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The upstream of bioenergy industry has suffered from unreliable operations of
granular biomass feedstocks in handling equipment. Computational modeling,
including continuum-mechanics models and discrete-particle models, offers insightful
understandings and predictive capabilities on the flow of milled biomass and can assist
equipment design and optimization. This paper presents a benchmark study on the fidelity
of the continuum and discrete modeling approaches for predicting granular biomass flow.
We first introduce the constitutive law of the continuum-mechanics model and the contact
law of the coarse-grained discrete-particle model, with model parameters calibrated
against laboratory characterization tests of the milled loblolly pine. Three classical granular
material flow systems (i.e., a lab-scale rotating drum, a pilot-scale hopper, and a full-scale
inclined plane) are then simulated using the twomodels with the same initial and boundary
conditions as the physical experiments. The close agreement of the numerical predictions
with the experimental measurements on the hopper mass flow rate, the hopper critical
outlet width, the material stopping thickness on the inclined plane, and the dynamic
angle of repose, clearly indicates that the two methods can capture the critical flow
behavior of granular biomass. The qualitative comparison shows that the continuum-
mechanics model outperforms in parameterization of materials and wall friction, and
large-scale systems, while the discrete-particle model is more preferred for discontinuous
flow systems at smaller scales. Industry stakeholders can use these findings as guidance
for choosing appropriate numerical tools to model biomass material flow in part of the
optimization of material handling equipment in biorefineries.

Keywords: granular materials, discrete-element, finite-element, lignocellulose biomass, hopper flow, flow regime

1 INTRODUCTION

Biorefineries can convert sustainable biomass into bio-energy (directly via combustion through
intermediate fuels such as ethanol) and bio-chemicals (e.g., succinic acid). Over the past decade, bio-
energy has achieved a steady increase in theU.S. renewable energy portfolio and is a vital contributor
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for supporting the U.S. to accomplish the carbon-neutral
goal (DOE-BETO, 2016). However, biorefineries suffer from
unreliable operations in transportation, storage, and handling
of granular biomass feedstocks. These process upsets, manifested
in various occasions such as hopper arching, screw jamming,
and particle segregation, can cause significant downtime of
operations resulting in non-competitive market values of bio-
products (Hess et al., 2007; Ramírez-Gómez, 2016; Dale, 2017;
Ilic et al., 2018; Cheng et al., 2021). All these issues result
from the poor flowability of the granular biomass feedstocks.
Both experimental characterization (Hernandez et al., 2017;
Salehi et al., 2019; Stasiak et al., 2019) and numerical modeling
(Jin et al., 2020b; Xia et al., 2020) have been used to address the
flowability issue with the objectives of optimizing equipment
geometry/operation and optimizing the granular feedstock
characteristics. However, experiments cannot measure all the
critical state parameters constraint by sensors (e.g., shear testers
only quantify two stress components of a full stress tensor),
which are crucial to elucidate the flow physics. In addition,
experiments are not economically viable to conduct at the
industrial scale with a comprehensive test plan. Numerical
modeling validated by experimental data is expected to address
the experimental limitations and achieve the above objectives.
Both the continuum-mechanics models and the discrete-particle
models have been continuously developed, improved, and used
to predict the flow behavior of the granular biomass feedstocks.

The continuum-mechanics models assume that the granular
material can be treated as a continuum, for which the constitutive
laws can describe the mechanical flow behavior. The variation
of biomass species, particle size, and particle morphology are
realized by using different constitutive laws or different values
of the constitutive material parameters. For example, the authors
previously applied the modified Drucker-Prager/Cap model
(Jin et al., 2020a), the NorSand model (Jin et al., 2020b), and
the hypoplastic model (Lu et al., 2021a,b) to predict the flow
behavior of the milled loblolly pine with different particle size
distributions. Yi et al. (2020a,b) used the modified Cam-Clay
model and the Drucker-Prager/Capmodel to simulate the milled
corn stover and Douglas fir.

The discrete-particle models track individual particles
and predict particle trajectories from the collisions with
neighboring particles. The variation of particle size, morphology,
and mechanical properties resulting from biomass species
and pre-processing are explicitly described and simulated in
discrete-particle modeling. For example, Xia et al. (2019) and
Guo et al. (2020) used flexible clumped spheres to approximate
different particle shapes for milled loblolly pine and switch
grass. Xia et al. (2021) explicitly modeled the complex-shaped
pine chips using the polyhedral discrete element model.
Guo et al. (2021) developed an experiment-informed, semi-
empirical, elasto-plastic bond model for discrete element
modeling of woody biomass particles. A recent effort by
Chen et al. (2022) proposed a set of complex particle contact
laws to describe particle interactions using monospheres.

The continuum-mechanics and discrete-particle models have
been used to simulate the granular biomass flow in various
characterization tests, including uniaxial compression, axial

shear, Schulz ring shear, and pilot-scale hopper with considerable
success so far. In general, the continuum-mechanics models
are found to be efficient in predicting large flow systems with
reduced-order accuracy. In contrast, the discrete-particle models
are more computationally expensive with higher precision and
are more suitable for investigating the fundamental physics
of granular flow at smaller scales. However, a quantitative
comparison on capturing the in-depth flow physics at different
scales and the associated computational cost of the twomodeling
approaches has been an untouched area in the literature.

This paper attempts to address this issue by benchmarking
the numerical predictions of flow systems from a continuum
model and a particle model against physical experiments. In
Section 2, we briefly introduce the solution algorithms and
the constitutive/contact laws of the two modeling approaches,
followed by the targeted granular material (i.e., milled loblolly
pine) and its material parameters for the two models. In
Section 3, we detail the experimental and numerical setup of
a lab-scale rotary drum test, a pilot-scale hopper test, and a
full-scale inclined plate test. The qualitative and quantitative
comparison among the experimental measurements and the
numerical predictions from the two modeling methods are
presented for each test. We then discuss the apparent advantages
and disadvantages of the two modeling approaches based on the
benchmark cases in Section 4. Lastly, the conclusion is provided
in Section 5.

2 METHODS AND MATERIALS

2.1 Continuum-Mechanics Model
2.1.1 Solution Algorithm
The principles of continuum-mechanics are the conservation of
mass and momentum, which are the governing equations to
describe the motion at any point, x⃗, in the granular flow system:

1
ρ
Dρ
Dt
+∇ ⋅ v⃗ = 0, (1)

ρDv⃗
Dt
= ρg⃗ +∇ ⋅ σ , (2)

where ρ is the bulk density of the granular material, v⃗ is the
velocity vector, σ is the Cauchy stress tensor, and g⃗ is the body-
force vector due to gravity. We also use Da/Dt = ∂a/∂t + v⃗ ⋅∇a
to represent the material derivative. A constitutive model that
relates the stress tensor to the motion is required to close the
above governing equations. The hypoplastic model developed
by Gudehus (1996) and Bauer (1996) (termed as G-B model
hereafter) is adopted and briefly outlined in Section 2.1.2.

The above governing equations can be solved by many
numerical methods, such as the mesh-based finite-element
method (FEM) and finite-volume method (FVM), and the
meshless smoothed-particle hydrodynamic (Jin et al., 2020b).
We adopt the FEM with the coupled Lagrangian-Eulerian (CEL)
approach as the resolution algorithm in this paper. The CEL
approach solves the governing equations using two steps: 1)
The granular material domain is discretized using Lagrangian
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mesh, and the deformablemesh tracks themovement ofmaterial;
2) the deformed mesh is returned to its initial position, and
the deformed material properties are then interpolated back
to the “fixed” mesh. This scheme enables CEL to model large
deformation without the mesh-tangling issue.

2.1.2 Constitutive Model
The G-B hypoplastic model was formulated to model the soil
behavior with the critical state concept, defined as the state
of stress and void ratio upon which granular material can
flow infinitely without volumetric changes. This constitutive
model has been applied to effectively model various types
of soil (Bauer, 1996; Gudehus, 1996; Herle and Gudehus, 1999;
Mašín, 2005; Wójcik and Tejchman, 2009; Liao and Yang, 2021)
and biomass materials (Lu et al., 2021b,a). The stress-motion
relation and the void ratio e evolution of the G-B model are
expressed in rate form as:

̊σ = fs(𝕃 ∶ ̇γ + fdN√ ̇γ ∶ ̇γ) (3a)

̇e = (1+ e)Tr ( ̇γ) (3b)

where ̊σ = ̇σ − ̇ω ⋅ σ + σ ⋅ ̇ω is the objective (Jaumann) stress-rate
tensor. ̇γ and ̇ω are the symmetrical strain rate tensor and the anti-
symmetrical spin rate tensor, and they can be obtained as:

̇γ = 1
2
(∇v⃗ +∇v⃗T) , (4a)

̇ω = 1
2
(∇v⃗ −∇v⃗T) . (4b)

The forth order tensor 𝕃 and the second order tensor N in
Eq. 3a are the linear andnonlinearmodulus, they are expressed in
terms of the current state (i.e., stress tensor σ and void ratio e) and
the material friction angle at the critical state ϕc. The coefficients
fs and fd in Eq. 3a take the influence of density and pressure on
the stress into account. Their detailed expression are described
in Gudehus (1996), Bauer (1996), and Lu et al. (2021b). We
implemented the G-B hypoplastic model in the Abaqus User
Material Subroutine (VUMAT) and open-sourced the code in
GitHub (https://github.com/idaholab/GranularFlowModels).We
also validated the model for various lab-scale shear tests and
pilot-scale hopper tests (Lu et al., 2021a,b).

2.2 Discrete-Particle Model
2.2.1 Solution Algorithm
The discrete-particle models are generally referred as models
solved by the discrete element method (DEM). With the
theory initially established by Cundall and Strack (1979) and
Chung (2006), DEM simulates the bulk flow behavior of granular
materials by explicitly tracking the motion of each single particle
of an assembly. The particle motion, expressed in terms of
translation and rotation, is governed by the Newton-Euler
equations:

md2x⃗
dt2
= F⃗ (5)

I
d2ψ⃗
dt2
= M⃗ (6)

where m and I are the particle’s mass and moment of inertia,
x⃗ and ψ⃗ are the particle’s translational and rotational vectors,
F⃗ and M⃗ are the internal and external force and moment
experienced by the particle. The force and moment are evaluated
and summed through the contact forces from the interaction
with its neighbours, the gravity and prescribed body forces,
and the damping due to particle movement. The governing
equations automatically satisfy the mass conservation, and they
are explicitly solved in each time increment for all particles. A
contactmodel that relatesmotion and force between two particles
is required to complete the above governing equations in Eqs 5,
6. We adopt the contact model proposed by Chen et al. (2022)
in this paper, and we briefly introduce it in the following
section.

2.2.2 Contact Model
For granular material with complex particle shapes and
sizes, one can explicitly model the complex shapes and sizes
in DEM. However, such an approach is computationally
expensive because of the mathematical complexity involved
in describing particle shapes and in detecting and resolving
particle contacts. Alternatively, the influence of particle-scale
characteristics (e.g., shapes, sizes, deformability) on bulk
behavior can be indirectly modeled with advanced contact
laws with spherical particles. This latter approach is appealing
for simulating larger-scale problems due to its computational
efficiency and is therefore adopted in this study. Specifically,
we adopt a recently proposed nonlinear hysteretic model to
calculate the interaction forces (Chen et al.,2022). This model
is capable of capturing the sophisticated bulk behavior of
granular biomass that yield strain hardening, interlocking,
and cohesion, when subjected to variable compressive and
repeated loading conditions. It is mathematically expressed as:

Fhys =

{{{{{{{
{{{{{{{
{

̃F(m)nl = αk
(m)
1 (δ − δ

(m−1)
0 )

χ
+ f (m)1 loading/reloading

̃F(m)nu = Ck
(m)
2 (e

β(m)
r∗ (δ−δ

(m)
0 ) − 1)+ f (m)2 unloading

F(m)nc = −Kncδ cohesion
(7)

where Fnl and Fnu denote the normal force component in
compressive loading and unloading, respectively. Fnc is the
cohesion force. The superscripts (m) and (m− 1) indicate the
current and previous loading cycles, respectively. δ and δ0
are the total and plastic overlap distances. k1, k2, Knc, α, and
C are the material parameters to represent particle stiffness.
The exponent χ is the loading displacement power function
index, f1 and f2 are two numerical correction terms to avoid the
discontinuity in force calculation. Note that this model tracks the
contact history of two contacting particles since the detection of
their contact. The storage of history (e.g., plastic deformation
δ0, loading cycle m) requires large computing memory and
enables to model history-dependent flow behavior. The above
contact model only accounts for normal interaction forces. We
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adopt the classical Mindlin theory (Mindlin, 1953; Kruggel-
Emden et al., 2008) to calculate the tangential interaction
forces.

2.3 Granular Material
The granular material used in this study is milled loblolly
pine chips. The loblolly pine trees from a southeastern Georgia
plantation in the U.S. were first processed in a flail chain to
remove the bark, limbs, and needles.Themain bole of the treewas
chipped at the plantation to a nominal 50 mm size, then hammer
milled in the Biomass Feedstock National User Facility at Idaho
National Laboratory until the particles pass a retention screen of
6 mm.We further dried the granular pine chips in a rotary drum
and stored with a moisture content of approximately 6%. The
sieve analysis of the material sample shows that the cumulative
passing particle size distribution has characteristic (10, 50, and
90% respectively) parameters of d10 = 0.38 mm, d50 = 0.82 mm,
d90 =1.79 mm.Amore detailed description of sample preparation
has been reported in an earlier work (Jin et al., 2020a).

We conducted extensive characterization on the mechanical
behavior of the loblolly pine chips using the cyclic axial
compression, the Schulze ring shear test, and the vibration test
(Jin et al., 2020a). A workflow to calibrate the G-B hypoplastic
model parameters for the loblolly pine chips using the
characterization datawas established by Lu et al. (2021b).Table 1
lists the calibrated material parameters, in which the internal
friction angle at critical state ϕc and the exponent α determine
the critical and the peak stress values. The granulate hardness hs,
the exponent n and β control the elastic behavior of the material.
The minimum, the critical and the maximum void ratios at zero
pressure ed0, ec0 and ei0 provide the void ratio (density) boundaries
that the granular material can achieve.

For the discrete-particle model, we calibrated both the contact
model parameters and the DEM spherical particle parameters
(i.e., particle radius, particle density, Young’s modulus, Poisson’s
ratio) for the targeted loblolly pine chips.Table 2 summarizes the
calibrated DEMparticle-particle (P-P) contact model parameters
against the cyclic axial compression tests on loblolly pine chips.
The calibration procedure is detailed in Chen et al. (2022) for
the hysteretic contact model parameters (for normal contact
force component) and in Xia et al. (2019) for the Mindlin model
(for tangential contact force component). Note the parameters
(A1,A2,A3) listed in the table are correlated with k1 and k2 in
Eq. 7. Also, the “coarse-grained” DEM adopted in this study
allows the spherical particles not equivalent to physical particles
in shape and size.The bulks of sphereswith radius of 1.5 mmwere
calibrated to render the equivalent bulk behavior of the biomass
samples and used for all the following simulations. In addition
to the hysteretic and the Mindlin contact models, we also adopt
the rolling resistance model to account for the interlocking effect

TABLE 1 | Calibrated G-B hypoplastic model parameters for the loblolly pine
chips.

ϕc [°] hs (kPa) n (-) ed0 (-) ec0 (-) ei0 (-) α (-) β (-)

47.3 187.6 0.30 0.50 1.06 1.38 0.3 1.0

of the complex-shaped pine particles by applying the constant
torque (Zhou et al., 1999). The typical range of the parameter
associated with this model (i.e., rolling resistance μr) is 0.6–1.0,
and we calibrated this parameter through trial-and-error in
hopper simulation detailed in the following section.

For the particle-wall (P-W) contact, we adopted the same
set of contact models as for the particle-particle (P-P) contact.
All the model parameters are the same except the friction
coefficient μf and rolling friction coefficient μr, which are the two
dominant parameters controlling frictional behavior. We chose
the initial values of the two parameters by balancing a single
sphere particle on an inclined plane with an inclination angle of
8.5° (Chen, 2022) from the experimental measurement formilled
loblolly pine. The influence of varying these parameters on the
flow behavior will be demonstrated in the case studies. The P-
W column in Table 2 lists all parameters for the particle-wall
contact.

3 BENCHMARK CASES

3.1 Hopper Flow and Arching
Hoppers are one of the most widely used equipment to
handle granular materials across several industries including
the bioenergy sector. Inconsistent hopper flow, such as hopper
arching (Horabik and Molenda, 2014), rathole, surging flow,
poses a significant challenge in biorefineries. Robust and high-
fidelity numerical models can help to address this challenge by
directly simulating hopper flow at various scales. In this section,
we used the calibrated FEM and DEM models to simulate a
hopper flow of the milled loblolly pine at the pilot-scale, and
compared the predictions against experimental measurements to
show the capabilities of the two models.

3.1.1 Experimental and Model Setup
The experimental tests to characterize the flow of milled loblolly
pine in a wedge-shaped hopper are detailed in Lu et al. (2021a).
Figures 1A,B show the front, side, and top views of the hopper
and the size of the hopper, respectively.The hopper is customized
with motors that can rotate its sidewalls to form any given semi-
inclination angle θ. During the experiments, the hopper is first
charged with the milled pine feedstock to a targeted height
H = 0.68 m.Then the hopper opens its outlet by gradually sliding
the two sidewalls in the upward-directions, holding the semi-
angle constant. We measured the critical outlet width as the
maximumorifice size at which the feedstock cannot continuously
flow out of the hopper. We also logged the accumulated mass
during the flow test to quantify the mass flow rate for any
combination of outlet opening width W and semi-inclination
angle θ.

A full 3D hopper discharge simulation is neither
computationally viable for DEM nor necessary, as the
experiments observed flow pattern is in plane strain condition.
As shown in Figures 1A,B thin cross-section of the hopper is
considered with a depth of 3 mm in the out-of-plane direction
(i.e, one layer of mono-spheres). The hopper walls are meshed
with triangular elements. The charging process was simulated
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TABLE 2 | Calibrated DEM model parameters for loblolly pine chips.

Parameter Symbol Value (P-P) Value (P-W) Unit

Loading force scaling coefficient α′ 20 20 —
Loading power function index χ 2 2 —
Loading stiffness coefficient A1 6 × 108 6 × 108 —
Initial loading stiffness coefficient A2 5 × 104 5 × 104 —
Unloading stiffness coefficient A3 5 5 —
Cohesion force coefficient Knc 1 × 10–4 1 × 10–4 —
Unloading force scaling coefficient C 1 × 10–7 1 × 10–7 —
Particle radius r 1.5 — mm
Density ρ 390 — kg/m3

Young’s modulus E 1 × 106 1 × 106 Pa
Poisson’s ratio ν 0.3 0.3 —
Restitution coefficient e 0.3 0.3 —
Friction coefficient μf 0.5 0.2 —
Rolling friction coefficient μr 0.8 0.6 —

using the rainfall method (Härtl and Ooi, 2008; Xia et al., 2019),
with which the particles were inserted into the computational
domain and allowed to deposit in the hopper under gravity. The
insertion zone is located at the top of the bin (1.2 m above the
bottom of hopper) with a width of 0.6 m and height of 0.2 m. We
adopted the rainfall method because it resembles the physical

hopper charging procedure in experiments. Once the hopper
was charged up to the same height H as the experiments, we
stopped the insertion and let the particles sit in the hopper for a
period to reach force equilibrium. The equilibrium was achieved
when the maximum velocity of all the inserted particles was less
than 1 mm/s. The charging and equilibrium process took about

FIGURE 1 | Overview of the hopper flow problem: (A) The top, side and front views of the customized hopper; (B) The geometry of the numerical models with
simplified hopper thickness; (C) The comparison of flow pattern and arching from the DEM and FEM models; (D) The comparison of the stress distributions for the
consistent flow and arching cases from the DEM and FEM models.

Frontiers in Energy Research | www.frontiersin.org 5 June 2022 | Volume 10 | Article 855848

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Jin et al. Computational Benchmark on Granular Flow

1.5 s of physical time to finish. We trimmed the extra particles
that are above the target height after the equilibrium. Different
from the experimental procedure, we removed the lower sections
of the hopper walls to create an opening with target width to
initiate the discharging process. This simplification prevents
additional disturbance of the particle packing. To obtain the
critical outlet width, we run multiple simulations with gradually
smaller opening widths until clogging happens. The mean value
of the width of the clogging case and the width of the last case
with smooth flow is defined as the critical outlet width, which
has an accuracy of ±1.25 mm as we use 2.5 mm step size for
hopper opening. The cumulative discharged mass was calculated
by multiplying the discharge particle number with the particle
mass.

The hopper flow simulation using the continuum FEMmodel
has been described in our previous studies Lu et al. (2021b,a).
Briefly, a half slice of the hopper with a thickness of 25 mm is
modeled given its plane strain condition and its symmetrical flow
pattern. The hopper walls are modeled as rigid bodies, and their
interaction with the material is directly simulated through the
Coulomb friction model with a wall friction angle of 8.5°. We
simulated the charging step by applying gravity on the material
and letting it rest until the stress equilibrium is achieved. Note
that we assigned initial bulk density and void ratio according to
the physical measurement. The following discharging step was
realized by sliding sidewalls upwards following the experimental
procedure and the material began flowing until the hopper is
fully discharged. The mass flow rate qm is evaluated by extracting
and integrating the nodal velocity and the elemental density
of all elements at the outlet. The critical outlet width Wcr is
obtained by the Dichotomy method, in which we simulated
two different outlet widths W of flowing and arching situations
and then gradually narrow the range of W until a dramatic
change of flow responses occurs with two close outlet widths in
1 mm.

3.1.2 Results
Comparing the DEM results with experimental results of hopper
discharge, we found that when the rolling friction coefficient μr is

in the range of 0.6–1.0, theDEMmodel provides predictions with
a good agreementwith the FEMpredictions and the experimental
measurements. Accordingly, we used μr = 0.8 for all the following
hopper flow simulations.

Figure 1C presents a qualitative comparison of the flow
patterns predicted by the DEM and FEM models, with a hopper
semi-inclination angle of 30° and a hopper openingW = 60 mm.
Note the original distribution of the particles is colored by
horizontal bands in the DEM case, while the FEM case shows the
bulk density. While both the models predict a smooth discharge,
the DEM model shows a funnel flow pattern (i.e., first-in last-
out) and the FEM model predicts a mass flow pattern (i.e.,
first-in first-out). As the corresponding physical experiment of
the same hopper configuration tended to yield pattern toward
mass flow from our laboratory observation, we surmise that the
particle-wall friction coefficient assigned in theDEM simulations
might be higher than needed. Normally, lower wall friction tends
to yield mass flow patterns in hopper discharge. Nevertheless,
the particle-wall interaction parameters chosen in the DEM
simulations have negligible influence on the mass flow rate and
the critical arching distance reported in the following. When the
hopper opening reduces to 20 mm, both models predict hopper
arching phenomenon with arch-shaped virial stress distribution
(Subramaniyan and Sun, 2008) from the DEM model and the
arch-shaped vertical stress distribution from the FEM model in
Figure 1D. Figure 1D also shows the stress distribution for case
ofW = 60 mm. The stress pattern of the two models match each
other in general except in the hopper outlet area.

To examine whether the two numerical models can
quantitatively capture the effect of outlet width on the discharging
flow response, a suite of simulations with different outlet widths
are performed. The results of the accumulative discharged mass
against time are plotted in Figure 2A. For the same hopper
opening width W, the DEM model prediction (solid lines) and
the FEMmodel results (dashed line withmarkers) agree well with
each other, especially for the openingsW larger than 40 mm.Note
that we scaled both the DEM and FEM predictions, because the
DEM model has less total material for flow due to its model set-
up (trim and hopper opening) and FEM model post-processing
assumes the same velocity and density at a node within a time

FIGURE 2 | Quantitative comparison of (A) the cumulative mass discharged where the case with W= 20 mm is clogged, and (B) the mass flow rate qm against
hopper opening width W among the DEM and FEM model predictions, and the experimental measurements, where the error bar in FEM results represents the
numerical variation caused by different time step size.
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increment. Figure 2B compares the calculated mass flow rate
qm between the DEM and FEM results, with reference to the
experimentalmeasurements for different hopper openingwidths.
The FEMmodel predicts a close agreement with the experimental
data, whereas theDEMmodel slightly over-predicts themass flow
rate.The slight over-prediction is primarily due to larger particle-
particle porosity of the bulk (and consequently lower total solid
fraction of the bulk) than the physical materials in the initial
packing. In the DEM simulation, the total mass of the material
is nevertheless guaranteed by using a large sphere density, so
the bulk density of the packed DEM spheres is comparable
to the FEM simulation and the physical material. The coarse-
grained spheres in the DEM simulations, without considering
any cohesive force between the spheres in this case study, tend
to deplete slightly faster from the hopper than the continuum
description of the same process.

Moreover, we obtained the critical outlet widths for different
semi-inclination angles from the DEM and FEM results, and
compared them against the experimental measurements in
Figure 3. The error bar of the experimental data represents
the variation of multiple measurements except the case of
inclination angle θ = 30°. Both the FEM and DEM models
predicted values of theWcr agree well with the experimental data
for different inclination angles. The slight difference between the
model predictions and the experimental data for 32o < θ < 34o
is primarily due to the local effect of pine samples near the
outlet area with a non-representative particle size distribution
(Lu et al., 2021a). This localization effect is often observed in
biorefineries as a variation of critical outlet size (error bar) is
observed for the same feeding material.

The quantitative comparison in Figure 2 and in Figure 3
demonstrates that both the FEM model and DEM model can
reasonably capture the critical flow behavior of milled loblolly
pine inside the hopper. If we neglect the required computational
cost and modeling effort, we recommend that both models are
suitable to inform the operation and design of wedge-shaped
hoppers for the flowing of milled biomass.

FIGURE 3 | The variation of the critical outlet width with increasing hopper
semi-inclination angle, predicted by the DEM and FEM models along with the
experimental measurements. The error bar of the experimental data
represents the min-max range of multiple measurements.

3.2 Inclined Plane Flow
Granular flow on an inclined plane is a widely adopted
benchmark test to decipher flow physics given it is a well-
controlled granular flow system. It can also physically model
engineering applications, such as landslides in geohazard
mitigation. One of the most intriguing features is its inclusion
of flows in both quasi-static and dense flow regimes, which
are distinguished by their shear rate and realized simply
with a variation of the inclination angle (Pouliquen, 1999;
Pouliquen and Forterre, 2002; Jop et al., 2005, 2006; Forterre
and Pouliquen, 2008). In this work, we focus on investigating the
in-flow velocity and the after-flowmaterial stopping thickness on
the plane, by performing FEM and DEM simulations as well as
physical inclined plane experiments.

3.2.1 Experimental and Model Setup
Figure 4A presents the customized experimental setup of pine
chips flowing on an inclined plane with adjustable inclined angle
η, along with its front view sketched in Figure 4B. An inclined
ramp with a width of 760 mm is fixed on an aluminum frame. A
cuboid-shaped material storage bin is installed at the upper end
of the rampwith a length of 570 mm, a height of 915 mm, and the
same width of 760 mm as the ramp.The sidewall facing the ramp
can slide upwards in its plane to initiatematerial flow at a targeted
gate opening. The plane’s inclination angle η can be adjusted by
changing the height of the two supporting legs near the storage
bin. A layer of pine chips is glued on the ramp to form a no-slip
boundary condition.

The physical tests started with filling the storage bin with the
milled loblolly pine, followed by flow initiation through sliding
the gate to a preset height. After the flow stopped, we measured
the thickness hstop of the material remained on the ramp using
laser displacement sensors. hstop was only characterized at the
middle of the ramp along the length of the plane.

Given the symmetrical feature with respect to the middle
surface (shown as red plane in Figure 5A) of the experiment
setup and the observed flow pattern, we constructed a 3D
symmetrical FEMmodel with the same geometry as the physical
experiment. For the boundary conditions, the inclined plane was
considered as a no-slip boundary with all degrees of freedom
been constrained, and the surfaces inside the storage box were
considered as full-slip boundaries with no movements at the
normal direction and no constraints at the tangential direction.
We performed the FEM simulation using the calibrated G-B
hypoplastic model (Section 2.1) following the same steps as the
experiments. Each simulation began with a consolidation step
until the stress equilibrium was achieved in the storage bin.
The flow was then initiated by releasing the constraints of the
nodes at the gate surface within a preset height. We stopped the
simulation until material stops flowing, and we quantified the
stopping thickness by extracting the material volume fraction in
each element above the plane and summing up the heights of the
elements occupied by the material.

Constrained by the computational cost, the DEM model
for the inclined plane assumed the flow follows plane strain
condition. A thin cross-section with a thickness of 15 mm (5
times of the mono-sphere size) in the out-of-plane direction
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FIGURE 4 | Experimental setup and geometry of the inclined plane tests. (A) A plane with a material storage bin at the top is hold by an aluminum frame. The height
of the frame below the bin can be adjusted to vary the inclined angle of the plane. (B) The front view of the experimental setup.

was modeled with a periodic boundary condition for the two
surfaces. The rest of the DEM model geometry was kept the
same as the experiments. The plane and storage bin walls
were explicitly modeled as rigid walls composited by triangular
elements. The initial particle packing inside the storage box was
created following the same rainfall procedure as described in
Section 3.1. Once the storage box was filled up to the target
height (i.e., 0.5 m in this study), we stopped the insertion
and consolidated the particles until they reached equilibrium.
The flow was initiated by raising the right wall of the storage
box to a certain height. After the modeled flow stopped, the
thickness of the material remained on the ramp was measured
by capturing the maximum heights of particles along the
ramp.

3.2.2 Results
Figure 5A presents a qualitative comparison of FEM- and
DEM-simulated material profiles with the colors denoting the
magnitude of flow velocity during a steady-flow state. The
“steady-flow state” is defined as the state at which the material
height on the ramp stays the same with negligible variance in
velocity distribution. The FEM and DEM results generally agree
with each other on both the velocity magnitude and the material
profile for the inclined angle η = 29.5° and 37°. However, the
DEMmodel cannot capture material flow outside along the ramp
side boundaries, as the DEM simulation domain used periodic
condition (plane strain assumption) at these boundaries.

Figure 5B quantitatively compares the material stopping
thickness hstop along the length of the ramp obtained from

FIGURE 5 | (A) Qualitative comparison of the predicted material profile overlapped with velocity distribution at a steady-flow state for two inclination angles. (B)
Quantitative comparison of the stopping thickness hstop of the material among the FEM and DEM model predictions and physical measurements.
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physical experiments and numerical simulations, in which “×”s
and “+”s stand for two experimentalmeasurements with the same
plane inclination angle and gate opening height, “◦”s represent
the FEM results, where the error bars mean the prediction
variation from different gate opening heights (22–48 cm for 29.5°
ramp and 8–19 cm for 37° ramp); the colored bands between
dashed lines are the DEM predicted hstop range with the rolling
resistance between 0.6 and 1.0 (as discussed in Section 3.1.2).
It was found that, at both the inclination angles 29.5° and 37°,
the DEM model with the calibrated material parameters can
successfully cover the range of experimental measurements using
different rolling resistance coefficients. The FEM model results
render a smoothmaterial profile and agree with the experimental
measurements. Moreover, the small error bars on the FEM
data points indicate that the gate opening height, equivalent to
the initial flow velocity, has a minor influence on the material
stopping thickness, as proved by the experimental observation
(note the two experimental measurements of each inclination
angle η were measured with the same gate opening, the variation
is due to particle packing difference.). Both the quantitative and
qualitative comparisons demonstrate the FEM and DEMmodels
with proper material calibration can capture the quasi-static and
dense flow regimes.

3.3 Rotating Drum
Angle of Repose (AoR) is an effective macroscopic property
that is often used to characterize the mechanical behavior of
granular materials. AoR has been widely used as a quantitative
measure of granular materials flowability under stress-free
condition. For example, AoR is one of the parameters utilized
in the design of hoppers and storage bins (Frankowski and
Morgeneyer, 2013; Beakawi Al-Hashemi and Baghabra Al-
Amoudi, 2018; Hamed et al., 2022). Two types of AoR can be
identified, namely, the static and the dynamic one. They differ
by a few degrees with the smaller one being the dynamic AoR.
The dynamic AoR is defined as the inclination angle of the free
surface with respect to the horizontal of the formed material
heap, and it is linked to the segregation phenomena of the
particulate materials (Beakawi Al-Hashemi and Baghabra Al-
Amoudi, 2018). In this work, the dynamic AoR of loblolly pine
chips was studied using the rotating drum test. Both DEM and
FEM were used to simulate the test. In addition, the dynamic
AoR of the as-ground pine chips was physically measured

in the laboratory as a benchmark value for the numerical
models.

3.3.1 Experimental and Model Setup
A sealed polycarbonate drum is used to measure the dynamic
AoR as shown in Figure 6A. The drum is 14.5 cm in internal
diameter and 20.2 cm long. The cylinder was loaded up to 50%
of its height with the milled loblolly pine (around 303.8 +/−
0.2 g) following the standard testing procedure. We closed the
drum with a transparent polycarbonate sheet and placed it on
the revolver. The revolver was rotated at a fixed speed of 20
revolutions per minute (rpm) until the free plane surface was
formed with a constant slope, see Figure 6A. The inclination
angle between the free surface and the horizon is the dynamic
AoR and was measuredmanually from outside of the transparent
side of the cylinder using a digital protractor (with readout
to 0.1°). Dynamic AoR was measured 10 times using different
batches to minimize the measurement error and the sample
variability.

Different rotational speeds were attempted in the simulations
of the rotating drum test using DEM and FEM. Figure 6B
shows the full 3D DEM model with the same geometry as
the experiments. The calibrated contact model parameters with
3 mm mono-sphere particles reported in the previous section
were used for the drum simulation. We start the simulation by
filling the stationary drum up to 50% of the drum volume using
a random packing algorithm. This is followed by an equilibrium
step, where the particles rearrange themselves under the influence
of gravity. Afterwards, we rotate the drum with a preset constant
rotational speed. Once the steady-state is achieved, we extract the
slope of the free surface as the dynamic AoR. We used 1 μs as the
step size and simulated 10 s of rotating.

The configuration of the FEM model is presented in
Figure 6C, where the cross-section geometry is exactly same as
the experiment and a reduced thickness of 25 mm along the
axial direction is utilized to save the computational cost. This
plane-strain consideration was validated by a full 3D modeling
study, in which the predicted dynamic AoR is uniform along
the axial direction and equals to the value predicted from the
plane-strain case. A symmetrical boundary condition along the
thickness direction is applied on the front and the back surfaces
of the FEM model, while the contact between the drum and the
material is explicitlymodeled using the Coulomb friction law.We

FIGURE 6 | Rotating drum test configuration: the experimental set-up (A); the DEM model set-up with the same dimension as the experiment (B); and the
geometrical configuration of the FEM model (C).
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FIGURE 7 | Three particle flow patterns observed at different rotational speeds. The top row are snapshots obtained from FEM simulations, while the DEM
snapshots are displayed at the bottom row.

analyzed the influence of wall friction on the modeling results
and we found that a wall friction angle greater than 20° results
in a stable dynamic AoR with negligible variation. Therefore,
friction angle of 20° is used for all rotating drum simulations.
The simulation domain was meshed with element size of 5 mm
and a time step of 10–20 μs was used for all simulation
cases.

3.3.2 Results
The flow pattern in the rotating drum differs due to differences
in rotational speeds, the wall friction angle between the drum
surface and the material, and the filling degree (Frankowski and
Morgeneyer, 2013; Zheng and Yu, 2015; Beakawi Al-Hashemi
and Baghabra Al-Amoudi, 2018). Figure 7 depicts three different
particle flow patterns (i.e., rolling, cascading, and centrifuging)
observed in the FEM and DEM simulations of the rotating
drum at different rotational speeds. The FEM snapshots display
a color-coded bulk density, while the DEM snapshots show the
particles configuration and the outline of the free surface at
a cross-section. The rolling pattern occurs at a low rotational
speed of 10 rpm and is characterized by a flat free surface that
arises due to the continuous circulation of the particles in the
drum. When the drum rotates at an intermediate rotational
speed of 50 rpm, particles undergo cascading pattern at which
the free surface fails to maintain a flat shape. The exhibited
curvature in the free surface and expanded volume of material
are associated with the spatial heterogeneity of porosity with
denser interior region and higher porosity near the surface.
Fast rotational speeds (300 rpm) give rise to the centrifuging
regime because the centrifugal force outweighs gravity. In this
regime, the particles adhere to the drum and form a ring-like
shape.

The effect of the rotational speed on the dynamic AoR
within the rolling regime was investigated. Figure 8 illustrates
the change of the dynamic AoR with the increasing rotational

speed. The experimentally measured value of AoR at the
rotational speed of 20 rpm is overlapped in the same figure.
The error bar represents the standard deviation of multiple
measurements. The quantitative comparison shows the DEM
model predicted value has an excellent agreement with the
experimental data while the FEM model slightly over-predicts
the dynamic AoR about 1.5° for the rotation speed of 20 rpm.
In addition, the two models correctly capture the increase of
the dynamic AoR with the increasing rotational speeds, which
is consistent with the observations and findings in (Frankowski
and Morgeneyer, 2013). We also observe the slight difference in
the predicted rate of increase with FEM showing a faster rate.
This flow characteristic will be investigated using experiments in
a future study.

FIGURE 8 | Dynamic angle of repose (AoR) versus the rotational speed from
the FEM and DEM model predictions and the experimental measurement.
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4 DISCUSSION

Generally, continuum-mechanics models are more efficient and
effective formodeling bulk granular flow problems at large scales,
while the discrete-particle models are more often applied to
understand the interactions of particles at smaller scales. The
three flow cases presented in this work have demonstrated that
both the continuum-mechanics model with a classic constitutive
law and the discrete-particle model with a group of sophisticated
contact laws can quantitatively simulate the biomass granular
flow behavior at different scales. Nevertheless, the two modeling
approaches are found to apparently have distinctive advantages
and disadvantages given their fundamental differences described
in Section 2.

• The constitutive law of the continuum-mechanics FEM
model only requires eight material parameters to describe
the flow behavior of the milled loblolly pine, whereas the
contact laws and mono-sphere particles of the discrete-
particle DEM model require 14 parameters. In addition,
most of the material parameters of the FEM model (Table 1)
have physical meaning and can be directly obtained from
the lab characterization data (Lu et al., 2021b). In contrast,
the particle-scale contact parameters (Table 2) were all
fitted through a single set of cyclic axial compression data
(Xia et al., 2019; Chen et al., 2022), though more sets of data
can be used.The risk is that, if the objective fitting function has
multiple saddle points, the calibration process may result in a
local set of optimal values instead of their true global optimal.
• The Coulomb friction between the wall and the granular

material is directly realized in the continuum FEMmodel.The
wall friction angle is an independent parameter that can be
assigned for any given wall materials and granular materials.
In contrast, the particle-based DEMmodel indirectly captures
wall friction by adjusting contact model parameters (e.g.,
frictional coefficient and rolling friction coefficient in this
study). This disadvantage makes the DEM model double the
effort in parameterization.
• Limited by the continuum assumption, the FEMmodel cannot

accurately simulate the sharp boundaries between the moving
material and the void (i.e., void in this paper). In contrast, the
particle-basedDEMmodel can easily handle these boundaries.
For example, the FEM model predicts a extremely small mass
flow rate for hopper arching shown in Figures 1C,D, while the
DEM can predict a complete stop of material flow. Another
example is the centrifuging pattern of rotary drum shown in
Figure 7.The continuumFEMmodel represents the void space
with an extremely-low density material, while the particle
DEM model can physically simulate the centrifuging pattern
with the void at the center.
• The initial void ratio/porosity of a granular system plays a

significant role in its flow pattern (surge flow v. s. mass flow, see
Lu et al. (2021a)). The initial value of the void ratio/porosity
can be assigned directly in the continuum FEM model given
its constitutive model is formulated in the framework of the
critical state particle mechanics (i.e., the state of a granular
assembly is determined by the stress tensor and the void

ratio, and the assembly can shear/flow infinitely under a
critical state without volumetric strain variation). The coarse-
grained DEM model describes bulk solids using spheres,
which limits its theoretical min-max void ratio/porosity range.
To overcome this limit, dilation of DEM particle volume
can be used to reduce the initial void volume fraction
(Lattanzi and Stickel, 2020), which yet requires additional force
equilibrium afterwards. Also, the initial particle packing (i.e.,
void ratio/porosity) prepared using the rain fall method of the
DEM model results in the inter-particle void ratio in a bulk
that is often larger than the physical material. Particle shape-
resolved DEMmodel is another way to realistically realize any
initial porosity of materials; yet, its computational cost is not
affordable for large systems Xia et al. (2021).

In addition to the capability differences in capturing physics
between the continuum model and the particle model, the
computational cost of the twomodels is also distinctive. Figure 9
shows the comparison of computational cost between the
continuum FEM model and the DEM model for typical cases
of the three simulated flow problems. Note we used the CPU
core hours—the computational time multiplied by the number
of cores, to quantify the computational cost. Figure 9 shows that
the DEM model took more core hours for all three cases, which
is though expected. However, regarding the computational cost,
the degree of advantage of the continuum FEM model over the
DEM model varies in each case. For the hopper simulation,
the computational cost of the case with semi-inclination angle
30o and outlet opening width 60 mm is presented with modeled
physical flow time 11 s for both the FEM model and the DEM
model. Because only a single layer of spheres (3 mm) in the
out-of-plane direction for hopper were simulated by the particle
DEM model, the computational efficiency of DEM is close to
the continuummodel. However, for the inclined plate simulation
with inclination angle 29.5o modeling 18.8 s physical time, the

FIGURE 9 | Comparison on the computational cost between the continuum
FEM model and the particle DEM model for the hopper flow simulation
(θ =30o,W =60mm and physical time t = 11s), the inclined plate simulation (η
= 29.5o, t = 18.8 s), and the rotary drum simulation (ω = 20 rpm, t = 10 s).
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FEM model outperforms the particle model with about 40 times
the computational time advantage. This is because the high
dimension ratio between a typical size of the experimental set-
up and the size of the DEM spheres (3 mm in diameter) requires
a huge amount of DEM spheres to represent the material, while
the FEM model can mesh the 3D domain using relative coarse
meshes and takes advantage of the non-slip boundary condition
between the material and inclined plate wall. However, this huge
amount of computational cost advantage of the continuummodel
does not hold for the lab-scale rotary drum. Only two times of
computational cost is gained by the continuum model over the
particle model for the case with 20 rpm rotation modeling 10 s
physical time.

The above comparison of physics capturing and
computational cost shows that the FEM model is preferred
when the targeted problems are at pilot- or industry-scales and
its continuum assumption is satisfied. In contrast, the DEM
model is better at simulating lab-scale granular systems with
discontinuities. A more sophisticated strategy is to couple the
advantages of the continuum and particle models and simulate
the granular flow problems using the multi-scale concurrent
framework (Liang and Zhao, 2019). Take the hopper as an
example, the bulk hopper material, as well as the interaction
between the material and hopper wall, can be modeled using
the efficient continuum FEM model. While the domain in the
vicinity of the hopper outlet, including the particle flow into the
downstream feeder/reactor, can be better handled by the particle
DEM model. Nevertheless, a coupled FEM-DEM modeling
approach will require significant further development and
validation, before it can be reliably introduced for engineering
applications that involve complex geometries.

5 CONCLUSION

This study reports the detailed comparison of a continuum-
mechanics model and a coarse-grained discrete-particle model
on the predictive fidelity and computational cost for simulating
biomass granular flow. After briefly introducing the two
models, we benchmarked their predictions against physical
measurements for a lab-scale rotating drum flow test, a pilot-
scale hopper flow test, and a full-scale inclined plate flow test.
The predicted bulk flow behavior from the two models, i.e.,
the dynamic angle of repose of the rotary drum, the mass flow
rate and the critical outlet width of hopper, and the stopping
thickness of the inclined plate flow, all matched well with
the experimental measurements. However, their fundamental
differences in theories and solution algorithms resulted in
distinctive apparent advantages and disadvantages of capturing

granular flow physics. The continuum-mechanics model has
the apparent advantages of parameterization in material and
wall friction, direct initial state assignment, and computational
efficiency for large-scale flow systems. In contrast, the discrete-
particle model is more robust for handling discontinuous flow
problems and decipher particle interaction during flow for
smaller-scale systems. This comparative study has provided
insights that industry stakeholders may find helpful when
choosing suitable and experiment-informed/validated numerical
models and packages as advanced design tools to assist the design
and optimization of biomass granular flow systems.
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