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Anomalous event detection and identification are important to support situational
awareness and security analysis in power grids. Particularly, the distribution network is
with complicated topology, variable load behaviors, and integration of nonlinear distributed
generators (DGs), which is difficult to implement complete modeling mathematically. With
the deployment of advanced measurement devices such as μPMUs in distribution
networks, massive data containing rich system status information becomes available.
In this paper, a framework for event detection, localization, and classification is studied to
extract event features from measurements in distribution networks. Specifically, a method
based on an invertible neural network (INN) is employed tomodel the complex distributions
of normal-state measurements offline in a flexible way. It then establishes explicit
likelihoods as the indicator to enable real-time event detection. Furthermore, a
Jacobian-based method is utilized for spatial localization. Finally, as the events in
practical power grids are mostly recorded unlabeled, the pseudo label (PL) based
approach, superior in the separating ability for events under a low labeling rate, and is
used to implement event classification. Several typical types of events simulated in the IEEE
34-bus system and real-world cases in a low-voltage system verify the effectiveness and
superiorities of the framework.

Keywords: distribution network, data-driven, event detection and localization, event classification, invertible neural
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1 INTRODUCTION

In power grids, anomalous events refer to incidents that violate well-defined normal operating conditions.
The detection and identification of themare important to support situational awareness and security analysis
in power grids. In distribution networks, anomalous events are mainly composed of short-circuit faults
and tripping events, which can cause the voltages and currents to exceed limits, be out of allowed ranges,
and generate asymmetries. Lack of monitoring to these events could fail to make necessary and immediate
responses, decreasing the safety, reliability, and quality of power supply, and even leading to more serious
contingencies (Samuelsson et al., 2006). Therefore, accurately detecting events, identifying their locations,
and determining their classifications are essential, so that the system status can be comprehensively assessed
and proper actions can be taken before any sporadic event escalates to worse effects.

Edited by:
Bo Yang,

Kunming University of Science and
Technology, China

Reviewed by:
Fang Shi,

Shandong University, China
Yunfei Ma,

Zhejiang University, China

*Correspondence:
Xing He

hexing_hx@126.com

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 20 January 2022
Accepted: 07 February 2022
Published: 17 March 2022

Citation:
Yang F, Ling Z, Zhang Y, He X, Ai Q and

Qiu RC (2022) Event Detection and
Identification in Distribution Networks
Based on Invertible Neural Networks

and Pseudo Labels.
Front. Energy Res. 10:858665.

doi: 10.3389/fenrg.2022.858665

Frontiers in Energy Research | www.frontiersin.org March 2022 | Volume 10 | Article 8586651

ORIGINAL RESEARCH
published: 17 March 2022

doi: 10.3389/fenrg.2022.858665

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.858665&domain=pdf&date_stamp=2022-03-17
https://www.frontiersin.org/articles/10.3389/fenrg.2022.858665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.858665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.858665/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.858665/full
http://creativecommons.org/licenses/by/4.0/
mailto:hexing_hx@126.com
https://doi.org/10.3389/fenrg.2022.858665
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.858665


Traditional model-based approaches for event recognition are
usually aimed at a certain event signal or topology. Event
characteristics are analyzed based on different levels of
assumptions and simplifications (Wang et al., 2018) (Wei
et al., 2021). However, these approaches are difficult to model
each type of event completely and accurately, and are not
adaptable to power systems’ complex, and changeable
operation status (Song et al., 2015).

To cope with the complexity and uncertainty of system
operations, constructing smart distribution networks has been
accelerated, which aims to improve real-time monitoring,
situational awareness, and rapid control. With the background,
the large-scale deployment of measuring devices, such as μPMUs,
has been promoted, and allowing for the real-time transmission
of massive data in distribution networks. Data-driven approaches
of event analysis utilize the rich information contained in signals,
relying on no assumptions or simplifications of the system
modeling. They can generally provide better robustness to the
variations of systems’ topologies and operations, thus having an
extensive application prospect.

In literature, various data-driven approaches have been
applied in the area of event analysis. The principal component
analysis (PCA) is used in (Xie et al., 2014) to reduce the
dimension during the feature extraction for event detection. In
(Ahmed et al., 2021), event detection, localization, and
classification are implemented by utilizing the deep
autoencoder (DAE). The features of cascading events are
analyzed and trained by a shallow convolutional neural
network (CNN) in (Li and Wang, 2019). In (Wang et al.,
2019), the measurements at the normal state are modeled by a
one-class support vector machine (OCSVM) hence realizing the
event detection. An enhanced long short-term memory (LSTM)
network is used in (Li et al., 2021) to implement the fast event
detection of a system containing renewable energy. In (Liu et al.,
2019), an approach is proposed based on the local outlier factor
(LOF) to detect and locate events using reduced PMU data. In
(He et al., 2019), invisible power usage events are detected by
high-dimensional statistics in random matrix theory (RMT). In
(Pandey et al., 2020), density-based spatial clustering is applied to
classify events into short circuit faults and those caused by a
significant imbalance of active and reactive powers, and by
identifying the types of disturbed measurements.

However, how to appropriately use the online measurements
and realize the event detection, localization, and classification in a
more effective way deserves further consideration. For the
existing data-driven approaches, some limitations exist:

1) Feature selection is not paid attention to, especially for the
event classification. Various measurements exhibit different
characteristics, but they are usually utilized without more
considerations of applicability. For example, voltage
magnitudes are utilized in (Tong et al., 2021) or together
with current magnitudes in (Wilson et al., 2020), but their
changes are indefinite and can confuse events on some
occasions.

2) Parameters or thresholds are required to be preset, and they
are strongly depended on by some methods (Xie et al., 2014;

Wang et al., 2019; Ahmed et al., 2021). The optimal settings
are hard to adapt to all datasets.

3) Unlike transmission networks, statistical properties of the
fluctuated measurements in distribution networks cannot
be approximated as a Gaussian distribution or other typical
distributions. More nonlinearities and uncertainties are
exhibited, so the theoretical basis of many methods is invalid.

4) Measurements of practical power systems exhibit significant
imbalance, which means the measurements obtained at
normal states are significantly larger than those obtained at
anomalous states. Besides, only a few events are identified and
labeled by operators (about 2%) (Wilson et al., 2020). It
hinders the use of supervised approaches (Li and Wang,
2019; Yadav et al., 2019; Li et al., 2021), while
unsupervised approaches (Pandey et al., 2020; Wilson
et al., 2020; Ahmed et al., 2021) can only make
identifications roughly.

To cope with the above problems, a semi-supervised
framework is studied and employed for event detection,
localization, and classification in distribution networks by
taking advantage of invertible neural networks (INNs) and
pseudo labels (PLs). Offline training is conducted using the
INN in (Kingma and Dhariwal, 2018) to learn the distribution
of measurements obtained at normal states. The explicit
likelihoods can be calculated for event detection, and an
input-output Jacobian is utilized for event localization. Then a
CNN-and-PL-based approach is explored for event classification.
Contributions of this paper are summarized as follows.

1) Based on INNs, the framework can effectively model the
complex distributions of measurements obtained at normal
states, so as to detect events reliably, and sensitively in
distribution networks.

2) The event classification is based on accurate event
localization, so the exact signal features around the event
location can be utilized, supporting the more precise, and
reliable event classification. Further, the combination of
voltages/currents and differential currents/voltages is
utilized and verified to possess an enhanced ability to
distinguish between several principal events in DG-
integrated distribution networks.

3) The event analysis, especially the event classification, under
the low labeling rate of measurements is figured out by the
CNN-and-PL-based approach. The significant advantages
over other approaches in solving this problem have been
verified in distribution networks.

The rest of this paper is organized as follows. In Section 2, the
characteristics of various kinds of measurements are illustrated
when different events occur. Requirements for event analysis are
also discussed. In Section 3, a semi-supervised framework is
studied for event detection, localization, and classification in
distribution networks with the integration of DGs. Case
studies are conducted in Section 4, where both simulated and
real-world data are utilized to make the verifications. Finally,
conclusions are given in Section 5.
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2 PROBLEM FORMULATION

Different events will make voltages, currents, or other
measurements exhibit different characteristics. Selecting various
measurements or their combinations to carry out event analysis
will make variable influences on the sensibility and reliability. In
this section, considering the characteristics of distribution
networks, the representative features of different kinds of
measurements are analyzed, and a specific combination is
selected for event classification. In addition, the limitations of
some typical methods to learn and model the behaviors of real-
world measurements are illustrated, and requirements of methods
for event detection and classification are discussed.

2.1 Selection of Measurements
Three-phase voltages and currents are usually used for event
detection in data-driven approaches, as they effectively reflect
the operating status and can be directly obtained by online
monitoring devices. However, limitations exist when
inappropriately using these measurements for event classification.

Some work utilizes voltage magnitudes for event
classification (Tong et al., 2021), and some combine the
voltages with currents (Wilson et al., 2020). In this section,
the characteristics of these measurements are analyzed when
four typical events happen in the IEEE 34-bus system, including
three-line-to-ground fault (TLG), line-to-line-to-ground fault
(LLG), heavy load switching-in event (HLS), and line trip (LT).
The topology is shown in Figure 1 with positions of assumed
events marked. Three DGs are integrated into the system, i.e., a
photovoltaic (PV) at Bus 814, two doubly-fed induction
generators (DFIGs) at Bus 856 and Bus 890. For LLG,
disturbed phases are set as phases A and B, and the LT is
assumed as a three-phase event. A heavy load of 0.35 MW is
switched in at Bus 844 for the HLS. The outputs of the PV at Bus
814, the DFIG at Bus 890, and the DFIG at Bus 856 are 0.25,
0.776, and 0.703 MW, respectively. In this situation, the
penetration rate of DGs is 48.78%.

Changes of measurements are listed in Table 1. For phase A,
magnitudes of voltages at both ends (Ua1 and Ua2), currents (Ia),
differential currents (ΔIa) on the disturbed branch, and
differential voltages (ΔUa) are listed. Herein, ΔIa is calculated
by the sum of current phases at both ends, and ΔUa is the voltage

difference between the voltage phases at the two ends. They
reflect the leakage current and the voltage drop on the branch,
respectively. Curves of T − Ua1 − Ia, T − Ua1 − ΔIa, and T − Ua1

− ΔUa are plotted. It can be observed that only voltage and
current magnitudes cannot identify some certain events like
HLS and LT. This is because the integration of DGs and the
branches existing between two measurement units will make
the power flow and the caused voltage drop uncertain on
various conditions, including various capacities and
positions of DGs, line parameters, load levels, imbalance
degrees, and disturbance intensities of events, etc. To this
end, only voltage or current magnitudes cannot perform
well in event classification. According to the theoretical
analysis and comprehensive simulations, a combination of
three-phase voltages, currents, differential currents, and
differential voltages is demonstrated to be capable of
effectively distinguishing between TLG, LLG, HLS, and LT.
The characteristics of these measurements under the four
events are summarized in Table 1. Therefore, in this paper,
such measurement combination will serve as the selected
features to implement the event classification.

2.2 Requirements for Event Detection and
Classification
2.2.1 Event Detection
Figure 2 shows a typical topology of a medium and low voltage
distribution network, where online monitoring data is collected
from measurement units distributed in the network. Figure 3A
shows three-phase voltage magnitudes recorded at load-side
transformers in region A. The sampling interval between every
two measurements is 15 min. Since voltage magnitudes are
closely related to load levels, curves in Figure 3A exhibit a
typical daily pattern, i.e., low voltage in the day and early
night for the heavy load, whereas high voltage at midnight for
the light load. In addition, voltage measurements show different
details between days: fluctuation amplitudes, shapes, and presence
of spikes, etc., which are caused by load switching and changes of
operating states. The complex, nonlinear, and dynamic
characteristics make the modeling of real-world measurements
challenging. As a result, methods extracting simple features for
event detection malfunction in some situations.

Here, a DAE-based approach (Ahmed et al., 2021) and a PCA-
based approach (Xie et al., 2014) are utilized to detect the faults
marked in Figure 3A. Figure 3B shows their detection indicators,
i.e., Z-score and mean absolute error (MAE). In Figure 3B,
Z-score identifies the fault on April 5th with a significant
voltage drop but misses the fault on April 4th. This is because
the simple structure of DAE cannot model complex distributions
of real-world measurements effectively, and the indicator is not
sensitive enough. Besides, the detection threshold (a constant,
i.e., three) set in (Ahmed et al., 2021) is questionable because a
fixed threshold is hard to be appropriate for all situations. In
Figure 3B, MAE is significantly affected by a pre-defined
parameter, i.e., cumulative variance percentage (CVP). When
the CVP is selected as 98.5%, 99%, and 99.5%, PCA cannot
accurately detect the two faults in Figure 3A. PCA is a linear

FIGURE 1 | Topology of the IEEE 34-bus system with the integration
of DGs.
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dimension reduction method and cannot effectively deal with
nonlinear measurements. Also, a proper CVP is hard to find in
advance for all datasets. To this end, two aspects require attention
for event detection algorithms in distribution networks: 1) the
ability to model complex and nonlinear real-world measurements;
2) the robustness to pre-defined parameters.

2.2.2 Event Classification
Supervised approaches for event classification are dependent on
large amounts of labeled data for training, such as (Li et al.,
2021) and (Yadav et al., 2019). However, only about 2% of the
total number of recorded events are labeled by the operators in a
hand-crafted way (Wilson et al., 2020), which hinders their
practical applications. Unsupervised approaches require no

prior labeling of samples, but can only classify events
roughly. Examples include (Wilson et al., 2020) and (Ahmed
et al., 2021), which can only distinguish the number of disturbed
phases but cannot further determine the specific type of events.
Besides, active and reactive events are identified in (Ahmed
et al., 2021) and (Pandey et al., 2020) simply by the category of
disturbed measurements. In contrast, semi-supervised
approaches simultaneously utilize labeled and unlabeled data,
and thus they can realize refined classification with only a
limited number of labeled samples. Therefore, semi-
supervised approaches are preferable for event classification
in practical applications.

3 EVENT DETECTION, LOCALIZATION,
AND CLASSIFICATION BASED ON
INVERTIBLE NEURAL NETWORKS AND
PSEUDO LABELS

In this section, a framework is introduced for event detection,
localization, and classification based on INNs and PLs. Event
detection and localization are realized by INNs, and a PL-based is
utilized to classify the events with measurements obtained at
disturbed locations.

3.1 Likelihood-Based Event Detection
Likelihoods measure the probability that a sample belongs to a
certain distribution. If a sample follows the distribution, the

TABLE 1 | Characteristics of measurements in different events.

Events TLG (ABCG) LLG (ABG) HLS LT

Signals1 R = 10Ω, R = 50Ω R = 10Ω, R = 50Ω

Ua1 ↓(Inception) ↑(Clearing)2 ↓ ↑ Indefinite Indefinite
Ua2 ↓ ↑ ↓ ↑ Indefinite Indefinite
Ia ↑ ↓ ↑ ↓ Indefinite Indefinite
Ub1 ↓ ↑ ↓ ↑ Indefinite Indefinite
Ub2 ↓ ↑ ↓ ↑ Indefinite Indefinite
Ib ↑ ↓ ↑ ↓ Indefinite Indefinite
Uc1 ↓ ↑ ↑ ↓ Indefinite Indefinite
Uc2 ↓ ↑ ↑ ↓ Indefinite Indefinite
Ic ↑ ↓ Indefinite2 Indefinite Indefinite
ΔIa ↑ ↓ ↑ ↓ ↑ Indefinite
ΔIb ↑ ↓ ↑ ↓ ↑ Indefinite
ΔIc ↑ ↓ ≈ 0 ↑ Indefinite
ΔUa ↑ ↓ ↑ ↓ ≈ 0 ↑
ΔUb ↑ ↓ ↑ ↓ ≈ 0 ↑
ΔUc ↑ ↓ ≈ 0 ≈ 0 ↑
Example

1Ua1 and Ua2 denote voltage magnitudes of phase A at both ends; Ia and ΔIa, denote currents and differential currents of phase A on the disturbed branch; ΔUa, denotes differencial
voltages and is calculated by Ua1 − Ua2.
2Symbols of ↓ and ↑ denote the decrease and increase of signals after the inception and clearing of events. “Indefinite” means the change of signal is uncertain.

FIGURE 2 | Topology of a medium and low voltage distribution network.
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likelihood is high, and vice versa (Myung, 2003). In power grids,
normal measurements are abundant whereas there is little
anomalous data. A straightforward idea for event detection is
that distributions of normal measurements are first learned and
parameterized. At monitoring time, likelihoods of unseen
measurements are calculated under the learned distribution.
Low likelihoods indicate the occurrence of events.

Assume that Z∈RD is the random variable representing
distributions of normal measurements, i. e, the target
distribution we need to model. Let Y∈RD be a random variable
with a known and tractable probability density function (PDF)
pY(y) and Z = f(Y), where f is an invertible function. Using the
change of variables formula (Dinh et al., 2014), one can compute
the PDF of the random variable Z by

pZ z( ) � pY g z( )( )|det zg
zz
|, (1)

where g is the inverse of f, zg
zz is the Jacobian of g, det means

determinant calculation, and | · |means absolute value operation.
In Eq.1, the function f “pushes forward” the base density pY(y) to
a more complex density pZ(z).

Further, assume that the base density pY(y) and the function f
are parameterized by vectors ϕ and θ. Given a set of normal
measurements (denoted as D � zi{ }Mi�1), we can perform a
likelihood-based estimation of parameters Θ = (θ, ϕ) by Eq.1.
Note that in this case, only normal measurements D � zi{ }Mi�1 can
be observed, whereas parameters Θ = (θ, ϕ) need to be estimated.
The log-likelihood is formulated as

logp D |Θ( ) � ∑M
i�1

logpZ zi |Θ( )

� ∑M
i�1

logpY g zi |θ( ) |ϕ( )+log det zg zi θ|( )
zzi

∣∣∣∣∣∣∣
∣∣∣∣∣∣∣,

(2)

where the first term is the log-likelihood of normal measurements
under the base density, and the second term (frequently called the
log-determinant or volume correction) accounts for the change of
volume induced by the transformation g.

The main procedure for event detection includes two steps.
Firstly in the training phase, parameters of the function f (i.e., θ)
and the base density pY(y) (i.e., ϕ) are adjusted to maximize the
log-likelihood logp(D |Θ), so that distributions of normal
measurements can be well modeled. Secondly for online
applications, the learned model assigns different likelihoods to
unseen measurements by Eq.2, and low likelihoods indicate the
occurrence of events. It is noted that to obtain explicit log-
likelihoods logp(D |Θ) in Eq.2, the existence of g is
necessary. That is, the transformation function f needs to be
invertible. INN is an appropriate tool that allows for this
requirement and thus is natural for likelihood-based event
detection.

3.2 Invertible Neural Networks
INNs canmodel complex distributions froma simple base distribution
via a set of invertible and differentiable transformations. Hence, they
process remarkable representation abilities for complex, nonlinear
measurements obtained in the real world. For INNs, efficient

FIGURE 3 | (A) Real-world measurements of three-phase voltage magnitudes obtained at load-side transformers; (B) detection results of DAE and PCA under
different CVPs.
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calculation of log-determinant is particularly important because
they are repeatedly computed in Eq.2 during training. In this
paper, we utilize a computationally efficient model named Glow
despite various architectures of INNs (Kingma and Dhariwal,
2018). Glow introduces Flow (Kingma and Dhariwal, 2018) to
the multi-scale architecture proposed in (Dinh et al., 2016). In
Figure 4, inputs (i.e., normal measurements Z) are first squeezed
by the squeeze layer to permutate the dimension. Subsequently
there are K Flows, and each Flow contains three components:

• Actnorm layer: Actnorm is short for activation
normalization. It performs an affine transformation of
inputs using a scale and bias parameter, such that the
outputs per channel have zero mean and unit variance.

• Invertible 1 × 1 convolution: Permutation of dimensions is
necessary for flows to ensure that dimensions can affect each
other after sufficient steps of the Flow. A 1 × 1 convolution with
an equal number of input and output channels is equivalent
to a permutation operation of dimensions and can be
computationally efficient (Kingma and Dhariwal, 2018). The
log-determinant of an invertible 1 × 1 convolution of an
h × w × c tensor h with c × c weight matrix W is

log det
dconv2D h;W( )

dh
( )

∣∣∣∣∣∣∣∣
∣∣∣∣∣∣∣∣ � h · w · log|det W( )|. (3)

The cost of computing det(W) is O(c3), but can be reduced to
O(c) by parameterizing W directly in its LU decomposition.

• Affine coupling layer: Glow follows the computationally
efficient affine coupling layer introduced in (Dinh et al.,
2014), which consists of split and concatenation, a nonlinear
mapping, and a permutation.

In Figure 4, the squeeze layer, K flows, and the split layer
(reverse of the squeeze layer) are collectively called a block. The
multi-scale architecture contains L − 1 whole blocks and one
block without the split layer. Finally, the output of the multi-scale
architecture are known random variables Y. More details of Glow
can be found in (Dinh et al., 2014; Dinh et al., 2016; Kingma and
Dhariwal, 2018).

3.3 Event Localization Using Input-Output
Jacobian
For practical applications, online measurements (such as three-
phase voltage magnitudes) truncated by moving windows are
obtained as input samples of INNs, so that explicit likelihoods can
be calculated in real-time for situational awareness. Let the
column vector xt∈CN contain measurement variables of N
monitoring channels at sampling point t,
i.e., xt � (x1,t, x2,t, . . . , xN,t)H. When the length of the moving
window is set as T, the observationmatrixXt∈CN×T is generated as

Xt � xt−T+1, xt−T+2, . . . , xt( ). (4)
Denote the likelihood estimated by the trained INN as PΘ. As is
described in Section 3.1, the trained INN assigns lower
likelihoods to abnormal samples than normal ones. For
moving windows, once the likelihood is lower than a decision
boundary (DB), events are deduced to occur, and it requires
further analysis.

To spatially locate the detected event, an input-output
Jacobian is calculated by the trained INN, so that the
monitoring channel that contributes the most to the low
likelihood can be determined. Note that xi,k contained in Eq.4
is the measurement obtained in the ith monitoring channel at the
kth sampling point. Then we can measure the contribution of xi,k
to the output by

FIGURE 4 | Architecture of Glow. The Flow is introduced by (Kingma and
Dhariwal, 2018) to the multi-scale architecture proposed in (Dinh et al., 2016).

FIGURE 5 | Schematic diagram for event localization. The maximum
entry of input-output Jacobian of INN is utilized to locate the event spatially.
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J � zPΘ

zX
, (5)

where PΘ is the output likelihood, X is the input (observation
matrix) with entries xi,k, and J is the input-output Jacobian whose
entry ji,kmeasures the contribution of xi,k to PΘ, i ∈ (1, . . . ,,N), k ∈
(1, . . . ,, T). If the norm of ji,k is small, the entry xi,k only affects PΘ
slightly. Otherwise, the entry xi,k has a large impact on PΘ, if the
norm of ji,k is large. This inspires us to find xi,k contributing the
most to the low likelihood by

η, τ( ) � argmax
i,k( )

ji,k
∣∣∣∣ ∣∣∣∣, (6)

where η and τ indicate the spatial location and the occurring time
of the event. Figure 5 gives a schematic diagram for event
localization.

3.4 Event Classification Based on Pseudo
Labels
According to Section 2.1, voltages/currents and differential
currents/voltages are appropriate features for event
classification. Figure 6 gives an overview of the PL-based
approach, which is semi-supervised with only part of
the samples labeled. Let X � (xb, yb): b∈(1,. . . ,B){ } denote a

batch of B labeled samples, where xb denotes samples, and
yb denotes labels. Let U � ub: b∈(1,. . . ,μB){ } denote a batch
of μB unlabeled samples, where μ determines the relative
size of X and U The target is to optimize the following two
losses:

• the supervised loss Lsup on labeled samples;
• the pseudo-labeling loss Lpl on unlabeled samples.

Both labeled and unlabeled samples are trained with a shared
backbone of CNN with cross-entropy loss. For c-class
classification, the supervised loss is calculated as

Lsup � 1
B
∑B

b�1H yb, p y xb|( )( ) (7)

with H(yb, p(y|xb)) � −∑c
i�1yi

b log(pi(y|xb)), where p(y|xb) is
the prediction vector with pi(y|xb) indicating the probability of
assigning xb to class i, i = 1, 2, . . . , c, ∑c

i�1pi(y|xb) � 1, yi
b

indicates the one-hot encoding of assigning yb to class i, yi
b∈{0, 1}.

Similarly, the pseudo-labeling loss is penalized over unlabeled
samples ub using PLs pb by c-class classification, which is
defined as

Lpl � 1
μB

∑μB

b�1H pb, p y ub|( )( ) (8)

FIGURE 6 | An overview of the PL-based approach for event classification.
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with H(pb, p(y|ub)) � −∑c
i�1pi

b log(pi(y|ub)).
For typical PL-based methods, the pb of an unlabeled sample

ub is directly obtained by the prediction vector p(y|ub) (Lee,
2013). However, pseudo labeling and re-training are realized in
the same network, which suffers frommodel homogenization and
is easy to be trapped in a local minimum. Therefore, distribution
alignment and uncertainty measurement are utilized to refine the
classification method.

• Distribution alignment: Inspired by (Berthelot et al., 2019),
prediction vectors are normalized to make category
distributions homogeneous. Specifically, a running
average of prediction vectors is calculated for unlabeled
samples and denoted as p̂. Then for a given unlabeled
sample ub, its prediction vector p(y|ub) is scaled by the
ratio p̂(y|ub) � p(y|ub)/p̂, and the obtained PL is p̂b.

• Uncertainty measurement: To enhance the performance of
classification, only samples with high-precision PLs are
selected for re-training. Here, the maximum entry of
p̂(y|ub) measures the uncertainty. Only samples with
max p̂(y|ub) larger than a pre-set threshold (τ) are used
for re-training.

In summary, our modified pseudo-labeling loss is
formulated as

Lpl � 1
μB

∑μB

b�11 max p̂ ub|( )>τ( )H p̂b, p̂ y ub|( )( ), (9)

where 1 is an indicator function, and the loss function is

L � Lsup + λplLpl, (10)
where λpl denotes the balancing factor that controls the weight of
the pseudo-labeling loss.

3.5 Convolution Neural Networks
To make this paper self-contained, a brief introduction is given
for the CNN classifier in this section. As is shown in Figure 6, the
CNN we construct here consists of 2 convolutional layers, 2
Rectified linear units (ReLU) layers, 2 pooling layers, a fully
connected layer, and an output layer. The input is a 3-
dimensional volume X ∈ Rw×h×d with width w, height h, and
depth d. The output is a prediction vector of c classes, and the
class with the highest probability indicates the type of the event.
LetXi∈Rwi×hi×di denote the ith input of the convolutional layer. Let
Wi,j∈Rki×li be the jth kernel for the ith layer. Each kernel is moved
along the width and height directions of Xi to perform the dot
product in the overlapping part. If the kernel is moved beyond the
dimension ofXi, zeros are padded to the border ofXi to match the
size of the kernel. The convolution results of ni kernels are stacked
together into an output Ci∈Rci×ri×ni . Then, Ci is fed into the ith
ReLU layer with Ri � max(Ci, 0), where max (·) is performed on
each entry of Ci. Then the maximum pooling layer further
reduces the size of Ri. Let the size of the pooling filter be
k̂i × l̂i. The filter is moved along the width and height
directions of Ci in each depth layer, and only the maximum
entry within the filter remains. The output is Li, and it becomes
the input of the (i + 1)-th convolutional layer, i.e., Xi+1 = Li.

After the second pooling layer, the output L2 is reshaped into a
vector q ∈ Rm and then input into the fully connected layer.
Denote the output of the fully connected layer as f ∈ Rf, and
finally, the prediction vector p ∈ Rc can be computed by
p � g((Wo)⊤f+bo), where Wo ∈ Rf×c and bo ∈ Rc denote the
output weights and bias, g (·) is a softmax function with
g(x) � ex

1+ex. The prediction vector p includes probabilities of c
classes for the input X, and the highest probability indicates the
classified class of X.

Based on the research in Section 3, the flowchart of the
framework for event detection, localization, and classification
is presented in Figure 7.

4 CASE STUDIES

In this section, the framework for event detection, localization,
and classification is validated with both simulated data and real-
world online monitoring data. Comparisons with other
approaches are also given in this section.

4.1 Case Studies on Event Detection and
Localization
4.1.1 Simulated Data
The INN-based method is tested with the IEEE 34-bus system
shown in Figure 1 for event detection. According to different
distances to generators, several event locations are set for TLG,
LLG, HLS, and LT, as is shown in Table , where FCT, FLL, and
GR represent fault clear time, fault location in line, and ground
resistance. Three-phase voltage magnitudes are measured by 17
measurement units, and the total dimensionality of measurement
variables is 51. Simulated data is generated with PSCAD. The
simulation step is set as 50 μs, and the phasor is calculated for
every cycle in the 50 Hz system. The simulation time of each
sample is set as one second. Gaussian noise with a signal-to-noise
ratio (SNR) of 50 dB is added to mimic normal fluctuations.
Finally, a total of 2000 normal samples of size 51 × 50 are utilized
for training, whereas the test set contains 1,600 samples, and 400
of them are anomalous.

Figure 8 shows the detection result, i.e., likelihood
distributions for both normal and abnormal samples in the
test set. It can be observed that the trained INN assigns lower
likelihoods to abnormal samples than normal ones, which verifies
the feasibility of likelihoods serving for classification. Then a DB
can be naturally designed to distinguish abnormal samples. It is
noted that in this case, the lowest likelihood for abnormal samples
is −9,892. For an intuitive comparison, we just show samples with
likelihoods larger than −2 in Figure 8.

4.1.2 Real-World Data
In this part, online monitoring data obtained from a distribution
network in Hangzhou city of China is used to validate the
approach. The distribution network contains 200 feeder lines
with 8,000 load-side transformers. Here, the measurements in
Figure 3A are utilized for analysis. The feeder line contains
14 load-side transformers, and the total dimensionality of
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three-phase voltage magnitudes is 42. The online monitoring data
were sampled during 2017/3/1 00:00:00 ~2017/4/9 23:45:00.
Amongst, normal measurements during 2017/3/1 00:00:
00 ~2017/3/14 23:45:00 are utilized to train the INN. The

remaining obtained during 2017/3/15 00:00:00 ~2017/4/9 23:
45:00 are tested. A continuously moving window of size 42 ×
192 is utilized to truncate the datasets. Raw measurements of the
test set and the likelihood curve obtained by the trained INN are
shown in Figure 9A,B, respectively. The DB is determined as the
minimum value of likelihoods obtained in the training set. On
April 4th and April 5th, multiple events occurred successively,
and measurements of the 2 days are zoomed in as Figure 9A. It
can be observed that likelihoods in Figure 9B first drops below
the DB slightly on April 4th and then drops significantly on April
5th, indicating a more serious event on April 5th.

Further, the observation matrix truncated on April 5th is
utilized for event localization. The input-output Jacobian is
presented as a 3-D map in Figure 10. The maximum entry of
the Jacobian is circled and the Location Index is determined as 29,
indicating the B-phase of the 10-th transformer, and which
matches the event records. In this case, three-phase voltages
are obtained at load-side transformers. However, on some
feeders in distribution networks, only line-to-line voltages can
be acquired for the economy. In this situation, the localization
accuracy may be reduced, but the disturbed location can still be

FIGURE 7 | The flowchart of the framework for event detection, localization, and classification.

TABLE 2 | Different events simulated in the IEEE 34-bus system.

Event Simulation setting Event location

TLG FCT 0.1 s, FLL 0.1–0.9 p.u, GR 0–50 Ω Branch 816–824, Branch 828–830, Branch 832–858, Branch 812–814
LLG FCT 0.1 s, FLL 0.1–0.9 p.u, GR 0–50 Ω Branch 816–824, Branch 852–854, Branch 888–890, Branch 832–858
HLS 0.3–0.6 MW Bus 844, Bus 888, Bus 860, Bus 810
LT FLL 0.1–0.9 p.u Branch 828–830, Branch 816–824, Branch 832–858, Branch 888–890

FIGURE 8 | Likelihood distributions of normal and abnormal samples.
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determined as the nearby position where three-phase voltages can
be acquired (e.g., substations, switching stations, and load-side
transformers).

4.1.3 Comparisons With Other Approaches
In this part, the INN-based approach is compared with other
approaches for event detection, including DAE (Ahmed et al.,
2021), PCA (Xie et al., 2014), Gaussian mixture model (GMM)
(Catterson et al., 2010), OCSVM (Wang et al., 2019), and
K-means (Ozgonenel et al., 2012). Assume that positive
samples are abnormal samples with events, whereas negative
samples are those obtained at normal states. In order to
evaluate the performance of the approaches, four categories of
samples are generated according to genuine types and detection
results:

• True Positive (TP): abnormal samples (positive samples)
that are detected as anomalies (positives);

• False Positive (FP): normal samples (negative samples) that
are detected as anomalies (positives);

• False Negative (FN): abnormal samples (positive samples)
that are detected to be normal (negatives);

• True Negative (TN): normal samples (negative samples)
that are detected to be normal (negatives).

Precision measures the detection accuracy and is given by

Precision � TP
TP + FP

. (11)
Recall is defined as the number of positives the model claims
compared to the actual number of positives there are throughout
the data. It is given by

Recall � TP
TP + FN

. (12)

Different precision and recall values are achieved when different
DBs are set to distinguish between normal and abnormal
samples. The higher the precision and recall values, the
better the detection performance of one approach. However,
a higher recall value generally corresponds to a lower precision
value. Therefore, precision-recall curves (PRCs) generated
under different DBs are utilized for a comprehensive
evaluation of approaches, and we compute the area under the
PRC, termed the AP by

AP � ∫
1

0

p r( )dr, (13)

where “p” denotes precision, “r” denotes recall. The higher the AP
is, the better the detection performance, AP∈[0, 1]. Here, the
calculation of AP for the comparison approaches is introduced as
follows.

FIGURE 9 | (A)Measurements of three-phase voltages obtained at load-side transformers in the test set; (B) Likelihoods obtained by the trained INN, samples with
likelihoods lower than the DB indicate the occurrence of events.

FIGURE 10 | The 3-D map of input-output Jacobian for an observation
matrix truncated on April 5th. The maximum entry is circled and the Location
Index match the recorded locations.
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• DAE: Observation matrices obtained at normal states are
utilized for training. The loss function is the reconstruction
error (RE) of input samples and is calculated by MSE as
1
m∑m

i�1(xi − x̂i)2, where m is the number of entries in the
observation matrix, xi and x̂i are true values and predicted
values of entries, respectively. A sample is considered to be
abnormal if the RE is larger than the DB.

• PCA: PCA is a classical dimensional reduction method.
Given an observation matrix X∈CN×T obtained in normal
states, the covariance matrix is C = XXT. Calculate the
eigenvalues and eigenvectors of C and rearrange the
eigenvalues in decreasing order. Out of the N
eigenvalues, select the largest m satisfying∑m

i�1λi/∑N
i�1λi≥κ, where κ is the CVP and m < N. PMUs

corresponding to the m largest eigenvalues are called “pilot
PMUs”, and the remaining (N − m) PMUs are “non-pilot
PMUs”. Form the base matrix XB∈Cm×T using
measurements of pilot PMUs. Select a non-pilot PMU
with measurements x∈C1×T, and the linear regression
coefficients of x on XB can be calculated as
v � (XBXT

B)−1XBxT. For a newly observed matrix Xnew,
the predicted value of non-pilot is obtained as
x̂new � vT · Xnew

B . The MAE 1
T∑T

i�1|(xnew − x̂new)| serves as
the detection indicator. A sample is seen as abnormal if the
MAE is larger than the DB.

• GMM: GMM is a clustering-based method that
approximates complex distributions with a linear
superposition of multiple Gaussian distributions. For
GMM, the number of clustering categories is pre-
designed, and assume that normal samples are clustered
with smaller category indices. A sample is considered to be
abnormal if the category index is larger than the DB.

• OCSVM: OCSVM learns a hyperplane to enclose normal
samples. Signed distances to the separating hyperplane are
positive for an inlier and negative for an outlier. A sample is
considered to be abnormal if the signed distance is smaller
than the DB.

• K-means: Samples are clustered by k centers. Assume that
normal samples are clustered with smaller indices, and a
sample is considered to be abnormal if the category index is
larger than the DB.

Both simulated data and real-world data are utilized for
comparison. For simulated data, the training set and test set are
the same as in Section 4.1.1. For real-world data, 50 feeder lines
with 120 event records during 2017/3/20 00:00:00 ~2017/4/9
23:45:00 are analyzed. A moving window with 96 sampling
points is utilized to truncate the datasets. For the simulated
data, PRCs, and APs of different approaches are shown in
Figure 11. For the real-world data, APs of different approaches
are calculated and given in Table 3. It can be observed that
INN achieves the highest AP for both simulated data and real-
world data. For DAE, PCA, GMM, K-means, and OCSVM, AP
is significantly lower for real-world data than for simulated
data. This is because real-world data exhibits complex and
nonlinear properties, which is more difficult to model than
simulated data. Specifically, PCA is a linear dimension
reduction approach and is not applicable for nonlinear
measurements. DAE is a nonlinear generalization of PCA.
However, it is vulnerable to sporadic spikes and random
fluctuations because of the simple structure. K-means,
GMM, and SVM are strongly dependent on pre-designed
parameters, whose optimal settings are hard to find for all
datasets. INN, by contrast, and is capable of modeling and
characterizing complex distributions without empirical settings
or assumptions. As a result, it outperforms other approaches,
especially in dealing with real-world datasets.

4.2 Case Studies on Event Classification
In this section, the PL-based approach is compared with other
approaches for event classification, including CNN (Li andWang,
2019), deep neural network (DNN) (Yadav et al., 2019), and
LSTM (Li et al., 2021). Different events are generated as in
Table 2. Received operational characteristics (ROC) and the
area under the ROC curve (AUC) can measure the capability
of a classifier to distinguish between multiple classes and they
serve as evaluation metrics. For events of type i, the ROC is
calculated by assuming type i as the positive class, and all others as
negative classes. Then the average ROC is defined by TPRaver

against FPRaver with

TPRaver � ∑n
i�1TPi∑n

i�1 TPi+FNi( ), (14)

FPRaver � ∑n
i�1FPi∑n

i�1 FPi+TNi( ), (15)

where n is the number of classes. The average ROC curve is
desired to be far away from the diagonal line, and it indicates

FIGURE 11 | PRCs of different approaches with simulated data in the
IEEE 34-bus system. APs of INN are larger than others, which verifies the
advantages of INN.

TABLE 3 | APs of different approaches with real-world data.

Approaches INN DAE PCA GMM K-means OCSVM

AP 0.988 0.759 0.374 0.135 0.231 0.725
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an enhanced separating ability for different events. The
AUC reveals the capability of a classifier quantitatively and
AUC ∈ [0, 1]. A larger AUC indicates better performance in
classification.

For the training set and test set, numbers of cases for each
event are 400 and 150, respectively. For a fair comparison,
rates of labeled samples are set as 10% and 1% for CNN, DNN,
LSTM, and PL. Figure 12 shows ROC curves and
corresponding AUCs of different approaches under 10%
and 1% labeling rate. It can be observed that the PL-based
approach obtains the largest AUC, especially under a low
labeling rate of 1%. This benefits from the re-training process
using samples with high-precision PLs. In this way, the rate of
labeled samples becomes higher after epoches of training, and
the PL-based approach achieves the effect comparable to
supervised learning in the test set. Therefore, the PL-based
approach outperforms the CNN, DNN, and LSTM-based
approaches under a low labeling rate.

5 CONCLUSION

In this paper, a framework is presented for event detection,
localization, and classification in distribution networks to
realize real-time situational awareness and event analysis. Key
findings are summarized as follows.

1) The INN-based approach outperforms others in event
detection with a higher AP due to INN’s superior ability in
modeling complex, nonlinear measurements.

2) Based on feature analysis of several principal events, including
TLG, LLG, HLS, and LT, we verify that a combination of
voltages/currents and differential currents/voltages possesses
distinctive characteristics for different events and is
appropriate for event classification.

3) For event classification, the PL-based approach shows
superiority over CNN, DNN, and LSTM-based approaches,
and the AUC is increased by 10% under a low labeling
rate (1%).
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