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To achieve a low-carbon and economical operation for the power grid, this paper
proposes a novel optimal carbon–energy combined flow (OCECF) by considering the
influence of aluminum plants. It attempts to minimize the carbon emission of power grid,
power loss, and the voltage deviation by taking the reactive power control of aluminum
plants into account. Since the presented OCECF is a nonlinear and complex optimization
problem, a new metaheuristic algorithm called Coot algorithm is employed to acquire a
high-quality dispatch solution under various scenarios. The Coot algorithm is inspired by
the movement of birds on the water surface, which can implement a wide exploration via
the random movement and a deep exploitation via the chain movement with the group
leaders. The performance of Coot algorithm for the presented OCECF is carried out on an
IEEE 57-bus system with various power plants, in which the group search optimizer is
introduced for performance comparison.
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1 INTRODUCTION

In recent years, atypical weather patterns have resulted in the frequency of natural disasters, such as
earthquake, flooding, and forest fires in the world, which directly related to the increasing production
of carbon dioxide (CO2) (Walther et al., 2002). The global temperature is increasing year by year due
to the increase in the content of greenhouse gases in the atmosphere, and these are mainly caused by
human activities. Among them, carbon dioxide is the most distinctive greenhouse gas. It shows that
with the rapid development of the industry, environmental problems are becoming more and more
severe and pose a threat to human health at the same time. The advocacy of low carbon life becomes
inevitable, and the reduction in CO2 has attracted extensive attention in both industry and research.
In such a low-carbon–energy transition era, electric power industry, as a prime CO2 producer, takes
on greater responsibility for reducing carbon emissions from the generation side of electricity and
from transmission flows. A lot of investigations have been concentrated on low-carbon electric
power. From the point of view of environmental economy, clean energy technologies, such as carbon
capture and storage technologies are key to reducing emissions in the current scenario where the
power sector relies on emission-intensive energy resources (Wei et al., 2016). In Ghorbani (2016),
Song et al. proposed nonconvex planning for economic scheduling of CHP in various integrated
cogeneration systems using exchange market algorithms. Power grid companies have been trying to
find more reasonable resource dispatching solutions to rationally allocate power resources according
to customer demand and optimize the distribution system to achieve the most economical and
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quality system operation (Carpentier et al., 1996). Liu et al. (2014)
proposed a multistage scenario tree-based approach, which uses a
rolling scheduling scheme to consider the uncertainty of solar
energy, nondispatchable power, and thermal loads in the
operation of building energy systems using uncertainty
information updated every hour.

Due to the difference in emission levels, carbon emissions are
bound to the scheduling process by imposing penalties on
carbon generation. However, the existing penalty methods
are still inadequate. A penalty-based approach to resource
scheduling, minimizing the cost of carbon emissions
penalties/environmental loss, is proposed in Liu et al. (2014)
to allocate switching states and power distribution. Existing
studies aim to reduce the generation of total carbon emissions
and ignore the carbon emissions of the electricity network,
which is closely related to the interests of the grid
companies. To effectively deal with this challenge, an optimal
carbon–energy combined flow (OCECF) for electricity networks
was suggested in Kang et al. (2012), Li et al. (2013), Zhang et al.
(2015), and Zhang et al. (2018), where the tracking method
identifies carbon liability with full electricity consumer
responsibility. The literature (Lassagne et al., 2013) shows
that in industrial processes, such as aluminum production, it
has been observed that the CO2 levels in the fume capture the
economic variability of the equipment. Moreover, due to the
inherent characteristics of the wastewater generated by virgin
aluminum refinery, the present methods of carbon trapping
technology cannot be used directly. Therefore, studies have
shown that it cannot be applied to the measurement of CO2

emissions from power networks, including aluminum plants.
Aluminum plants have some typical characteristics, such as
heavy load and reactive voltage regulation demand, which
should be factored into the OCECF. OCECF is a model
characterized by nonlinear programming with multivariate
and complex constraints. It usually has two techniques,
namely, traditional optimization methods, heuristic
algorithms, and metaheuristic algorithms. Traditional
optimization algorithms like mixed-integer linear
programming (Gan et al., 2019), De Casteljau’s algorithm
(Zhou et al., 2021a), and reduced event-base algorithm (Zhou
et al., 2021b) rely mainly on the precise magnetic pattern of a
particular optimum, and it can easily fall into a local optimum
for nonlinear multipole planning with noncontinuous features
and restraints. In comparison, the metaheuristic algorithm Coot
algorithm can have better performance than the heuristic
algorithm, such as faster convergence and more accurate
characteristics. A new krill swarm was proposed in
Adhvaryyu et al. (2017), which was successfully applied to
dynamic optimum energy tracking for combined heating and
power systems. In Abbas et al. (2017), G. Abbas et al. discuss in
detail various hybrid forms of particle swarm algorithms and
perform in-depth nonconvex economic scheduling based on
particle swarm optimization. Genetic algorithms are applied to
microgrids, and a genetic algorithm-based optimizer is designed
for the economic dispatch of microgrids with renewable energy
sources. The metaheuristic algorithm is a stochastic algorithm
for finding the best response.

A classification of optimality methods and approximation
algorithms is made into two categories: precise and proximate
algorithms. Precise algorithms are able to find the best answer
accurately. However, they are inefficient sufficiently for demanding
optimality issues, and their implementation duration grows
exponentially with the dimension of the problem. Proximate
algorithms are able to identify close to optimal solutions for
rigorous optimization problems in a relatively short period of
time. The development of metaheuristic algorithms was
motivated by biological processes, the behavior of animals,
and the concept of conservation and human activity. Based
on the collective behavior of birds, a new optimization
algorithm, Coot, simulates the movement of cores on water
with a metaheuristic algorithm applied to the OCECF model in
this paper, which has a better performance for power grid
containing aluminum plants.

The next section of this article is structured as described below:
The Numerical simulation of optimal carbon–energy combined
flow Section 2 describes the numerical simulation of the OCECF
with the participation of the aluminum plants. The Coot
optimization algorithms for optimal carbon–energy combined
flow Section 3 describes the basic principles of the Coot
algorithm. The Design of Coot for optimal carbon–energy
combined flow Section 3.3 develops the design of the Coot
algorithm for OCECF, and the Case studies Section 4 presents
the simulation results of the Coot algorithm for the constructed
problem. Last, the Conclusion Section 5 draws the conclusion of
this article.

2 NUMERICAL SIMULATION OF OPTIMAL
CARBON–ENERGY COMBINED FLOW

2.1 Carbon–energy combined flow
In the existing studies, the carbon emission statistics are usually
obtained by converting primary energy consumption to
macroscopic statistics. These methods cannot reveal the
characteristics of carbon emissions in power systems, and
there are many limitations in their application. The concept of
power system carbon emission flow in Figure 1 is proposed to
combine carbon emission analysis with power system tide
calculation, which provides new ideas for the research in the
field of low carbon power. A power system carbon stream is
defined as a virtual network stream that is dependent on the
power tide and is used to characterize the carbon characteristics
of electric power systems that maintain the tide in either path
(Kang et al., 2012). For carbon flows, not only do factors such as
grid topology, generator output power, and nodal power demand
fluctuate, but they are notably driven by the carbon intensity of
the generators and the shared liability between the power
producers and the users of the energy. The calculation of CO2

flow is based mainly on the obtained tide of the power system,
where the carbon emissions of the entire electrical system are
equivalent to the CO2 emissions of the generation side CP.
Therefore, it can be described as the accumulation of the grid
losses Closs and demand-side carbon emissions Cd, as described
below:
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CP � ∑
w∈W

Pwδw � Cd + Closs (1)

where Pw in the formula represents the delivery power of the wth
generator, δw means the carbon emission intensity of the wth
generator, and W is the total generator set.

Theoretically, electricity producers, i.e., power generators as
well as grid companies, are primarily concerned with their own
carbon emission quantities and footprints (Liu et al., 2014). For
electricity users and consumers, they are concerned with the
amount of their own carbon emissions. Therefore, analyzing only
the first two will inevitably lead to multiple calculations of carbon
emissions, lacking consideration of the co-responsibility
component. To better refine this issue, the shared
responsibility algorithm appropriately decomposes the overall
carbon emissions of electricity producers and consumers as
described below:

Cp � (1 − αp)Ce + αpCloss + (1 − βC)αpCL + αpβCCL (2)
where αP is the share of the producer responsibility, and the value
of αP is between 0 and 1. This means that it is not the party
producing the electricity that is responsible for all the carbon
emissions; only the αP portion is accounted for, and βC
represents the share of the consumer responsibility, 0 < βC < 1.
Similarly, the party that uses the electricity load is not only
responsible for its own carbon emissions from electricity use
but also shares a portion βC of the carbon emissions used for
electricity production.

As the grid company, the first priority is to focus on energy
and flow through tidal analysis, as well as functional energy power
losses along with an obligation for carbon emissions associated
with carbon flows. The power losses can be described as described
below:

Ploss � ∑
i,j∈NL

gij[V2
i + V2

j − 2ViVjcosθij] (3)

where Vi andVj denote the size between the voltage of the ith and
jth nodes, and gij represents the electrical conductivity of line
i − j; θijmeans the variation of voltage phasor angle (node i and j),
and NL shows the branch set.

Therefore, the power network companies also have a
corresponding carbon emission duty Cpgc, which could be
calculated according to (2):

Cpgc � αpCloss + (1 − βC)αpCL (4)
where Closs needs to be calculated based on the proportionate
allocation rule to obtain, and the proportional sharing principle
can be shown as follows:

Cds � ∑
i,j∈NL

∑
w∈W

⎛⎝α(−1)
jw ΔPij

P′
j

⎞⎠Pwδw (5)

where ajw (−1) is convenient to depict the power coefficient of
energy maps between the jth node and wth generator, Pij and Pj’
indicate the functional energy power losses of line i − j and the
gross power flow of the jth node in the equivalent lossless grid
separately.

2.2 Optimal carbon–energy combined flow
model
There are several factors affecting the combined flow of
carbon–energy, the strongest of which are functional energy
power dispatch and redundant power scheduling (Zhang et al.,
2015). Among them, functional energy power dispatch is decided
by electricity generators, network utilities, and power clients;
redundant power scheduling is mainly manipulated by power
network companies. Hence, the OCECFmodel is described by the
reactive power dispatch after the functional energy power
dispatch, while minimizing their own carbon liabilities,
functional energy power losses, and voltage deviations, where
the aim feature could be expressed by a nonlinear weighting
approach, as shown below:

minf(x) � μ1Ploss + μ2Cpgc + μ3Vd (6)
subject to

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

PGi − PDi − Vi ∑
j∈Ni

Vj(gij cos θij + bij sin θij) � 0

QGi − QDi − Vi ∑
j∈Ni

Vj(gij cos θij − bij sin θij) � 0

Qmin
Gi ≤QGi ≤Qmax

Gi , i ∈ NG

Vmin
Ci ≤Vi ≤Vmax

Ci , i ∈ Ni

Qmin
Ci ≤QCi ≤Qmax

Ci , i ∈ NC

Tmin
k ≤Tk ≤Tmax

k , k ∈ NT

|Sl|≤ Smax
l , l ∈ NL

(7)

where x means the vector of the subsystem, which can substitute
the voltage of the generator terminals, individual tapping location
of the on-load tap-changer (OLTC) transformer, total number of
capacitors and inductors connected, etc.; Vd means the voltage
deviation index; μ1, μ2, and μ3 are corresponding weight factor to
various targets, respectively, and each variable takes a value
between 0 and 1, and the sum of the values of the three
variables is 1.

The first two equations in Eq. (7) are the tidal balance codes,
which can be used to constrain the active and reactive tidal
balances as equations for the decentralized OCECF, in which PGi
and QGi are the functional energy power and redundant power
delivery of the ith node. The third and fourth equations in Eq. (7)
are derived from the generator constraint equation, which means
that the redundant power delivery and the generating busbar
voltage are subject to their upper and lower limits. The fifth
equation is the shunt capacitor constraint, since the reactive
power compensation of controlled shunt capacitors can only
run within their minimum and maximum limits, so, QCi
describes the redundant power compensation of the ith node.
Due to the tap position of the transformers being restricted by
their minimum and maximum limits, so with the sixth formula in
Eq. (7), Tk is the transformer tap ratio. So as to acquire secure
functioning of all subsystems, the size of the voltage of the burden
bus is limited by its lower limit, and the apparent power flow of
each transmission line is limited by its upper limit, so with the last
equation constraint in Eq. (7), and Sl stands for the power
apparent on transmission line l. In the formula above, Ni is
the node group, NG is the unit group, NC means the group of
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compensation facilities, NT means the tapped group of
transformers, and NL means the group of the branches.

Besides, the deviation index of voltage can be described as
below:

Vd � ∑
i∈Ni

∣∣∣∣∣∣∣∣2Vi − Vmax
i − Vmin

i

Vmax
i − Vmin

i

∣∣∣∣∣∣∣∣ (8)

2.3 Characteristics of aluminum plant load
As the second richest ingredient in the Earth’s capsule behind
oxygen and silicon, aluminum is being used more and more
widely in various fields with the rapid progress of modern
chemical industry, agriculture, and science and technology
(Cook et al., 2007). Since its special properties, aluminum
has played a very crucial role in the flourishing of important
industries, such as aviation, construction, and automobiles.
So, it is essential to pay attention to the aluminum plant
load.

The power supply system of an aluminum plant consists of
four main components: transformer, motor, line, and load, and
the load of an aluminum plant consists of two components: the
power load as well as the electrolytic aluminum. The auxiliary
facilities for aluminum electrolysis are mainly power loads. The
power load is started before the aluminum electrolysis load is
started, and the power load can only be stopped after the
aluminum electrolysis load is withdrawn.

During normal operation, the aluminum electrolytic load
cannot be quickly batched out in a short period of time.
During the scheduled maintenance period of the electrolyzer,
it is necessary to open and close the electrolyzer. In this case, it is
inevitable to gradually reduce the current until the operation of
short junctions begins and then to raise the current to normal
values. In the planned maintenance of the electrolyzer, the time
for opening and stopping it to operate its short-circuit position
is not very long, but it is still necessary to ensure the continuity
of a power plant-generating unit start-up as much as possible.
There are some distinctive features of aluminum plant loads,
such as large loads and high reactive voltage regulation
requirements, so it is more important to take them into
account in the OCECF model. Loads like the aluminum

plant absorb reactive power from the grid and reduce the
power factor. The low power factor increases not only the
power loss in the power supply and distribution system but
also the voltage loss and reduces the utilization rate of the power
supply equipment. From Eqs. (9) and (10), it can be seen that
providing reactive power compensation and reducing reactive
power is an effective action to improve the power factor.
Therefore, reactive power compensation devices must be
used in a targeted manner to improve the power factor for
such loads. The vector diagram in Figure 2 clearly demonstrates
the need to provide reactive power compensation and improve
the power factor.

cosφ � P

S
� P�������

P2 + Q2
√ (9)

cosφ � P

S
� P�������������

P2 + (Q − Qp)2
√ (10)

3 COOT OPTIMIZATION ALGORITHMS FOR
OPTIMAL CARBON–ENERGY COMBINED
FLOW
3.1 Optimization principle
Coots are tiny fisher birds with numerous behaviors and
maneuvers on the surface, as shown in Figure 3. As with the
multiple leader PSO, it does not have a velocity argument. As a
new evolutionary learning approach (Naruei and Keynia, 2021),
the Coot algorithm has emerged from a study on them. The coots
have diverse communal actions, and our aim in this document is
to emulate group motion, i.e., both routine and nonroutine
locomotion on the aquatic plane. The entire syndicate is
guided toward the goal by the coot in front of the group and
instructions from the coot ahead, which we define as the leader of
the group. It has been found that coots have four separate
motions on the aquatic surface, including random movement
to this side and that side, chain movement, adjusting the position
based on the group leaders, and leading the group by the leaders
toward the optimal area (leader movement) (Memarzadeh and
Keynia, 2021).

FIGURE 1 | Joint carbon–energy flows in electricity networks.
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The course of the procedure of the algorithm could be
described in detail as below:

1) Initialization: A random population solution set is generated
in the settlement field to form the primed population. The
position of the ith Coot can be confirmed by Cootpos(i), and d
is the set of decision variables. The minimum and maximum
bounds of the specification variations are scheduled for ub and
lb, and the equation can be shown as follows:

Cootpos(i) � rand(1, d)p(ub − lb) + lb (11)
After the initial overall is generated, the target problem is

computed by comparing the objective function for each coot’s

individual position. Meanwhile, NL (number of leaders) and
NCOOT (number of coots) are picked at random. The core of
the algorithm is to look for the perfect coot or leader as holistically
optimal at each step.

2) Position update: During the iterations, the coot’s location on
the water is updated according to the four movements already
mentioned above.

3.2 Four types of movement for coots
1) Random movement to this side and that side: In this motion,

first, considering a stochastic location in the field of search and
shift the coot to this stochastic location, namedQ, is generated
using formula (9). Besides, since the coot movement
exploring many different sections of the field of the search,
to prevent the result from getting stuck in a locally optimal
position, formula (12) is used to update the position of
the coot.

Cootpos(i) � Cootpos(i) + ApR2p(Q − Cootpos(i)) (12)
where R2 denotes a random number between 0 and 1, and A can
be shown according to formula (13).

A � 1 − iterp( 1
MaxIter

) (13)

in which iter is the current iteration, and MaxIter denotes the
maximum iteration.

2) Chain movement: There are two types of chain motion: one
uses the even orientation of the two coots to achieve group
motion, and another way to achieve chain motion is to first
figure out the range of distance vector from two movers and
shift it to another mover with a distance vector of about half.
We used the first method, and the formula can be shown as
follows:

FIGURE 2 | Vector diagram after reactive power compensation.

TABLE 1 | The parameters used in Coot.

Parameter Online optimization

P 0.5
NL 5
NCOOT 45
MaxIter 50

FIGURE 3 | A chain of coots moving on the surface of the water.
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Cootpos(i) � 0.5p(Cootpos(i − 1) + Cootpos(i)) (14)
in which Cootpos(i − 1) denotes the position of the second coot.

3) Adjusting the position based on the group leaders: Normally,
the group is led by some coots’ group in front of it, and the rest
of the coot must adjust their position according to the group
leader and move closer to them, but a problem that may arise
is that each coot adjusts its position according to the leader in
the group. Therefore, it can be done by considering the
average position of the leaders, and the coot updates its
position according to this average position. Since
considering the average position has the potential to lead
to premature convergence, to achieve this movement, we use a
mechanism to select leaders according to Eq. 15.

K � 1 + (i MODNL) (15)
where i denotes the reference value of the current coot, and K
denotes the reference value of the leaders.

Cootpos(i) � Leaderpos(k)
+ 2pR1pCOS(2Rπ)p(LeadersPos(k)
− Cootpos(i)) (16)

In Eq. 16, Cootpos(i) shows the current position of coot;
LeaderPos(k) denotes the selected leaders’ position, R1 means a
random number between 0 and 1, and R denotes a random
number between −1 and 1.

FIGURE 4 | Coot flowchart of distributed optimal carbon–energy
combined flow (OCECF).

FIGURE 5 | Topology of IEEE 57-bus system.

TABLE 2 | CO2 emission intensity of generators in IEEE 57-bus system.

Node
of the generators

δw (kg/kWh)

1 1.01
2 0.95
3 1.5
6 0.7
8 0
9 0
12 0
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4) Leading the group by the leaders toward the optimal area
(leader movement): To direct the team to the target area, the
optimal area, the leader needs to continually update their
position on the target during the iterative process. The
leader’s position can be better updated using Eq. (9). This
formula is used to find a better position around the best
position point of the current iteration around this current
best point. There are some special cases where the leader
must be made to move away from the current best position in
order for the population to find a better position. Hence, the
formula below provides a good way to approach the optimal
position.

Leadrpos(i) �{BpR3pcos(2Rπ)p(gBest−LeaderPos(i))+gBest R4<0.5
BpR3pcos(2Rπ)p(gBest−LeaderPos(i))−gBest R4≥0.5

(17)
where gBest signs the optimal location of the ever iteration,
random numbers R3 and R4 take values between 0 and 1,
random number R is in the interval [−1,1], and B should be
found based on formula (18).

B � 2 − Lp( 1
maxiter

) (18)

A larger random motion can be generated by B*R3 in Eq. 17,
preventing the algorithm from falling into a locally optimal

FIGURE 6 | Comparison of algorithm simulation at a typical time node.

FIGURE 7 | Comparison between coot and glowworm swarm
optimization (GSO) for OCECF at 0:00.

FIGURE 8 | Comparison between coot and GSO for OCECF at 5:00.

FIGURE 9 | Comparison between coot and GSO for OCECF at 10:00.
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solution set, while cos (2Rπ) is searched with different radii for a
better location within this range around the region of best search. The
question that tends to arise is how and when these various motions
are shown. To guarantee the randomness of the optimization
algorithm, all these movements we consider are random. This
means that while the algorithm is being executed, the coots can
move at random, in a chaining manner or toward the leader team.

3.3 Design of Coot for optimal
carbon–energy combined flow
3.3.1 Fitness of coots and leaders
To obtain the desired result, minimizing the objective function 6)
is the biggest goal. At the same time, each of the constraints in Eq.

(7) needs to be satisfied. Therefore, a penalty function approach is
used to design this fitness function as follows:

Fit(xj) � μ1P
j
loss + μ2C

j
pgc + μ3V

j
d + ηqj, j ∈ Je (19)

in which η denotes the punitive element, and q shows the amount
of constraint breached inequalities.

3.3.2 Parameter setting
For the purpose of performing as desired for OCECF in Coot,
several significant parameters, such as P, NL, NCOOT, and
MaxIter, need to be carefully selected by analysis and
calculation. A unified design was employed, and several
exercises were conducted to ascertain the parameters, the
optimum of which is shown in Table 1.

3.3.3 Execution procedure
Figure 4 outlines Coot’s overall execution procedure for
OCECF.

4 CASE STUDIES

A common power system (IEEE 57 bus system in Figure 5) is
selected as the benchmark system and evaluated by dynamic
testing in this paper. For performance comparison, the
classical heuristic optimization technique glowworm swarm
optimization (GSO) algorithm was introduced in the study to
perform experiments in OCECF. The simulations were carried
out in Matlab R2019a, operated in a laptop with an Intel(R)
Core TM i7 CPU with 3.8 GHz and 16 GB of RAM. According
to the systematic analysis and research (Zhang et al., 2017),
the shares of liability αp for producers and βc for consumers
are each defined as 50% and 100%, respectively, to obtain
relatively appropriate results. Overall, setting the same
preference for each objective facilitates a better analysis, so
it is a reasonable choice for the weighting coefficients (μ1, μ2,
and μ3) to be set to 1/3 on average. Assuming that the model
OCECF is implemented in a 15-min cycle (Zhang et al., 2015),
the mission count for 1 day is 96, and five of these typical
nodes are selected for comparative analysis in the article.

FIGURE 10 | Comparison between coot and GSO for OCECF at 15:00.

FIGURE 11 | Comparison between coot and GSO for OCECF at 20:00.

TABLE 3 | Result comparison of online optimization under different algorithms at
different times.

Time period Algorithm Vd (%) Closs (ton/h) Ploss (MW) f

0:00 GSO 13.589 0.721 9.065 7.770
Coot 13.142 0.713 9.043 7.694

5:00 GSO 13.341 0.864 10.131 8.112
Coot 13.264 0.863 10.129 8.058

10:00 GSO 13.508 0.764 9.591 7.954
Coot 13.097 0.767 9.603 7.823

15:00 GSO 15.890 1.362 12.394 9.882
Coot 14.437 1.353 12.361 9.384

20:00 GSO 17.720 2.603 17.926 12.720
Coot 17.364 2.585 17.857 12.631
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4.1 System model
The IEEE 57-bus system includes seven generators, and the
carbon intensity δw for every single power producer is
presented in Table 2. In addition, a detailed layout of the
topology of the IEEE 57-bus system is supplied in Figure 7.
The main parameters of regulation of the units are given in
Table 1. Both the stock size of the algorithm and the maximal
amount of the iterative strides were given to 50.

4.2 Experiments and comparison
To help weigh the choice of algorithms in engineering applications,
GSO, an algorithmwith fast convergence and high-quality obtained
solution sets, is introduced to test and compare the optimized
performance online of Coot with the Coot algorithm proposed on
the OCECFmodel. Compared with GSO, it is clearly described that
Coot can acquire the most optimal and efficient approach toward
the task due to its efficient exploitation. It is evident from the
simulation plots that the GSO algorithm tends to fall into local
optima, converges more slowly, and obtains worse fitness than
Coot. This fully verifies the excellent global searching ability of Coot.

To evaluate the capability at the Coot operator, the online
optimizing outputs of five conditions are compared in this
example, as shown in Figures 6–11, where precision is used to
approximate the simulation time for the actual regulated export
and the curve of the regulating instructions. It is possible to notice
that COOT has a significant empirical advantage compared with
GSO. Table 3 shows the comparison of online optimization
results under two different algorithms, while the optimal
values of all the controllable variables are provided in Table 4.
It can be found that COOT can acquire the smaller fitness
function than GSO, thus, the voltage deviation, CO2 exhaust,
and electric consumption can be dramatically decreased.

5 CONCLUSION

In a nutshell, this study comprises the contribution of the
following three aspects.

1) From a practical point of view, the constructed OCECF can
take the participation of aluminum plants into account; thus,
the CO2 emission about the whole electricity supply system
can be significantly reduced, especially on the part of the
power grid.

2) A fast search algorithm for a solution set obtained by
imitating the water movement of birds is applied to
the model. Coot algorithm can implement a wide
exploration via the random movement and a deep
exploitation via the chain movement with the group
leaders. Hence, a high-quality optimal solution can be
acquired for OCECF.

3) It is confirmed from experiments that the Coot algorithm has
more significant advantages in improving the convergence
speed by an order of magnitude and guaranteeing the quality
of the optimal solution compared with GSO.
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TABLE 4 | Values of the optimal carbon–energy combined flow (OEOCF) model variables under two different algorithms in the IEEE 57-bus system.

Type Variable 0:00 5:00 10:00 15:00 20:00

GSO Coot GSO Coot GSO Coot GSO Coot GSO Coot

Reactive power compensation (Mvar) QC18 2 3 3 3 2 3 3 5 4 4
QC25 1 1 3 3 2 1 4 5 5 5
QC53 3 5 4 5 1 5 4 3 4 5

Transformer taps k4-18 0.98 1.02 1.02 1.02 1.02 0.98 1.02 1.02 1.02 1.04
k21-20 1.02 1.02 0.98 1.00 1.00 1.00 0.98 1.00 0.98 0.98
k34-32 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.96
k39-57 0.98 0.96 0.96 0.96 0.96 0.96 0.96 0.96 0.98 0.96
k7-29 1.00 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98 0.98
k9-55 0.96 0.98 1.00 0.98 0.98 0.98 0.96 0.98 0.98 0.98
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