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The accuracy of rotor position estimation determines the performance of the sensorless
control system of a permanent magnet synchronous motor. In order to realize the accurate
control of rotor position and speed, it is necessary to identify the motor parameters.
Modeling and simulation of the state estimation are investigated for a permanent magnet
synchronous motor with parameter identification based on the unscented Kalman filter
(UKF) in this article. Based on the mathematical model of the motor, the unscented Kalman
filter is used to identify the rotor flux and quadrature axis inductance simultaneously, and
the identified parameters are used to update the motor model in the sensorless vector
control algorithm. The simulation results show that the unscented Kalman filter can
converge to the real value in a short time with small errors. It can follow the changes
of motor parameters well and achieve high-precision speed and position estimation.

Keywords: permanent magnet synchronous motor (PMSM), unscented Kalman filter (UKF), speed estimation,
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INTRODUCTION

Permanent magnet synchronous motor (PMSM) has been widely used in the fields of new
energy vehicles, power generation, and servo drive due to its advantages of large starting torque,
high operation efficiency, high power density, and low failure rate (Chen et al., 2014; Chen et al.,
2019; Cui et al., 2020; Wang et al., 2021). In the traditional vector control system, sensors are
usually used to obtain rotor speed and position information; but in practical application, the
existence of sensors increases the motor volume and system cost, and it is difficult to install and
maintain in some harsh environments, which reduces the reliability of the system (Pan and
Gao, 2018). Therefore, the research of new control strategy to improve the performance of the
PMSM control system and ensure the reliable and safe operation of PMSM has become a
research hotspot in the field of motor control (Zhu et al., 2014; Cheng et al., 2015; Deng et al.,
2019; He and Wu, 2019). With the development of sensorless drive technology of permanent
magnet synchronous motor, many methods have been proposed to estimate the speed and
position of the rotor, such as the model reference adaptive control method (Zhong and Lin,
2017; Zhong et al., 2018; Wang et al., 2020a), sliding mode observer method (Liu et al., 2016;
Liang et al., 2017; Lu et al., 2021), Kalman filter algorithm (Moon and Kwon, 2016; Yang et al.,
2016; Luo et al., 2019), and artificial intelligence algorithm (Fadil et al., 2015). It is worth
mentioning that the UKF can be applied to a nonlinear model and has been widely used in the
estimation of the rotor position and speed of the PMSM drive system (An and Hameyer, 2014;
Zhou et al., 2018; Tao and Guo, 2019; Yin et al., 2019).
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The accuracy of rotor position estimation determines the
performance of the PMSM sensorless control system. Accurate
position estimation relies on accurate motor parameters. In some
cases, the parameters displayed on the motor nameplate and data
manual may change due to high temperature, demagnetization,
and other operating conditions in long-term operation, which
will affect the control precision (Nahid-Mobarakeh et al., 2004;
Wang et al., 2019; Wang et al., 2020b). Therefore, accurate
parameter identification is of great significance for motor
control. In the vector control system, good operation of the
system depends on whether the controller design of the speed
ring and current ring is reasonable (He et al., 2019), while the
parameter setting of the controller of the speed ring needs to
obtain the value of the permanent magnet flux chain (Cao et al.,
2015), and the current loop needs to call the stator resistance and
inductance value. In order to ensure the control effect as much as
possible, in recent years, the parameter identification method
combined with the control of sensorless has been widely
concerned and studied.

At present, PMSM parameter identification technology can be
divided into three categories: 1) frequency-domain identification;
2) time-domain identification, such as the recursive least square
method (RLS), unscented Kalman filter (UKF), and model
reference adaptive method; and 3) artificial intelligence
methods, such as neural network identification and genetic
algorithm,. Comparing the abovementioned methods, it is
found that although the frequency-domain identification is
relatively mature, it requires strict input signal and cannot
reflect the nonlinearity in the dynamic process. The recursive
least square method needs to use the derivative of the objective
function to the motor parameters in the optimization process,
which is sensitive to the measurement noise and speed
fluctuation. The model reference adaptive method can
effectively estimate the rotor position, but the premise is to
establish an accurate mathematical model (Kyoon, 2017). The
research on the identification method based on artificial neural
network is not mature in theory and needs the support of special
hardware. Therefore, it is difficult to achieve satisfactory results in
the actual system with these methods.

The UKF is one of the effective methods to estimate the
parameters of PMSM, which is widely used in sensorless
PMSM systems. The UKF is based on unscented
transformation (UT). For the nonlinear model, the
conventional processing method is EKF, and many scholars
have used EKF to estimate the motor state. EKF is the Taylor
expansion of the model function of a highly complex nonlinear
system and the first-order linear truncation of the expansion. In
this way, the model can be transformed into a linear problem
processed by using a computer and then the Kalman filter.
Compared with the approximation of nonlinear function, the
approximation of Gaussian distribution is much simpler. The
UKF carries out UT transformation near the estimation point, so
that the mean and covariance of the obtained sampling point set
match the original statistical characteristics (Moon and Kwon,
2016). Then, the nonlinear mapping of these sampling point sets
is directly carried out to eliminate the error caused by the
linearization of extended Kalman filter (EKF) algorithm, which

not only realizes the accurate estimation of rotor speed and
position but also accurately estimates the parameters of the
motor. It has the characteristics of simple method and good
system stability and can effectively improve the control accuracy
of the motor. The UKF overcomes the noise sensitivity of the least
square method to some extent, which can jointly estimate the
states and parameters of PMSM.

In this article, considering the influence of motor parameters
on the rotor position, a parameter identification method of
permanent magnet synchronous motor is proposed based on
the UKF. The main contributions of this article can be outlined as
follows.

(1) Based on the analysis of the mathematical model of PMSM in
a static coordinate system, this article investigates a state
observer with the unscented Kalman filter in the sensorless
control of PMSM. It not only estimates the speed and
position of the motor but also realizes the identification of
motor inductance Ld and Lq and flux linkage ψf.

(2) The resistance Rs changes under the influence of temperature,
which will affect the identification results. In this article, we
treat the influence of temperature and other factors as the
state noise of the motor. The inductance and flux linkage are
identified to ensure that the steady-state error is smaller than
that obtained in the study of Moon and Kwon, 2016, and
Zhou et al., 2018.

(3) The parameter identification results can be used for
parameter configuration of the PMSM control system.
This article provides a solution to improve the
performance of the PMSM control system via the UKF
and verifies the superiority of this method in state estimation.

The rest of this article is organized as follows. InMathematical
Model of PMSM, we present the mathematical model of PMSM.
In Main Results, we analyze the principle of the UKF control
scheme and present the main results. A simulation result is used
to verify the proposed method in The Simulation Case. Finally,
Conclusion concludes this article.

MATHEMATICAL MODEL OF PMSM

PMSM is a nonlinear and strong coupled complex system. It is
very difficult to study and control the motor by using the
mathematical model in a three-phase coordinate system.
However, if we use the mathematical model of a two-phase
coordinate system to study it, it will be much simpler. The
stator current of the motor can be divided into two
components in the two-phase coordinate system. The control
of the two components can achieve the effect of controlling the
motor. During the research and analysis of the PMSM control
system, the first step is to build the mathematical model of the
system. In different coordinate systems, there are different
mathematical models. It is very important to select the
appropriate model for different operating environments.

PMSM has the characteristics of being multivariable, strong
coupling, and nonlinearity. In order to achieve good speed
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regulation performance, it is necessary to realize the approximate
decoupling of the control object. Therefore, the mathematical
model is established in the αβ-axis rotating coordinate system to
analyze the performance of PMSM. The voltage equation of
PMSM in the αβ-axis rotating coordinate system is as follows:

uα � Rsiα + dψα

dt
;

uβ � Rsiβ +
dψβ

dt
.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩ (1)

The flux linkage equation is

ψα � Liα + ψf cos θ;
ψβ � Liβ + ψf sin θ.

{ (2)

The electromagnetic torque equation is

Te � pn[ψαiβ − ψβiα]. (3)
The mechanical motion equation is

dωe

dt
� pn

J
(Te − Tl − Bωe). (4)

Here, uα and uβ are the voltage of α and β axes, respectively, iα
and iβ are the current of α and β axes, respectively, ψα and ψβ are
the flux of α and β axes, respectively, Lα and Lβ are the inductance
of α and β axes respectively, Rs is the stator resistance, ωe is the
rotor angular speed, ψf is the rotor flux, pn is the pole number of
the motor, Te is the electromagnetic torque, Tl is the load torque, J
is the moment of inertia, and B is the friction coefficient.
According to Eqs. 1–4, the state equation of PMSM can be
written as

diα
dt

� −Rs

L
iα + ωe

ψf

L
sin θ + uα

L
;

diβ
dt

� −Rs

L
iβ − ωe

ψf

L
cos θ + uβ

L
;

dωe

dt
� p2

n

J
ψf(iβ cos θ − iα sin θ) − B

J
ωe − pn

Tl

J
;

dθ

dt
� ωe.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(5)

From the model, permanent magnet motor is a 4-order,
nonlinear, and coupling model, and we set the stator current
iα and iβ, rotor angular speed ωe, and rotor position angle θ as
state variables and stator voltage uα and uβ as control variables.

We define state vector x � [ iα iβ ωe θ ]T and input vector
u � [ uα uβ ]T . Rotor angular speed and rotor position angle state
components are estimators, and only current state components
are measurable, which is detected by the system current sensor.

The nonlinear model of permanent magnet linear
synchronous motor given by Eq. 5 is deterministic. Due to
non-ideal factors such as asymmetry of motor parameters and
current detection error, the stochastic state space model may be
more accurate. Therefore, we consider the state equation as
follows:

_x � f(x, u) + w. (6)
In Eq. 5, speed and position state components are estimators,

and only current state components are measurable. The phase
current of PMSM is detected by the system current sensor, and
the output phase current of the two-phase motor is obtained
through the Clarke transformation from abc three-phase to αβ
static two-phase. Therefore, the measurement equation of the
sensorless driving system is linear, and it can be written as

z � hx + v, (7)
where h � 1 0 0 0

0 1 0 0
[ ].

In Eqs. 6, 7, the system produces process noise w and
observation noise v due to non-ideal factors such as
asymmetry of motor parameters and current detection error.
The process noise w is assumed to be a Gaussian white noise with
zero mean and covariance Q and is independent of state variables
x. The observation noise v is a Gaussian white noise with zero
mean and covariance R, which is independent of w and v.

Therefore, we consider the state space model as follows:

_x � f(x, u) + w;
z � hx + v.

{ (8)

where x, u, and z are the state variables, control variables, and
measurement variables, respectively. f (·) is the nonlinear function
of the motor, and h (·) is the measurement matrix.

MAIN RESULTS

We divide this section into two parts. First, we introduce the
principle of UKF and estimate the rotor speed and position.
Second, the parameter identification algorithm based on the UKF
is given.

Brief Introduction of the UKF and State
Estimation of PMSM Based on the UKF
Unscented Kalman filter (UKF) algorithm is another extended
algorithm of Kalman filter algorithm. It carries out parameter
identification by estimating the state matrix at each time. By
giving an initial state quantity and then performing traceless
transformation on the mean and covariance, the state quantity at
the next time interval is obtained. When the parameter in the
state matrix is stable, it is the identification value of the parameter.

The state space expression of the sensorless system of
permanent magnet synchronous motor is

xk+1 � f(xk, uk) + wk;
zk � h(xk) + vk.

{ (9)

where xk+1 and xk are the system state vectors of the current time
and the previous time, respectively; uk is the system input vector;
wk is the system process noise vector; vk is the measurement noise
vector of the system; and zk is the output vector of the system. In
the recursive calculation of UKF, the noise vectors wk and vk are
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not used directly, but the covariance matrix Q of wk and the
covariance matrix R of vk are used.

The state vector estimation process of the nonlinear system
shown in Eq. 9 based on UKF algorithm is divided into four
stages: state vector initialization, sigma point calculation, time
update, and measurement update.

Step 1: initialization.

x̂0 � E{x0}
P0 � E (x0 − x̂0)(x0 − x̂0)T{ }{ (10)

Step 2: we select proportional symmetric sampling to
determine the sigma point set and introduce UT transform to
approximate the nonlinearity, and 2n + 1 sigma points can be
obtained.

UT transformation uses a fixed number of parameters to
approximate a Gaussian distribution. Its implementation
principle is some points in the original distribution are
selected according to a certain rule; the mean and covariance
of the state distribution of these points are equal to the mean and
covariance of the original state distribution. These points are
substituted into the nonlinear function to obtain the set of
nonlinear function value points. Through these point sets, the
transformed mean and covariance can be obtained. For any
nonlinear system, a posterior mean and covariance accurate to
the third moment can be obtained by using this set of sampling
points.

χi,k|k � x̂k|k, i � 0

χi,k|k � x̂k|k + (
���������
(n + λ)Pk|k

√
)i, i � 1, 2, . . . , n

χi,k|k � x̂k|k − (
���������
(n + λ)Pk|k

√
)i, i � n + 1, . . . , 2n

⎧⎪⎪⎪⎨⎪⎪⎪⎩ (11)

ω(m)
i � λ

n + λ
, i � 0

ω(c)
i � λ

n + λ
+ (1 − α2 + β), i � 0

ω(m)
i � ω(c)

i � 1
2(n + λ), i � 1, 2, . . . , 2n

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩
(12)

where λ = α2 (n + k) − n, α ∈ [0.000 1, 1] is the proportion factor,
and the distribution distance of particles can be adjusted by
changing the value of α to reduce the error. k is the redundancy,
which is generally 0 and is optimal at β = 2. ( ���������(n + λ)Pk|k

√ )i is the
i-th column of the square root of the matrix, ω(m)

i is the weighted
mean, and ω(c)

i is the weighted covariance.
Step 3: time update: the sigma point transfer is realized

according to the discrete system state, Eq. 9:

χi,k+1|k � f χi,k|k( ). (13)
The predicted mean and covariance of the state vector are

obtained according to the transmission results.

x̂k+1|k � ∑2n
i�0

ω(m)
i χi,k+1|k (14)

Pk+1|k � ∑2n
i�0

ω(c)
i [χi,k+1|k − x̂k+1|k][χi,k+1|k − x̂k+1|k]T + Q. (15)

Step 4: measurement update.
The sampling point prediction equation of observation is

given as follows:

zi,k|k−1 � h(xk|k−1). (16)
The transformation value zi,k|k−1 obtained by Eq. 10 is

weighted and summed to obtain the measurement
prediction value ẑk|k−1 of the system and the variance Pz,k|
k−1 and cross covariance Pxz,k|k−1 of the system measurement
variables.

ẑk|k−1 � ∑2n
i�0

ω(m)
i zi,k|k−1. (17)

The time update equation is established as follows:

x̂k+1 � x̂k+1|k +Kk+1(zk+1 − h(x̂k+1|k)), (18)
where x̂k+1 is the posterior estimation of the state vector at time
k + 1 and x̂k+1|k is the prior estimation of the state vector at time
k + 1. The difference zk+1 − h(x̂k+1|k) between the measured
variable and its prediction is called the innovation or residue
of the measurement process, which reflects the inconsistency
between the predicted value and the real value. The matrix Kk+1 is
called the residual gain.

The posteriori error is

ek+1 � xk+1 − x̂k+1 � xk+1 − x̂k+1|k − Kk+1(zk+1 − ẑk+1). (19)
The posteriori error covariance is

Pk+1 � E(ek+1eTk+1). (20)
LetzPk+1

zKk+1 � 0, and the Kalman gain is found.

Kk+1 � Pxz,k+1|kP−1
z,k+1|k. (21)

Then,

Pz,k+1|k � ∑2n
i�0

ω(c)
i [zi,k+1|k − ẑk+1|k][zi,k+1|k − ẑk+1|k]T + R

Pxz,k+1|k � ∑2n
i�0

ω(m)
i [χi,k+1|k − x̂k+1|k][zi,k+1|k − ẑk+1|k]T.

(22)

From Eq. 9, we can use Eqs. 11–21 to carry out the iterative
operation of the unscented Kalman filter. Thus, the rotor speed
and position of the permanent magnet synchronous motor are
estimated.

Parameter Identification of PMSMBased on
the UKF
Considering the short control period of the discrete-time system,
it can be considered that the rotor flux linkage ψf and the
quadrature axis inductance L do not change in each control
cycle. The motor parameters are regarded as a state of slow
change concering time, so as to form an extended nonlinear
system with the current equation according to the voltage
equation of Eq. 1 and the flux linkage Eq. 2.
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diα
dt

� −Rs

L
iα + ωe

ψf

L
sin θ + uα

L
;

diβ
dt

� −Rs

L
iβ − ωe

ψf

L
cos θ + uβ

L
;

d

dt
ψf � 0;

d

dt
L � 0.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(23)

It can be seen from Eq. 24 that the rank of the
identification equation is 2 and can only realize the full
rank identification of two parameters. Therefore, we regard
Rs as a constant and only apply it to synchronous
identification of two parameters of rotor flux ψf and
inductor L.

We define state vector x � [ iα iβ ψf L ]T , input vector
u � [ uα uβ ]T , and output vector z � [ iα iβ ]T . The system
and output measurements are

d

dt

iα
iβ
ψf

L

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ �
−Rs

L
iα + ω̂e

ψf

L
sin θ̂

−Rs

L
iβ − ω̂e

ψf

L
cos θ̂

0

0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
+

1
L

0

0
1
L

0 0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
uα

uβ
[ ]. (24)

z � 1 0 0 0
0 1 0 0

[ ]x. (25)

The results show that the rotor flux observer is a 4-order
nonlinear system. After calculating the Jacobian matrix of
the nonlinear equation, the linear system is obtained as
follows:

_x �

−Rs

L
0 ω̂e

1
L
sin θ̂ −ω̂eψf

1

L2 sin θ̂

0 −Rs

L
−ω̂e

1
L
cos θ̂ ω̂eψf

1

L2 cos θ̂

0 0 0 0

0 0 0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
x +

1 0
0 1
0 0
0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦u. (26)

Discretizing Eqs. 25, 26, we can get

xk+1 � Fkx +Mku + wk;
zk � Ckx + vk.

{ , (27)

where

Fk �

1 − Rs

L
Ts 0 ω̂e

1
L
sin θ̂Ts −ω̂eψf

1

L2 sin θ̂Ts

0 1 − Rs

L
Ts −ω̂e

1
L
cos θ̂Ts ω̂eψf

1

L2 cos θ̂Ts

0 0 1 0

0 0 0 1

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

Mk �

1
L
Ts 0

0
1
L
Ts

0 0

0 0

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Ck � 1 0 0 0

0 1 0 0
[ ], (28)

where Ts represents the time interval from time k to time k + 1.
After the system equation is obtained, the parameter

identification algorithm is obtained by step 2 to step 4 for
iteration.

THE SIMULATION CASE

In order to verify the correctness of speed and motor parameter
identification based on UKF algorithm, it is applied to the PMSM
vector control system, and the system simulation model based on
Figure 1 structure is established in the Matlab/Simulink
environment.

The control strategy of the motor and the structure block
diagram of the control system are shown in Figure 1. Three-
phase current ia, ib, ic is transformed into two-phase current iα, iβ
after Clark transformation; after Park transformation, the AC
flow is equivalent to two DC components d and q for operation,
and through the calculation of id and iq, the given voltage value ud*
and uq* is obtained. They are converted into a PWMpulse to drive
the high-power IGBT through the voltage space vector generation
module, which generates the rotating voltage vector and makes
the motor run. Clark and Park transformation need position
information of motor rotor, and position angle θ is still used here.

The control system adopts the speed and current double
closed-loop control strategy. The sampling value of stator
current is obtained by a sampling circuit, and then, the
current is decomposed into mutually perpendicular current
components id and iq by coordinate transformation. The
voltage of the motor cannot be measured, so the given value
of the voltage is used instead of the actual value. In the sensorless
part, UKF algorithm is used to estimate the motor speed.
According to the abovementioned analysis, the accuracy of
identification is easily affected by the changes of motor
parameters, so this article estimates the speed and identifies
the motor parameters and uses the identified parameters to
update the reference model. Since the parameters to be
identified include motor speed ω, position θ, inductance L,
and flux ψf, this article adopts a step-by-step identification
algorithm. First, we fix inductance L and flux ψf and use UKF
algorithm to identify speed ω and position θ on line. Then, we fix
speed ω and position θ and use UKF algorithm to identify
inductance L and flux ψf on line.

In order to verify the effectiveness of the parameter
identification scheme of PMSM under sensorless control, the
UKF estimation module uses Matlab/Simulink for simulation.
The parameters of the simulation motor are shown in Table 1.

In general, the random interference in the system and part of
the measurement noise are unknown. Therefore, the covariance
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matrix of system noise and measurement noise will be
determined by experience and simulation. Appropriate initial
value selection can make the algorithm have high-precision
prediction results under the premise of convergence. In this
article, the following covariance matrix and initial value are
used on the premise of a large number of research and
experiments.

Q �
0.1 0 0 0
0 0.1 0 0
0 0 1 0
0 0 0 0.01

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦, R � 0.2 0
0 0.2

[ ].
The simulation results are shown in Figures 2–5. First, the

control system with a position sensor is simulated, and the motor
voltage, current, speed, and position signals are recorded. The
UKF is used to estimate the speed and position of the PMSM and
compare with the simulated speed and position signals. Figure 2
and Figure 3 are the speed and position diagrams of PMSM

estimated by the UKF, respectively, and Figure 4 and Figure 5 are
the estimation errors of speed and position, respectively. It can be
seen from the simulation results that the estimated value obtained
by UKF algorithm can better track the actual value.

Figure 4 and Figure 5 show that there is a deviation between
the estimation value and the actual value, but after iterative
correction for 0.15 s, the speed regulation is stable.

Motor parameters play an important role in the mathematical
model of motor. It has an impact on the state equation of motor
and the stability, accuracy, and rapidity of the whole system. In
the motor mathematical model and equation discussed above,
there are mainly the following parameters: resistance Rs,
inductance L, and flux ψf. Through the simulation, it is found

FIGURE 1 | Block diagram of the vector control scheme for PMSM without a position sensor with parameter identification.

TABLE 1 | Parameters of PMSM.

Motor parameters Symbol Parameter value

Voltage of the d-axis ud 220 v
Voltage of the q-axis uq 220 v
Rotor flux ψf 0.12 Wb
Inductance of d and q axes L 8.5 mH
Stator resistance Rs 2.875 Ω
Rotor angular speed ω 500 rad/min
Pole number of the motor pn 4
Electromagnetic torque Te 6 N · m
Load torque Tl 5 N · m
Moment of inertia J 0.008 kg · m2

Sampling time Ts 1 e-6

FIGURE 2 | Rotor speed.
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that the motor resistance has little influence on the speed and
position estimation results, while the rotor flux and inductance
deviation have great influence on the estimation results.

After UKF algorithm, the estimated values of each state
variable are obtained, as shown in Figures 6–11. It can be
seen from Figures 6, 7 that the UKF can not only accurately
identify the stator flux but also accurately identify the stator
current.

Figures 6, 7 of αβ-axis currents tend to be stable after 0.15 s.
This is consistent with the change of speed in Figure 2. The speed
is controlled by the current loop. After one and a half cycles,
currents reach the rated current value of 5A. After coordinate
transformation, the αβ two-phase current has a phase difference
of 90 under the shaft system.

This reflects the effectiveness of the observer. Figure 8 is the
result of motor flux identification. The identified flux is 0.12 wb,
which has good stability and is close to the actual value of 0.12 wb,
and the error is close to zero, which verifies the effectiveness of the

FIGURE 3 | Rotor position.

FIGURE 4 | Speed estimation error.

FIGURE 5 | Position estimation error.

FIGURE 6 | Identification value of α-axis current.

FIGURE 7 | Identification value of β-axis current.
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identification method. Figure 9 is the result of inductance
identification, and the identification value tends to 8.5 mH
quickly, which is basically the same as the actual value. Both
the inductance L and the flux linkage ψf can converge to the true
value, and the error is almost zero.

The flux linkage parameters and inductance parameters
identified by the UKF are applied to the UKF system in real
time to estimate the motor speed and position, and good control
effect is obtained, as shown in Figures 10, 11.

The identified parameters are fed back to the system, and the
UKF can update the motor parameters in the mathematical
model in time, which greatly reduces the estimation error.
After the identified parameters are fed back to the sensorless
vector control scheme, the control performance and parameter
identification results of the whole scheme remain stable in
dynamic and steady state.

CONCLUSION

In this article, UKF-based parameter identification was
considered for permanent magnet synchronous motor. The
rotor flux and inductance parameters based on the UKF
model have been modified in real time, and the estimation
effect of the UKF has been compensated effectively. UKF
algorithm requires less computation, but the accuracy of
identification results is high. It is a very advantageous online
motor parameter identificationmethod, which is suitable for state
estimation and model identification of nonlinear systems. The
performance of a PMSM sensorless control system can be
guaranteed even if the motor parameters have some errors.
The simulation results have shown that the parameter
identification algorithm can effectively identify the rotor flux
linkage and inductance in real time and can effectively estimate
the speed and position with high estimation accuracy, which can
meet the real-time requirements of motor control.

FIGURE 8 | Flux identification value.

FIGURE 9 | Inductance identification value.

FIGURE 10 | Speed estimation with parameter identification.

FIGURE 11 | Position estimation with parameter identification.
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