via pipeline for example, before subsurface injection.
The geologic CO2 storage formations below any given power
plant, if any exist, may or may not be the least-cost location to

TABLE 1 | All acronyms defined.

Acronym Non-abbreviated form

BECCS Bioenergy power plants with CO2 Capture
CCS CO2 Capture and Storage
CEM Capacity Expansion Model
EPA Environmental Protection Agency
ERCOT Electric Reliability Council of Texas
GAMS General Algebraic Modeling System
GCAM Global Change Analysis Model
GHG Greenhouse Gas
IAM Integrated Assessment Model
MARKAL MARKet ALlocation Model
NEMS-CTS National Energy Modeling System—CO2 Capture, Transport, and Storage Model
NREL National Renewable Energy Laboratory
ReEDS Regional Energy Deployment System Model
SCO2T Sequestration of CO2 Tool
SI Supplemental Information
US-REGEN US Regional Economy, Greenhouse Gas, and Energy Model
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store the captured CO2 when considering the geospatial
variability of CO2 storage capacities and costs, the cost of CO2

transportation, and other costs like electricity transmission
infrastructure (Hannon and Esposito, 2015). Further,
determining a least-cost CO2 transportation network is non-
trivial, even if all the CO2 point sources and potential sinks are
identified (Middleton and Bielicki, 2009; Wu et al., 2015;
Middleton et al., 2020c). Capturing the systems-level
ramifications of CO2 transportation endogenously within an
energy system planning tool is even more difficult because the
power plants equipped with CO2 capture (i.e., the CO2 point
sources) have not been identified, and are instead a possible
option that the model may, or may not, deploy.

Due to these challenges, the representation of CCS in energy
system planning tools varies (Table 2). For example, all “out of
the box” CEMs by default include power plants equipped with
CO2 capture as a technology option, but most do not represent
CO2 transportation or geologic storage in any way. This exclusion
is typically justified by assuming that 1) the cost of CO2 capture
drives investment decisions because it accounts for the largest
share of CCS-related costs and/or 2) the capacity and cost of
geologic CO2 storage is driven by geologic factors that are outside
the domain of the model. Regardless of the justification, this
exclusion means the majority of CEMs implicitly assume that
CO2 transportation and geologic storage is free, and therefore,
results from these CEMs misrepresent the cost of deploying and
operating CCS.

The few CEMs that include CO2 transportation and geologic
storage assume a wide range of costs. For example, the cost

estimates in the MARKet and ALlocation model (MARKAL)
range over an order of magnitude, and the cost ranges in National
Energy Modeling System—CO2 Capture, Transport, and Storage
model (NEMS-CTS) and the US Regional Economy, Greenhouse
Gas, and Energy model (US-REGEN) do not overlap (Table 2).
These assumed costs are different from one another because
different assumptions are made to address the previously
discussed complexity and uncertainty around CCS
representation. Some of these assumptions include: using cost
and capacity relationships that were estimated independent from
one another (Lenox et al., 2013; Victor et al., 2018); using cost
estimates made for specific locations to represent the cost of CO2

transportation and geologic storage over entire regions (Zelek
et al., 2012; National Energy Technology Laboratory, 2019); or
assuming a CO2 pipeline of constant length and diameter for a
given power plant type to estimate CO2 transportation cost
(Electric Power Research Institute, 2020). Further, these are
single-cost relationships for a given area (e.g., state, region)
even though supply curves are the typical way cost-capacity
relationships are defined for a given resource in energy system
planning tools. In contrast, some IAMs do use supply curves to
represent cost-capacity relationships, but the range of costs is
even greater than in CEMs, with some IAMs assuming upper
limits above $400/tCO2.

Contributions and Scope of This Paper
In this study, we address these knowledge gaps by 1) presenting a
new approach for generating dynamic-simulation-based supply
curves for geologic CO2 storage and 2) using these curves to

TABLE 2 | Representation of CO2 Transportation and Geologic Storage in Integrated Assessment Model (IAM) and Electric Sector Capacity Expansion Model (CEM) Energy
Planning Tools. It is possible to modify any CEM to include CO2 transportation and geologic storage representation, which has been done, for example with SWITCH
(Sanchez et al., 2015), but this table lists the default representation. Costs were converted to 2017 dollars following the method published in prior work (Koelbl et al., 2014).

Model name Type Include CO2

transportation
and geologic storage?

Cost of CO2

transportation and
geologic

storage* [2017$/tCO2]

Supply curves used
to define cost-

capacity
relationships?

MARKAL + EPAUS9r2014 database Lenox et al. (2013);
Victor et al. (2018)

Includes a CEM
component

Yes 2.63–26.8 No

NEMS-CTS Zelek et al. (2012) Includes a CEM
component

Yes 9.54a–21.04a No

US-REGEN Electric Power Research Institute (2020) Includes a CEM
component

Yes 1.69–9.29 No

OseMOSYS Howells et al. (2011) CEM No 0.00 N/A

GenX Jenkins and Sepulveda (2017); Sepulveda et al.
(2018)

CEM No 0.00 N/A

ReEDS 2.0 National Renewable Energy Laboratory (2019a) CEM No 0.00 N/A

SWITCH 2.0 Johnston et al. (2019) CEM No 0.00 N/A

WIS:dom-P Vibrant Clean Energy (2020) CEM No 0.00 N/A

Many IAMs Koelbl et al. (2014) IAM Yes 0.14b–418.98 Sometimes

aMost recent estimates published from the tools which are used in National Energy Modeling System (NEMS) (National Energy Technology Laboratory, 2019).
bIncreases to $6.98/tCO2 if Global Change Analysis Model (GCAM) is excluded.
*It is possible that these ranges may overstate differences between the tools (e.g., if the majority of CO2 storage is available at similar costs). We provide cost comparisons independent of
the quantities of storage available because the variety of assumptions used, and sometimes opaque documentation,makes it difficult to compare cost-capacity relationshipsmore directly.
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investigate the grid-level ramifications, such as deployment
decisions and CO2 emissions, of CO2 transportation and
geologic storage assumptions. Our investigation is novel in
multiple ways. For one, we present the first dynamic-
simulation-based supply curves for geologic CO2 storage and
the first investigation of how those supply curves may change
based on site-level factors (e.g., number of monitoring wells per
injection well). Prior work, for example Vikara et al. (2017),
developed supply curves for geologic CO2 storage using
volumetric approaches to estimate CO2 storage capacity.
Volumetric-based assessments use algebraic equations to
estimate the capacity of a potential CO2 storage site
(i.e., multiply the pore volume of the rock by the density of
CO2 and an assumed “efficiency” coefficient). In contrast, our
method is based on an entirely different and novel way of
estimating the capacity of CO2 storage that relies on dynamic
reservoir simulation and machine learning algorithms. As a
result, our supply curves are “dynamic-simulation-based” and
do not rely on the assumptions required for volumetric methods
in any way. Further, prior work has studied how geology may
impact the cost and capacity of CO2 storage (Anderson, 2017;
Vikara et al., 2017; Middleton et al., 2020b), but how site-level
factors may affect the cost and capacity of geologic CO2 storage
has, to our knowledge, not been previously investigated.

Additionally, we are the first to quantify the effect that CO2

transportation and geologic storage assumptions could have on a
variety of energy system planning tool results (e.g., CO2

emissions, total system cost). We do this to gain a better
understanding of what situations likely require a more robust
representation of CCS compared to the current status-quo. There
are many different reasons to use an energy system planning tool,
and each application has many assumptions beyond those related
to CCS that affect the results (e.g., natural gas price). Further, CO2

transportation and geologic storage are just two components of
the CCS process, and in turn, CCS is just one of many options that
a given tool may, or may not, deploy to supply energy. As a result,
it is possible that current assumptions regarding CCS are
sufficient for some applications, but it is also possible that
there are situations in which more robust representations are
warranted. As a result of this purpose and the dearth of studies in
this area, we draw conclusions with the intent of guiding future
energy system modelers when considering how to represent CCS
in their tools.

METHODS

As shown in Figure 1, our methodology consists of modifying
two previously published tools and performing scenario analysis
with each of them: the Sequestration of CO2 Tool (SCO2T)
(Middleton et al., 2020a; Middleton et al., 2020b) and the
2019 open-access version of the Regional Energy Deployment
System model (ReEDS) (National Renewable Energy Laboratory,
2019a). In this section, we provide a brief description of our
modification and application of these two tools and provide more
details in the Supplemental Information (SI). We adjust results
from both tools to 2017 dollars because that was the dollar used in
our prior work with SCO2T (Middleton et al., 2020a).

SCO2T is an Excel-based tool that estimates the capacity and
cost of a geologic CO2 storage site given underlying geologic
properties. To do this, SCO2T uses reduced-order models that
replicate full-physics dynamic reservoir simulations (Chen et al.,
2020). Wemodify SCO2T by 1) adding all site-level costs from the
Environmental Protection Agency (EPA) geologic CO2 storage
cost model (Environmental Protection Agency, 2010); 2) adding
an Excel MACRO to generate supply curves; and 3) removing

FIGURE 1 | Framework for quantifying the effect that CO2 transportation and geologic storage assumptions could have on energy system planning tool results.
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areas from the SCO2T subsurface dataset that prior work suggests
cannot be developed for geothermal power plants or geologic CO2

storage sites (Young et al., 2019; Hoover et al., 2020). Below we list
some assumptions made to apply the EPA cost model for SCO2T
for this study. For example, the EPA provides some cost estimates
in the units of $/site, which required adding inputs for the
maximum site size. Section 1 of the SI contains more
information on these modifications.

• In keeping with ReEDS scope that does not include
decommissioning cost for power plants, we do not
include a post-injection monitoring period or site closure
costs in this study.

• We add two ways to constrain the maximum size of a single
site within SCO2T: total injection capacity [MtCO2/yr] and
number of CO2 injection wells [wells/site]. SCO2T estimates
the CO2 injection rate for a single well, and then whichever
of these two constraints is limiting determines how many
sites are financially accounted for within a given SCO2T run.

• We assume the entire thickness of the formation is drilled
for each stratigraphic well and that each core is 9 m long.

• We use a well and pump model from prior work to estimate
the power required to inject CO2 across a range of depths
and injection mass flowrates (Adams et al., 2015). We then
use this data to regress an equation for pumping power,
which is used to estimate the capacity, thus cost, of CO2

injection pumps. We assume the downhole pressure is 80%
of the lithostatic pressure (this is the maximum downhole
pressure allowable within SCO2T to eliminate potential of
the formation fracturing from CO2 injection) to be
conservative because this assumption will result in the
largest pumping power, thus largest pump cost, estimate.

• In a separate calculation, we use the well and pumpmodel to
estimate the electricity required to inject CO2 across a few
scenarios of more realistic downhole overpressures (e.g.,
only up to 10 MPa of additional pressure above hydrostatic).
None of these scenarios resulted in positive pumping power,
thus we do not account for a cost of electricity.

• While a single CO2 plume has the area of a circle, we assume
the plume area has the shape of a square when estimating
the “Active Monitoring Area” because the total plume size
shape at a given site becomes more square-like as more
injection wells are drilled (Middleton et al., 2020b).

ReEDS is a widely published CEM of the continental U.S.
power system that simulates generation and transmission
investment and operating decisions from 2010 to 2050. Out of
the different energy system planning tools, we use ReEDS for two
primary reasons. First, it has the regional resolution necessary to
robustly explore grid-level effects of CCS representation. Other
models, such as IAMs, do not easily lend themselves to
considering regional and site-specific differences in the cost or
capacity of geologic CO2 storage because they often have coarser
spatial resolutions (e.g., continents, globe). Second, ReEDS comes
“pre-packaged” with arguably the most thorough and respected
sets of CEM input data (e.g., wind energy potential, projected
future costs of batteries). As a result, using ReEDS enables us to

execute many scenarios easily, and grounds our conclusions on a
robust range of input data. The modifications that we make to
ReEDS include adding constraint equations and additions to the
objective function to 1) constrain the amount of CO2 that could
be geologically stored; 2) incorporate CO2 transportation; and 3)
account for the cost of CO2 transportation and geologic CO2

storage. While it is possible that sequestered CO2 could leak from
the wells with time, prior work suggests this possibility has likely
negligible impacts on CCS deployment in the energy system
(Deng et al., 2017). As a result, we do not account for CO2 leakage
in this study. Below we list a few of the key assumptions made to
implement CO2 transportation and geologic storage in ReEDS for
this study. Section 2 of the SI contains more information on these
modifications.

• We use prior work to guide our financing assumptions for
geologic CO2 storage sites (National Energy Technology
Laboratory, 2017). For example, we use the 5-year
depreciation schedule and 6-year construction time
schedule options within ReEDS for geologic CO2 storage.

• We conservatively require ReEDS to deploy enough
geologic CO2 storage capacity to hold the CO2 that
would be captured over a 30-year power plant lifetime at
a 100% capacity factor.

• We follow ReEDS convention and linearly interpolate CO2

captured in-between model years to estimate the amount of
CO2 captured in gap years (i.e., years in-between ReEDS
decision years).

Case Study and Description of Scenarios
We use the Electric Reliability Council of Texas (ERCOT) as a
locational case study for several reasons. First, ERCOT is a
simpler case study compared to the other options within
ReEDS (i.e., Eastern Interconnect, Western Interconnect, or
Nationwide), which is appropriate given the purpose of our
study and the status-quo of 1) developing regional, dynamic-
simulation-based, supply curves for CO2 storage and 2) CCS
representation in energy system planning tools. Second, ERCOT
manages approximately 90% of the electric load in Texas with a
record peak demand of nearly 75 GW (Electricity Reliability
Council of Texas, 2021) and is electrically isolated from the
Eastern, Western Interconnections, and the Mexican Power
Grid with only a small portion of demand being supplied with
imports. As a result, ERCOT is a common electricity system case
study, with much prior work using it to provide insights into
electricity systems broadly (Denholm and Hand, 2011; Sepulveda
et al., 2018; Ogland-Hand et al., 2019). Finally, much of the
existing geologic CO2 storage infrastructure in the United States
is in Texas for enhanced oil recovery.

We execute our study in two parts. First, we run SCO2T across
ERCOT (13,601 10 × 10 km grid cells) for sixteen different
scenarios of site-level assumptions to generate sixteen separate
supply curves (i.e., each supply curve is generated from 13,601
SCO2T runs). These supply curves can be used to understand the
effects that site-level assumptions may have on ERCOT-wide
costs and capacities of geologic CO2 storage. The supply curve
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scenarios are further described in Section 3 of the SI. Second, we
use five of these supply curves that cover the cost ranges of all
sixteen as geologic CO2 storage scenarios in ReEDS within a
larger electricity system analysis framework. Overall, we run

2,592 distinct combinations in ReEDS of different cost, price,
CO2 capture rate, and policy scenario assumptions (Table 3)
because there are many required inputs that affect results, and our
goal is to provide future researchers with a better understanding
of what situations likely require more robust assumptions around
CCS compared to the current simple or non-existent
representations.

RESULTS AND DISCUSSION

Geologic CO2 Storage Supply Curves
Produced With SCO2T
To our knowledge, Figure 2 shows the first supply curve for geologic
CO2 across an energy system as large as ERCOT that is based on
dynamic reservoir simulation results. First, it illustrates that there is a
tremendous capacity available for geologic CO2 storage in ERCOT at
low cost. For example, approximately 350 GtCO2 (30% of the
possible 1,200 GtCO2 global maximum capacity needed (Rogelj
et al., 2018)) of geologic CO2 storage capacity is available in ERCOT
at or below $8/tCO2, and approximately 100 GtCO2 of this capacity
is available at or below $3/tCO2. These costs are lower than most
assumed estimates currently used in energy system planning tools
(Table 2), but align with industry estimates and actual geologic CO2

storage projects that suggest that the cost of geologic CO2 storage is
likely between $2/tCO2 and $4/tCO2 (Riestenberg et al., 2017;
Holubnyak and Dubois, 2018).

TABLE 3 | Description of Parameter Space Used in Electricity System Analysis. We execute ReEDS for every combination of parameters listed when the CO2 capture rate is
90% (default capture rate in ReEDS), but only for a portion of the geologic CO2 storage cost-capacity relationship when the CO2 capture rate is 85% or 95%. The 90%
default capture rate is common in many studies because it is a historical benchmark based on economic studies of CO2 capture (International Energy Agency Greenhouse
Gas, 2019). Unless specified, we use ReEDS default inputs for the Mid case in the 2019 NREL Standard Scenarios report (National Renewable Energy Laboratory, 2019b).

Input parameter Description

Geologic CO2 Storage Cost-Capacity Relationships (Section 4.1.1 of SI) We use five of the sixteen SCO2T supply curves and three other scenarios of
unlimited storage with an annualized cost of $0/tCO2, $5/tCO2, and $20/
tCO2 (all in 2017 dollars). Of the sixteen supply curves created, we used the
two with the highest cost, the two with the lowest cost, and one with costs
that were intermediate to the others

CO2 Transportation Cost (Section 4.1.2 of the SI) We assume annualized costs of CO2 transportation of $0/tCO2, $1/tCO2,
and $2/tCO2 (all in 2004 dollars), which are based off prior work that
suggests the cost is approximately $2/tCO2

National Energy Technology Laboratory (2019)

Natural gas prices (Section 4.1.3 of the SI) We use the three scenarios (low, medium, high) that are available within
ReEDS.

Wind turbines, solar photovoltaic (PV), and battery costs (Section 4.1.4 of the SI) We use the three scenarios (low, medium, constant) that are available
within ReEDS.

CO2 prices that increase the cost of power plants that emit CO2 (Section 4.1.5 of the SI) We use scenarios of 1) no CO2 price, 2) low CO2 prices ($8/tCO2 in 2020 to
$35/tCO2 in 2050, in 2004 dollars), and 3) high CO2 prices ($41/tCO2 in
2020 to $164/tCO2 in 2050, in 2004 dollars). The non-zero scenarios are the
price trajectories that prior work from the IPCC suggests are required to limit
the atmospheric concentration of CO2 to between 650 and 720 ppm or
between 430 and 480 ppm, respectively
Intergovernmental Panel on Climate Change (2014)

Compensation rates for geologic CO2 storage that decrease the cost of CO2 injection (Section
4.1.6 of the SI)

We use scenarios of $0/tCO2 and $65/tCO2 (in 2017 dollars). Modeling a
policy that decreases the cost of CCS by providing compensation for
geologically storing CO2 is motivated by the 45Q tax incentive in the
United States, but these scenarios are not intended to represent 45Q

FIGURE 2 | Supply Curve Variability Across All Sixteen SCO2T
Scenarios. The black curve is the baseline SCO2T scenario, and the orange
curves and area cover the range of how costs and capacities may change
based on different site level assumptions. See Supplementary Figure
S3 in the SI for SCO2T scenario labels.
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Figure 2 also demonstrates that the site-level assumptions
influencing the cost of geologic CO2 storage can change costs by a
few dollars per tCO2, which is not negligible considering that the
costs are only around $3/tCO2 for the least expensive 100 GtCO2

of capacity. Further, when compared against our prior work that
demonstrates that reservoir depth, porosity, and thickness can
change costs by ~$2/tCO2, ~$4/tCO2, or ~$5/tCO2, respectively
(Middleton et al., 2020b), the results in Figure 2 suggest that site-
level factors may influence costs on a similar order of magnitude
as geology. Given this level of sensitivity, and because this is the

first study to consider the cost implications of site-level factors
over a large area (i.e., ERCOT), we suggest future work continues
to investigate how these factors may affect cost. Especially
considering that some of these factors (e.g., monitoring costs)
are a result of policies that could be changed.

Last, Figure 2 suggests that the baseline SCO2T inputs (black
line) provide cost estimates that are intermediate to cost estimates
from the more extreme SCO2T input assumption scenarios
(orange lines and area). As a result of this and the overall
sensitivity of cost to site-level factors, we suggest that future

FIGURE 3 |Annualized Cost of Geologic CO2 Storage in ERCOT for the Baseline SCO2T Inputs Scenario. The numbered labels (e.g., p61) are the ReEDS balancing
areas and the black lines indicate the boundaries of wind and concentrating power resource regions that may be within a given balancing area (National Renewable
Energy Laboratory, 2019a).
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work use baseline SCO2T inputs for CO2 storage supply curves
until there are more geologic CO2 storage projects deployed that
can be used to guide site-level assumptions.

Figure 3 shows the geospatial distribution of geologic CO2

storage costs across ERCOT using the baseline SCO2T input
scenario. There are geologic CO2 storage resources in every area
that electricity supply and demand are matched within ReEDS
(i.e., ReEDS balancing areas), but the costs of these resources vary.
The least-expensive geologic CO2 storage resources are in West
ERCOT (balancing areas p60, p61, and p62), while the more

expensive resources are in the East (balancing areas p63, p64, p65,
and p67).When considered with Figure 2, Figure 3 demonstrates
the importance of the higher resolution estimates that SCO2T
enables. For example, the NEMS-CTS model uses an estimated
cost of geologic CO2 storage of $9/tCO2 (in 2018 dollars) for the
region that includes Texas, which was developed assuming basin
geology that is characteristic of East Texas (National Energy
Technology Laboratory, 2019). Without the higher resolution
SCO2T cost estimates, it would be difficult to know that this
estimate is arguably not representative of costs in Texas.

FIGURE 4 | Total New Capacity and Generation 2020–2050 Averaged Across Scenarios for Wind Turbine, Solar PV, and Battery Costs, Natural Gas Prices, and
CO2 Transportation Costs. These results assume a CO2 capture rate of 90% in all power plants equipped with CO2 capture. In each combination of CO2 policy (e.g., no
CO2 price that increases the cost of emitting CO2 and a $0/tCO2 CO2 storage compensation rate), the SCO2T supply curve scenarios follow the same A.–H. order of
increasing cost.
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Grid-Level Effects of CO2 Transport and
Geologic Storage Assumptions
Figure 4 shows the total new capacity deployed and total
generation of each technology from 2020 to 2050, averaged
across all scenarios of wind turbine, solar PV, and battery costs,
natural gas prices, and CO2 transportation costs for each
combination of CO2 policy and CO2 storage cost-capacity
relationship. The 2020–2050 period was used to make
differences across scenarios more apparent because the
2010–2019 deployment and generation is prescribed in
ReEDS. We first present Figure 4 to facilitate a general
discussion on the effects that the CO2 policies and geologic
CO2 storage cost scenarios may have on deployment and
dispatch decisions, because CEMs are primarily used to
investigate such results. As energy system planning tools can
also be used for other purposes, we follow by discussing the
sensitivity of other grid-level results to assumptions about
geologic CO2 storage (Section 3.2.1) and CO2 transportation
(Section 3.2.2).

Across all combinations of CO2 policy and geologic CO2

storage that we consider, there is more investment in variable
renewable energy technologies compared to any other
technology. For example, approximately two-thirds or more of
all deployment across all CO2 policy combinations is solar PV
and wind turbines. No coal power plants with CO2 capture are
deployed and the deployment of natural-gas power plants with
CO2 capture is highly reliant on CO2 policies. Natural-gas power
plants with CO2 capture are generally deployed at comparable
capacities, if not less, than new natural-gas power plants without
CO2 capture. More general discussion about these general results,
including what services power plants with CO2 capture provide, is
included in Section 6.2 of the SI.

The results in Figure 4 demonstrate that the assumed cost of
geologic CO2 storage has the largest effect on deployment and
dispatch decisions in policy scenarios that render CCS marginally
competitive compared to other energy technologies. For example,
when the CO2 policy renders natural gas power plants with CO2

capture less expensive (e.g., geologic CO2 storage compensation
rate of $65/tCO2 and high CO2 prices) or more expensive (e.g.,
geologic CO2 storage compensation rate of $0/tCO2 and low CO2

prices) relative to other energy technologies, the average
investment and average generation become relatively
insensitive to the assumed cost of geologic CO2 storage. In
contrast, when the CO2 policy renders natural gas power
plants with CO2 capture only marginally competitive on cost
(e.g., geologic CO2 storage compensation rate of $65/tCO2 and no
CO2 price), small increases to the assumed cost of geologic CO2

storage (e.g., <$1/tCO2) can result in large changes to investment
or generation because other energy technologies (i.e., natural gas
without CO2 capture in this policy combination) become
marginally less costly in comparison. This sensitivity of
average investment in, and average generation of, natural-gas
power plants with CO2 capture to CO2 policy occurs because the
CO2 policy combination determines when natural gas power
plants with CO2 capture compete closely with other energy
technologies.

Sensitivity to Geologic CO2 Storage Cost
Figure 5 shows the variability of total CO2 injected across every
combination of CO2 prices, wind, solar PV, and battery costs,
natural gas prices, CO2 transportation costs, cost of geologic CO2

storage, and CO2 capture rate that we considered when the
compensation rate for geologic CO2 storage is $65/CO2. We
focus on this subset of scenarios because there is
comparatively minor investment in, and dispatch of, CCS
capacity in the other scenarios (Figure 4). The SI includes
similar figures for different grid-level outcomes: total
investment in natural gas power plants with CO2 capture
(Supplementary Figure S6); total investment in wind and
solar energy technologies (Supplementary Figure S7); total
CO2 emissions (Supplementary Figure S8); total system cost
(Supplementary Figure S9); and 2050 average CO2 emission rate
(Supplementary Figure S10).

First, Figure 5 suggests that for our scenario assumptions,
there are orders of magnitude more capacity for geologic CO2

storage in ERCOT than needed by the electricity system. For
example, a maximum of about 2.8 GtCO2 are cumulatively
injected by 2050, which is approximately 2.4% of the total
geologic CO2 storage capacity available in ERCOT at or below
$5/tCO2 (Figure 2).

Second, Figure 5 and the accompanying figures in the SI
can be used to qualitatively compare the effects that the ranges
of assumed inputs have on grid-level impacts. Overall, these
figures suggest that the grid-level results are generally more
sensitive to input assumptions (e.g., CO2 policy, the price of
natural gas) than to the cost of geologic CO2 storage. For
example, when the compensation rate for storing CO2 is $65/
tCO2 in the low CO2 prices scenario, the amount of CO2

injected during any given geologic CO2 storage cost scenario
varies between approximately 0.5 GtCO2 and 2.5 GtCO2,
depending on the price of natural gas and the cost of solar
PV, wind, and batteries. Similarly, changes in the assumed
power plant CO2 capture rate generally result in smaller
changes to other grid-level results compared to the CO2

policy scenario; the price of natural gas; or the cost of solar
PV, wind, and batteries—all else constant (Figure 5;
Supplementary Figure S4; Supplementary Figure S5;
Supplementary Figure S6; Supplementary Figure S7;
Supplementary Figure S8; Supplementary Figure S9).

Third, while other assumed inputs (e.g., the price of natural
gas) drive any given grid-level result more than the cost of CO2
storage, the cost of geologic CO2 storage was the only input that
could eliminate CO2 injection in some policy combinations (e.g.,
when the geologic CO2 storage compensation rate was $65/tCO2
in the low CO2 prices scenario). This finding is important to
highlight because, like the other cost and price scenarios, all
geologic CO2 storage cost scenarios used in this study are within
the cost ranges that are currently assumed in energy planning
tools (Table 2). As a result, it is possible that prior studies
underestimated the deployment of power plants with CO2
capture by overestimating the cost of geologic CO2 storage,
even in scenarios in which these power plants were more than
marginally competitive on cost with other energy technologies.

Table 4 provides statistics that quantify the variability in grid-
level results across geologic CO2 storage cost scenarios when the
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CO2 compensation rate was $65/tCO2 and no CO2 price. We use
results from this specific policy combination because it is the one
in which the average total investment and average total
generation are most sensitive to the assumed cost of geologic
CO2 storage (Figure 4).

Table 4 shows that in policy scenarios that render CCS
marginally competitive, it is still possible that assumptions
around the cost of geologic CO2 storage may have a small
influence on results, depending on the metrics of interest. For
example, outside of the total investment in natural gas power
plants with CO2 capture and total amount of CO2 injected, the
grid-level result that is most sensitive to the assumed cost of CO2

storage is the 2050 average CO2 emission rate. This occurs
because natural-gas power plants without CO2 capture are
deployed instead of natural-gas power plants with CO2

capture as the assumed cost of geologic CO2 storage increases
(Figure 4). In turn, the grid-level result that is least sensitive to the
cost of CO2 storage in this CO2 policy combination is the total
investment in wind and solar energy technologies because as the
cost of CO2 storage increases, the natural gas power plants with
CO2 capture are generally not replaced with investment in wind
and solar energy technologies. As a result, depending on the
reason why a given energy system planning tool is used, non-
robust assumptions around geologic CO2 storage representation
may not substantially influence results.

Table 4 also suggests that it may be less consequential to
overestimate the cost of geologic CO2 storage compared to
assuming it is free: the mean and standard deviations between

the $0/tCO2 cost scenario and the five SCO2T supply curve
scenarios (third row in each section of Table 4) are generally
larger compared to themean and standard deviations between the
$20/tCO2 or $5/tCO2 cost scenarios and the five SCO2T supply
curve scenarios (first and second rows in each section of Table 4).
This result occurs in this CO2 policy scenario because natural-gas
power plants with CO2 capture are deployed when the cost of
geologic CO2 storage is $0/tCO2, but there are some SCO2T
supply curve scenarios that render natural-gas power plants with
CO2 capture non-competitive on cost compared to natural-gas
power plants without CO2 capture (Figure 4). As a consequence,
when SCO2T supply curve scenarios are used, the grid-level
results are more similar to when geologic CO2 storage is
assumed to cost $20/tCO2 or $5/tCO2 than $0/tCO2. This
finding suggests that if SCO2T supply curves cannot be used,
overestimating the cost of geologic storage (i.e., $5/tCO2) may be
a more justifiable choice compared to assuming it is free by
excluding it from the model.

Lastly, Table 4 also shows the mean and standard deviations
between the baseline SCO2T supply curve cost scenario and the
four other SCO2T supply curve scenarios (fourth row in each
section of Table 4) are smaller than the other comparisons
(rows). This relationship occurs because the assumed costs of
geologic CO2 storage are closer across this comparison, but these
differences are non-zero. As a result, while we suggest future work
use the baseline SCO2T inputs because they are intermediate to
the supply curves generated with the more extreme input
assumptions (Figure 2), future researchers should be wary that

FIGURE 5 | Total CO2 Injected Across Model HorizonWhen CO2 Storage Compensation Rate is $65/tCO2. Within a given geologic CO2 cost-capacity relationship
scenario (i.e., row of data), differences between data points that have the same shape and color (e.g., red squares) are due to the different CO2 transportation costs: $0/
tCO2, $1/tCO2, and $2/tCO2 (Table 3). These results assume a CO2 capture rate of 90% for any power plant equipped with CO2 capture. See the SI for results across all
scenarios (Supplementary Figure S5).
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these baseline assumptions may still have non-zero grid-level
effects, depending on the CO2 policy and the specific grid-level
result.

Sensitivity to CO2 Transportation Cost
Figure 6 shows the total investment of natural-gas power plants
with CO2 capture and the total CO2 injection, averaged across all
scenarios of wind turbine, solar PV, and battery costs, and natural
gas prices, in the high CO2 prices scenario and when the CO2

storage compensation rate is $65/tCO2.
Similar to Figure 5, Figure 6 and the accompanying Figures in

the SI suggest the cost of CO2 transportation can affect
deployment capacity decisions (e.g., on average, differences of
up to about 500 MW of natural-gas power plants with CO2

capture and up to about 0.1 GtCO2 of total CO2 injected),
especially when CCS is marginally competitive. But this
relationship is less general compared to the changes that occur
in the deployment location. As shown in Figure 6 and
Supplementary Figures S11, S12, on average, the cost of CO2

transportation has less effect on the location of investment in
natural-gas power plants with CO2 capture andmore effect on the
location of geologic CO2 storage. Power plant capacity is built in

East ERCOT primarily because that is where most electricity is
demanded. When CO2 transportation is free, the captured CO2

from these power plants is transported from the eastern balancing
areas to the least expensive geologic CO2 storage resources in
West ERCOT. But on average, less CO2 is transported across
ERCOT when the CO2 transportation cost is $1/tCO2, and no
transportation occurs when the cost is $2/tCO2, which is possible
because there are orders of magnitude more storage resources
available than needed across all ERCOT balancing areas
(Figure 2; Figure 5). Therefore, our findings primarily suggest
that when there is bountiful geologic storage available and CCS is
more than marginally competitive on cost, the grid-level result
that is most affected by the cost of CO2 transportation is the
location of geologic CO2 storage.

Figure 6 also suggests that the site-level factors that influence
the cost and capacity of a geologic CO2 storage site can affect the
location of geologic CO2 storage. In other words, site-level
assumptions can change the cost or capacity of geologic CO2

storage differently, depending on the geologic CO2 storage
resource, and these differences may influence the optimal
location of CO2 injection. For example, when the price of CO2

is not zero and the CO2 transportation cost is $1/tCO2, more CO2

TABLE 4 | Distribution of Differences Across CO2 Storage Cost-Capacity Scenarios When CO2 Storage Compensation Rate is $65/tCO2 in the No CO2 Price Scenario:
Mean (Standard Deviation in Parentheses). These results are for a CO2 capture rate of 90%. All differences are between the same combination of inputs (e.g., natural gas
price). The “all SCO2T scenarios” refers to the five SCO2T scenarios (labeled B, C, D, E, and F in Figure 5) that were used within ReEDS (Table 3). The final comparison (row
four of each section) is between the baseline SCO2T scenario (labeled D in Figure 5) and the other four SCO2T scenarios (labeled B, C, E, and F in Figure 5). Please see the
referenced Figures in the SI to see the distribution results across all scenarios.

Grid-level result CO2 storage cost-capacity
relationship scenario comparison

Difference Percent
difference

Natural Gas-CCS Investment [GW] (Supplementary Figure S6) Unlimited at $20/tCO2 vs. all SCO2T scenarios 6.82 (11.86) 200 (0)
Unlimited at $5/tCO2 vs. all SCO2T scenarios 6.82 (11.86) 200 (0)
Unlimited at $0/tCO2 vs. all SCO2T scenarios 9.71 (11.52) 124.29 (73.55)
Baseline SCO2T vs. other SCO2T scenarios 2.65 (4.28) 75.52 (65.39)

Wind and Solar Energy Technology Investment [GW] (Supplementary
Figure S7)

Unlimited at $20/tCO2 vs. all SCO2T scenarios 1.6 (3.08) 2.25 (4.17)
Unlimited at $5/tCO2 vs. all SCO2T scenarios 1.6 (3.08) 2.25 (4.17)
Unlimited at $0/tCO2 vs. all SCO2T scenarios 4.36 (5.7) 5.18 (5.63)
Baseline SCO2T vs. other SCO2T scenarios 0.67 (1.53) 0.98 (1.81)

Total CO2 Emissions [GtCO2] (Supplementary Figure S8) Unlimited at $20/tCO2 vs. all SCO2T scenarios 0.18 (0.34) 3.27 (6.28)
Unlimited at $5/tCO2 vs. all SCO2T scenarios 0.18 (0.34) 3.27 (6.28)
Unlimited at $0/tCO2 vs. all SCO2T scenarios 0.38 (0.43) 7.19 (7.49)
Baseline SCO2T vs. other SCO2T scenarios 0.11 (0.18) 2.04 (3.49)

Total System Cost [2017$B]a (Supplementary Figure S9) Unlimited at $20/tCO2 vs. all SCO2T scenarios 18.47 (33.33) 3.15 (5.61)
Unlimited at $5/tCO2 vs. all SCO2T scenarios 18.47 (33.33) 3.15 (5.61)
Unlimited at $0/tCO2 vs. all SCO2T scenarios 24.35 (29.66) 3.88 (4.6)
Baseline SCO2T vs. other SCO2T scenarios 9.42 (16.03) 1.56 (2.62)

Total CO2 Injected [MtCO2] (Figure 5) Unlimited at $20/tCO2 vs. all SCO2T scenarios 227.08 (416.59) 200 (0)
Unlimited at $5/tCO2 vs. all SCO2T scenarios 227.08 (416.59) 200 (0)
Unlimited at $0/tCO2 vs. all SCO2T scenarios 493.64 (516.67) 137.2 (70.55)
Baseline SCO2T vs. other SCO2T scenarios 133.44 (217.86) 97.04 (60.28)

2050 Average CO2 Emission Rate [gCO2/kWh] (Supplementary Figure S10) Unlimited at $20/tCO2 vs. all SCO2T scenarios 27.65 (53.29) 13.13 (23.47)
Unlimited at $5/tCO2 vs. all SCO2T scenarios 27.65 (53.29) 13.13 (23.47)
Unlimited at $0/tCO2 vs. all SCO2T scenarios 40.45 (55.29) 22.82 (24.61)
Baseline SCO2T vs. other SCO2T scenarios 11.63 (20.85) 6.98 (11.66)

aSection 5 of the SI includes details on how this metric was calculated.
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is injected in balancing areas p61 and p62, and less in p67, when
the SCO2T supply curves from the 177 pre-existing oil and gas
wells scenario (labeled as F.) are used compared to other SCO2T
supply curve scenarios. This difference occurs because the cost of
geologic CO2 storage increases more in that SCO2T scenario for
the geologic CO2 storage resources located in p67 compared to
those in other balancing areas (Supplementary Figure S13). This
finding further demonstrates the importance of studying these
site-level factors and their impact on geologic CO2 storage costs
and optimal injection locations.

CONCLUSION, IMPLICATIONS, AND
FUTURE WORK

Conclusion
We present the first study to our knowledge that 1) develops
supply curves for geologic CO2 storage across an energy system as
large as ERCOT that are based on dynamic reservoir simulation;
2) investigates how those supply curves may change based on site-

level assumptions; and 3) quantifies the effect that CO2

transportation and geologic storage assumptions may have on
a variety of energy system planning tool results. Given the current
status-quo of CO2 transportation and geologic storage
representation in energy system planning tools, our study is
conducted to provide guidance to future energy system
modelers by investigating what effects a more robust
representation of CCS has on electric sector planning
outcomes. For this reason, we interpret our results generally,
so our findings apply as broadly to energy systems as possible. We
find that:

1. Site-level assumptions (e.g., number of monitoring wells per
injection well) may increase or decrease the cost of geologic
CO2 storage by up to a few dollars per tonne of CO2 (similar
order of magnitude as geologic variations) and can change the
cost differently in different locations (Figure 2;
Supplementary Figure S13).

2. The assumed cost of geologic CO2 storage has generally small
effects at the grid-level compared to other inputs (e.g., natural

FIGURE 6 | Total Investment in Natural Gas Power Plants with CO2 Storage (TOP) and Total CO2 Injection (BOTTOM) Averaged Across Scenarios forWind Turbine,
Solar PV, and Battery Costs, and Natural Gas PricesWhen the CO2 Storage Compensation Rate is $65/tCO2 and in the High CO2 Prices Scenario. These results assume
a CO2 capture rate of 90% for all power plants equipped with CO2 capture. Supplementary Figures S11, S10 in the SI show the results for every CO2 policy
combination.
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gas price) (Figure 5), but these effects may be non-negligible
when policy renders CCS marginally competitive (Figure 4;
Table 4). When power plants with CO2 capture are only
marginally competitive on cost, the grid-level results can be
sensitive enough to the cost of geologic CO2 storage that site-
level assumptions have non-zero effects on the results
(Table 4).

3. When power plants with CO2 capture are only marginally
competitive on cost, overestimating the cost of geologic CO2

storage (e.g., $5/tCO2) generally produces more similar grid-
level results to using SCO2T supply curves compared to
assuming sequestration is free (Table 4).

4. Specific to ERCOT, there are orders of magnitude more
capacity for geologic CO2 storage available than is needed
by the electricity system (Figure 2; Figure 5). In this situation,
the cost of CO2 transportation generally affects where geologic
CO2 storage investment occurs more than how much
generation investment occurs or where that generation
investment occurs (Figure 3; Figure 6).

Implications for Future Energy System
Modelers
In general, the appropriateness of robustly representing, or not
representing, any component of the energy system depends on
the reason an energy system planning tool is being used, and our
findings suggest CCS representation is no exception. As a result,
there are situations in which current assumptions around CO2

transportation and geologic CO2 storage are likely sufficient, and
there are other situations where they are insufficient. Based on
our conclusions, we provide three recommendations for future
researchers considering CCS representation in their modeling
efforts:

• Energy system modelers should primarily be concerned
about CO2 transportation and geologic storage
representations if they are modeling scenarios in which
CCS is marginally competitive. Our findings suggest the
assumed costs of CO2 transportation and geologic storage
are less consequential at the grid level if policies that
incentivize decarbonization are not being investigated (e.g.,
CO2 storage compensation rate of $0/tCO2 and no CO2

price), or if enough policy support exists that CCS is more
than marginally competitive on cost (e.g., CO2 storage
compensation rate of $65/tCO2 and high CO2 prices).

• Until more geologic CO2 storage sites are deployed that can
guide site-level assumptions, future researchers concernedwith
robustness across uncertainty in site-level factors should
consider using supply curves produced with baseline SCO2T
inputs because the baseline inputs produce comparatively
“average” supply curves that are aligned with cost estimates
from actual CO2 storage sites. At the very least, our results
suggest that assuming a cost for geologic CO2 storage (e.g., $5/
tCO2) may be less consequential than assuming a zero cost by
excluding it from the model.

• A more robust characterization of CO2 transportation in
energy planning tools may not be necessary in studies

primarily concerned with capacity investment decisions
across areas with many low-cost geologic CO2 storage
resources. This implication is particularly important for
energy systems planning tools that model continent-
scale, if not global-scale, energy systems (e.g., IAMs).

Study Limitations and Suggestions for
Future Work
While our conclusions and recommendations are grounded in a
very large parameter space of scenarios, they are dependent on
our assumptions. Relaxing or changing these limitations is
outside the scope of this study but could be the focus of
future work. Key suggestions include:

• Investigate scenarios with a lower assumed cost of CO2

capture. We incorporate future projections for low-cost
wind turbines, solar PV, and battery energy storage
technologies into our ReEDS parameter space but not for
power plants with CO2 capture because these future costs
are not available as default ReEDS inputs in the 2019
version. Lowering the cost of CO2 capture would make
CCS more competitive on cost, thus, modeling lower CO2

capture costs could decrease the importance of robustly
representing geologic CO2 storage, depending on the region
and scenarios under investigation.

• Investigate locations with less geologic CO2 storage
capacity and locations with less favorable wind and
solar energy resources. While our ERCOT case study is
well endowed with high-quality wind energy, solar
energy, and geologic CO2 storage resources, there are
other locations where this is not the case. Under
decarbonization policy scenarios, it is likely that the
cost of geologic CO2 storage would have less of an
effect on grid-level results in locations with poor wind
and solar energy resources because there would be few
alternatives to investing in CCS processes. Additionally,
CO2 transportation costs would likely play a larger role in
investment capacity decisions in locations with less
geologic CO2 storage potential. If warranted, a more
robust representation of CO2 transportation could be
achieved by iterating an energy system planning tool
with SimCCS (Middleton and Bielicki, 2009; Middleton
et al., 2020c), which can be used to determine optimal
CO2 pipeline networks.

• Investigate scenarios in which bioenergy power plants with CO2

capture (BECCS) are also available to be deployed. While
outside the scope of this study, it is increasingly understood
that negative emission technologies like BECCS could play a
key role in addressing climate change (Fuss et al., 2018; Minx
et al., 2018; National Academies of Sciences, 2019; Fuss and
Johnsson, 2021). It is likely that scenarios exist in which this
technology is only marginally competitive on cost because its
deployment is dependent on strong policy support, like fossil-
fuel power plants with CO2 capture. As a result, robustly
representing geologic CO2 storage could be important for such
future work.
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