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The uncertainty of renewable energy and demand response brings many challenges to the
microgrid energy management. Driven by the recent advances and applications of deep
reinforcement learning a microgrid energy management strategy, i.e., upper confidence
bound based advantage actor-critic (A3C), is proposed to utilize a novel action exploration
mechanism to learn the power output of wind power generation, the price of electricity
trading and power load. The simulation results indicate that the UCB-A3C learning based
energy management strategy is better than conventional PPO, actor critical and A3C
algorithm.
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INTRODUCTION

In the context of transition towards sustainable and cleaner energy production, microgrid (MG)
has become an effective way for tackling energy crisis and environmental pollution issues. The
microgrid is a small-scale energy system consisting of distributed energy sources and loads,
which can operate independently from, or in parallel with, the main power grid (Yang et al.,
2018). A typical microgrid system is illustrated in Figure 1A, which includes distributed
generation resources (DERs), energy storage systems (ESS) and electric loads. Establishment
of microgrid by integrating local renewable energy sources and loads, provides reliability
guarantee for local service and strengthen grid resilience, and is a significant step towards
Smart Grids (Chen et al., 2020; Lee, 2022; Li et al., 2020).

With the fluctuation of renewable energy supply and the uncertainty of power load change,
how to manage microgrid more efficiently is a major challenge. When dealing with microgrid
energy storage management, model-based algorithms such as particle swarm algorithm and ant
colony algorithm have been proposed to solve this problem (Zhang et al., 2019). However, the
dynamic characteristics of microgrid and the interaction between its components are described
by building a model, which is not portable and scalable in practical application.

Recently, since the requirement of an explicit system model can be relaxed by learning-based
scheme, this scheme has been introduced as an alternative to model-based approaches, and is used to
improve the scalability of microgrid management (Kim et al., 2022; Fan et al., 2021; Nakabi and
Toivanen, 2021; Pourmousavi et al., 2010; Yu et al., 2019). The deep reinforcement learning
paradigm, which treats the microgrid as a black box, is the most promising learning-based
method to find an optimal microgrid energy management strategy from interactions with it.
Recently, microgrid energy management adopting a variety of DRL methods, has been
investigated, such as DQN (S.A et al., 2010), SARSA (Ming et al., 2017), and Double DQN
(Mnih et al., 2016).

Furthermore, literature (Finland, 2018) has explored A3C algorithm based on the policy gradient,
and demonstrated that it has better performance than the value function based DRL algorithms in
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different microgrid operation scenarios. However, note that the
conventional A3C approach adopts the heuristic ε-greedy
method in the process of exploration. It always chooses the
current best action with probability 1-ε or choose action
randomly with probability ε. This greedy exploration approach

leads to computation complexity proportional to time and the
learning performance may be deteriorated (Dong et al., 2021).
Based on these observations, an improved A3C learning
algorithm with the novel exploration mechanism is proposed
to deal with this problem in the learning process, which is benefit

FIGURE 1 | (A) is themicrogrid model, (B) is themicrogrid edge computing architecture, (C) is the UCB-A3C algorithm, (D) is the neural network structure, (E) is the
microgrid energy management strategy.
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to real electricity price and renewable energy production in
microgrid energy management.

On the other side, with the continuous advancement of new
generation information and communication technologies in
recent years, the newly emerging technologies, such as
Internet-of-Things (iot), cloud computing and big data
analytics, are deeply integrated to form the energy internet
and enable new microgrid operational opportunities. Since the
iot devices generate tremendous data during the microgrid
operation, and they have the limited computation and storage
capacity, it is necessary to introduce the cloud computing
facilities to cope with these data. However, centralizing data
processing in the cloud side would result in significant
communication overhead and delay.

To address this issue, the edge computing architecture, which
performs computational tasks at the edge of the communication
network, is able to bring the cloud computing in close to the
internet of thing devices (Finland, 2018). It provides the
opportunity to integrate the training and inference process of
microgrid energy management based on DRL at the edge, which
is different from the conventional centralized cloud computing
platform for mission-critical and delay-sensitive applications.
The edge computing architecture and corresponding cloud-
edge coordination mechanism enable the edge gateway to
execute the decision-making tasks for timely energy
management. Therefore, the edge computing is considered a
promising solution to significantly reduce communication
delay, improve microgrid energy management performance
and bring distributed intelligence for the microgrid system.
And then, with the help of the UCB-A3C learning algorithm,
we present an intelligent energy management policy in this
industrial edge computing environments.

The main contributions of this paper can be summarized as
follows.

1) We integrate energy iot communication and cloud-edge
coordination and present an edge computing architecture
for microgrid energy management and optimization
problem. Further, we designed a Markov decision process

(MDP) with an objective of minimizing the daily operating
cost to model this energy management issue.

2) To handle the formulated MDP optimization problem, we
propose UCB based A3C learning algorithm with gross
margin reward function, which can utilize a novel action
exploration mechanism to learn the power output of wind
power generation, the price of electricity trading and
power load.

The rest of this paper is organized as follows. System Model
describes the microgrid energy management architecture with
edge computing and the MDP model of energy optimization
problem. Then, the UCB based A3C learning algorithm with
better learning efficiency is proposed in UCB-A3C Based Energy
Management. Further on, an energy management approach
based on the proposed UCB-A3C learning algorithm is
proposed in this section. The performance evaluation of the
UCB-A3C based energy management strategy is analyzed with
simulations in Performance Evaluation. Finally, the conclusions
are drawn in Conclusion.

SYSTEM MODEL

The proposed microgrid energy management architecture with
edge computing is illustrated in Figure 1B. It integrates energy
iot platforms with edge computing to implement ubiquitous
sensing, computing and communication, and can effectively
deploy learning based microgrid operation functionalities.
This architecture consists of microgrid equipment layer,
edge layer and cloud layer. The microgrid equipment layer
is composed of various power components and is responsible
for supplying the electricity to meet the local demand. We
assume that the microgrid includes a group of TCLs, a wind-
based DER, a communal ESS and a group of residential price-
responsive loads, and these components are managed by edge
gateway. Moreover, the microgrid uses these components to
trade electricity with the main network to achieve a balance
between supply and demand. In this process, if the power
required by the power load component is greater than the
power generation capacity of wind power generation, it adjusts
the energy storage component to dynamically balance the
power purchased from the main grid. If the power required
by the power load component is less than the power generation
capacity of wind power generation, it adjusts the power sold by
the energy storage component to the main grid for dynamic
balance.

The edge layer, which includes edge platforms, edge
gateways and edge services, is located between the cloud
platform and the underlying physical equipment layer. It is
the key part of the entire architecture and provides functions
such as storage, computing and application on the edge side.
The hardware platform of edge layer is edge gateway, which is
composed of communication modules, storage units and
computing units, and is leveraging to perform data
acquisition, transmission and microgrid equipment control.
Edge gateway can support communication protocols such as

FIGURE 1 | Continued.
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RS485, WiFi and 5G, as well as network transmission protocols
such as HTTPS and MQTT. Under the co-scheduling of the
edge platform, edge gateway can obtain microgrid operational
states and control the microgrid equipment according to the
instructions from the cloud server.

Edge computing platform is a software environment that is
used to write and run software applications and is operated by the
distributed edge gateways, and it is usually a standardized
interoperability framework deployed on edge gateway to
provide plug and play functions for iot sensors. All kinds of
micro services for the microgrid based on some popular edge
computing platform, such as EdgeX Foundry and KubeEdge, can
run on edge platform. The edge platform aggregates microgrid
equipment data which is collected from edge gateway.
Meanwhile, it may store temporary sensor data, upload long-
term data to the cloud center for data monitoring, analysis,
storage and visualization, and receive the control instructions
from the cloud side at the same time. In addition, edge service as
the external interface of the whole microservice system, it collects
iot equipment resources in the edge layer and provides services to
users, accesses RESTful requests and forwards them to internal
microservices. Moreover, in order to improve the capacity of
computing and storage, edge service takes advantage of cloud-
edge collaboration to cooperate edge resources with cloud
resources, and supports powerful expansion capability to
implement service mapping, request parsing, encryption and
decryption, and authentication.

The cloud layer uses the cloud platform to provide various
cloud services, we can deploy different cloud infrastructure
environments, such as public cloud, private cloud or hybrid
cloud, for different scale microgrid using the elastic expansion
capability of the cloud platform, and run deep reinforce
learning based intelligent microgrid energy management
strategy in the cloud side. Due to the cloud platform can
provide sufficient computation and storage resources, the
exhaustive analysis of the massive historical data through a
model training process is supported by cloud service. The well-
trained model can be further transfer to the edge computing
layer to implement the local microgrid energy management
functionalities.

Specifically, based on the physical architecture of microgrid
energy management given above, next we describe the theoretical
model of energy management. Note that the agent selects an
action under the state and the environment gets the next state in
the microgrid scenario, and that the next state of the agent only
depends on the current state and the action, and it is not related to
previous states and actions. Consequently, microgrid energy
management can be formulated as MDP problem. In general,
the state space S, action space A, and reward function R are used
for the agent-environment interaction modeling of the MDP. We
define that the state space includes exogenous state component
and controllable state component, and the action space includes
the energy deficiency action, price action, and TCL action. After
the agent transfers from state St to state st+1, it received the
immediate reward Rt when an action α is given.With an objective
of minimizing the daily operating cost, the reward function, as
gross margin from operations, is given by:

Rt � Revt − Cost (1)
where Revt � Pload ∑Nloads

i�0 Li,tload + Ptcls ∑NTCLs
i�0 Li,ttcl + (Pt

down −
Pt
sold)Et

sold is the microgrid revenues from selling electricity to
the external grid, Cost � PcostGt + (Pt

up + Pt
puch)EP

t is the costs
related to purchases from the power generation and external grid.
Ploads is the price of the price-responsive loads, Nload is the
number of the price-responsive load. Li,tload � Lb,t − SLit + PBi

t
represents the power consumption of the price-responsive
loads at time t. Ptcls is the price of the direct controllable
loads, NTCLs is the number of the direct controllable loads.
Li,ttcl represents the power consumption of the direct
controllable loads at time t, it can be calculated by
Li,ttcl � Ptclu

i,t
control. P

t
sold and Pt

purch are the power transmission
costs respectively for exporting to and importing from the
external grid. Pt

up is the up-regulation price and Pt
down is

down-regulation price. The power generation cost is Pcost. The
energies purchased, sold to, and generated from the external grid
are EP

t , E
t
sold and Gt respectively.

UCB-A3C BASED ENERGY MANAGEMENT

In view of the fact that the dimension of state space and action
space inmicrogrid are large. To solve this MDP problem, the A3C
learning algorithm, which is a state-of-the-art actor-critic method
that exploits multi-threading to create several learning agents, is
effective to handle the large scale decisions-making problem and
is considered in this paper.

A3C Algorithm
Different from the classical actor-critic algorithm with only one
learning agent, the A3C method adopts asynchronously parallel
learning of multiple actor on different threads. The key advantage
of this parallel learn scheme in different threads is that it breaks
the interdependence of gradient updates and decorrelates past
experiences gained by each learning agent, and it is an online
learning algorithm and converges rapidly (Jia et al., 2015; Liu et
al., 2019; Lee et al., 2020).

In A3C algorithm with a multi-threaded training framework,
it has one global network consisting of actor network and critical
network. These two neural networks have different function. To
be specific, the policy gradient schemes is utilized by actor
network to choose the action, and the parameterized policy
with a set of actor parameters θa is defined by π(a|s; θa) = P(a|
s,θa), and the gradient-descent method is applied to update the
parameters. The critic network evaluates each action from the
actor network and learns the value function while multiple actors
are trained in parallel. And in order to qualify the expected
reward, the critic network estimates the state-value function V(st;
θc) on account of state s with critic parameters θc.

During algorithm execution, each agent makes use of the value
function to evaluate its policy to achieve the long-term
cumulative reward. For the given policy π, the state-action
value function, called Q-function, of state action pair (s, a) can
be achieved by action a, it is defined as the expected reward by an
action a in the state s,
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Qπ(s, a) � E[(Rt |st � s, at � a)] (2)
and the state value function

Vπ(s) � E[(Rt |st � s)] (3)
where the expectation Ε (·) is taken over all possible the state-
action transitions following the policy π. For the policy and
the value function A3C learning algorithm, the parameters
are updated by the n-step reward and the reward is
defined as:

rt � ∑n−1
i�0 γir(st+i, at+i) + γnV(st+n, θc) (4)

where γ is the discount factor.
For update rule of A3C, it is desire to the agent not only learns

how good the action is, but also learn how much better than
expected. And the policy gradient scheme is adopted to perform
parameters update for the A3C algorithm. However, high
variance may be introduced by the policy gradient in the critic
network. To deal with the problem, the Q(s, a) function in the
policy gradient process has been replaced by the advantage
function As, t, and As, t is given by:

A(s, t) � r(t) − V(st)
� Rt + γRt+1 + . . . + γn−1Rt+n−1 + γnV(st+n) − V(st) (5)

where V(st+n) and V(st) are the sate value function in the state
st+n and s, respectively.

In the A3C learning framework, there are two loss functions
and they are associated with the outputs of deep neural network,
and all the actor-learners update the state value functionV(s) and
the policy π(s, a) by the gradient loss. The actor loss function is
defined as:

L(θa) � logπ(at |st , θa)(rt − V(st , θc)) + θG(π(st , θa)) (6)
where θ is the hyperparameter and G(π(st, θa)) is the entropy
which is used to encourage exploration and discourage premature
convergence to a suboptimal policy. The accumulated gradient of the
L(θa) is expressed as:

dθa � dθa + ∇θ′a log π(at |st , θ′a)A(s, t) + θ∇θ′aG(π(st , θ′a))
(7)

where θ’a is the thread-specific parameter in actor network.
Similarly, the loss function in critic network is given by:

L(θc) � (rt − V(st , θc))2 (8)
and the accumulated gradient of L(θc) is defined as:

dθc � dθc + ∇θ′c
(rt − V(st , θc))2 (9)

where θ’c is the thread-specific parameter in critic network. In
order to achieve the loss function minimization in our presented
A3C framework, the standard noncentered RMSProp algorithm
(Tijmen and Geoffrey, 2012) is utilized to perform training until
the accumulated gradients shown in Eqs 7, 9 is updated.

Consider that the sufficient exploration is needed to avoid a
suboptimal policy with worse reward and the exploitation adopts the
policy with the best reward, the optimal learning strategy, which can
implement the balance between exploration and exploitation, is
expected to be achieved.

Proposed UCB-A3C Algorithm
To further improve the performance of the A3C algorithm, this
paper is leveraging the idea of the UCB algorithm. Firstly, the
agent selects an action through UCB exploration and executes it.

TABLE 1 | The details of UCB-A3C algorithm is described.

Algorithm improvement A3C

Input: state values of each component of the microgrid
Output: action of each component of the microgrid
Initialization: discount factor μ, parameters of global A3C neural network θ,ω, parameters of current thread neural network θ’ ,ω’ , the number of samples selected for training is
d, the number of iteration rounds globally shared T, the maximum number of iteration rounds globally shared is Tmax, initial time tstart
1: Reset the gradient update amount of public neural network, reset dθ = 0, dω = 0
2: Update the parameters of the current thread neural network θ � θ’ ,ω � ω’

3: Observe the current system state st
4: Select action at base on strategy π(at|st , θ)
5: Calculate the reward value rt at the current time t and observe the state st+1 at the next time
6: Store the resulting quaterple (s,a,r,s’) in experience pool D
7: If the experience pool is full, take a batch of samples d from the experience pool D to train the network
8: Calculate the priority of the selected action p � acts prob + τ

�����
ln(ε+σ)

Nj

√
9: Nj = Nj+1
10: Select the next action moment at+1 � argmax p
11: t←t+1,T←T+1
12: Determine whether the current state of st is a terminated state, if not, return to step 5
13: Calculate Q(st,t) of the last time series position state st
14: For i ∈ (t − 1, t − 2, t − 3, . . . tstart)
15: Calculate Q(si,i) of the state si corresponding to the current time t
16: Update the local gradient θ’ of the current thread
17: Update the local gradient ω’ of the current thread
18: end for
19: Update the neural network parameters (θ,ω)
20: Until T > Tmax, otherwise, return to step 3
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Then, after sampling from the experience pool and calculating the
loss function, the priority of action is calculated. Finally, the
priority will be assigned to the action to be performed. The
priority of action is calculated by the following equation:

p � acts prob + τ

��������
ln(ε + σ)

Nj

√
(10)

where Nj represents the number of the jth action is selected,
acts prob is the probability value returned by the actor network
output, τ is the parameter that adjusts the influence of priority on its
selection action, ε is the parameter that keeps decreasing, and σ is the
parameter for ε correction. The second term in Eq. 10 is the
confidence factor. In the initial stage of the algorithm, the
confidence factor is large, so it has a great impact on the priority.
With the progress of training, the time step t continues to increase,
and the influence of confidence factor will gradually decrease, so as
to increase the chance of relative attempt and ensure the diversity of
samples. At time t, if an action has been selected many times, the
higher the reward value of the action, the greater the probability of
being continued. If an action is selected few times, its confidence
factor will be higher and the probability of being continued will be
lower.When the algorithm reaches the convergence state, the benefit
of optimal action selection can be maximized. As mentioned above,
the framework of the UCB-A3C algorithm is shown in Figure 1C.

Besides, we also carefully design the neural network (NN) structure
of the UCB-A3C algorithm. The input layer of NN is composed of
107 neurons, corresponding to the input 107 environmental states.
The hidden layer is designed as a combination of convolutional layer,
pooled layer and fully connected layer. After the data is input through
the input layer, the data is convolved through a convolution layer. The
convolution layer adopts a 3 × 3 convolution kernel. After output data
from the convolution layer, the global average pooling layer is used for
data pooling. Then the data is output to actor and critic network
through the fully connected layer of two layers with the number of
neurons being 200 and 100, respectively. The actor network is
designed as a fully connected layer with the number of neurons
being 80, while the critic network is designed as a fully connected layer
with the number of neurons being 1. The structure of the neural
network is shown in Figure 1D.

Consequently, the details of our proposed UCB-A3C
algorithm is described in Table 1, and the flowchart of the
proposed algorithm is shown in Figure 1E.

Clearly, the proposed algorithm indicates that the probability
of the selected action with larger reward is effectively increased
with the help of UCB.

FIGURE 2 | Analysis of the UCB-A3C algorithm, (A) is the reward of the
UCB-A3C algorithm, (B) is the total economic profits, (C) is the daily economic
profits.

TABLE 2 | The simulation parameters.

Parameter Numerical

Maximum capacity of ESS 500 KWh
Charging power of ESS 250 KW
Discharge power of ESS 250 KW
Generation cost of DER 32€/MW
Generation capacity of DER data source [Oy, 2018]
Number of directly controllable loads 100
The quantity of non-directly controllable
loads

150

Electricity markets cut prices data source [Fingrid Open Datasets.,
2018]

Electricity markets raised prices data source [Fingrid Open Datasets.,
2018]
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Implementation of Microgrid Energy
Management
UCB-A3C based microgrid energy management consists of offline
and online stages. The offline stage stores the action records of
microgrid operation and historical events, improves and perfects the
data set through historical data accumulation, performs the offline
simulation of microgrid operation control to train the agent, and
updates the agent model and parameters for the use of online agents.
When the microgrid works in real time in the online stage, the agent
calculates the output action and control command according to the
state variables and rewards fed back by the microgrid. Moreover, in
line with the control command from cloud server, the microgrid
operates and feeds back the updated status and reward to the online
agent, and stores it in the edge computing platform. The
implementation of microgrid energy management strategy based
on UCB-A3C is shown in Figure 1F.

PERFORMANCE EVALUATION
In order to verify the proposed microgrid energy management
strategy based on UCB-A3C, a simulation model, as shown in
Figure 2, is a built-in Python environment, and the simulation
parameters are shown in Table 2.

In our simulation, PPO, Actor Critic, A3C and UCB-A3C
algorithm are respectively used for training, and the obtained
reward value is shown in Figure 2A. It can be observed that the
UCB-A3C algorithm has higher reward in the learning process than
other algorithms.

And that, the PPO, Actor-Critic, A3C and improved A3C
algorithm were respectively used to carry out the economic
profits of microgrid energy control, and the achieved total
10 days’ economic profits is shown in Figure 2B. It can be found
that the economic profits obtained by the UCB-A3C algorithm
basedmicrogrid energymanagement are greater than those obtained
by the other three algorithms.

Simultaneously, the daily economic profits of the A3C algorithm
and the UCB-A3C algorithm for ten consecutive days are compared,
as shown in Figure 2C. It can be seen from the figure the UCB-A3C
algorithm is superior to the A3C algorithm in six of the 10 days of
revenue, which has better energy management efficiency.

Further, we make use of UCB-A3C algorithm to optimize
microgrid energy management, and the predicted data of power
generation and consumption of wind power generation components
and power load components are shown in Figure 3A. At this time,
the energy storage system is charged from the 0th to 1st hours and
discharged from the 17th to 21st hours in Figure 3B. In the energy
trading market, electricity is mainly sold, and the trading price
changes with the trading electricity is shown in Figure 3C.

To sum up, the improved A3C algorithm can carry out efficient
energy coordination management on the microgrid, and then
efficiently trade electricity with the power grid, so as to achieve
the purpose of reasonable distribution of electricity, improve
economic profits, and reduce the power loss in the process of
power distribution.

FIGURE 3 | The UCB-A3C algorithm is utilized to
implement the microgrid energy management, (A) is the electric loads
and distributed energy resource, (B) is the energy storage
system, (C) is the electricity transaction volume and price change.
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CONCLUSION

Microgrids are an effective way to deal with flexible access to
renewable energy and varying power loads. In order to deal
with such volatility and uncertainty, this paper proposes an
A3C algorithm based on UCB exploration mechanism.
According to the simulation, we have validated that the
proposed UCB-A3C algorithm can adapt the constantly
changing microgrid environment, learn the efficient energy
management strategy, and provide a more economical scheme
for the microgrid operation, so as to achieve the purpose of
reducing the economic cost. Moreover, UCB-A3C learning
algorithm based microgrid energy management has solved the
unscalable application and repeated development problems of
traditional domain experts. However, in practical application,
there are still some areas that need to be further improved due
to its long training time and great dependence on training data
in the learning process. Therefore, it is the focus of future
research to solve the above problems in order to better apply
deep reinforcement learning to microgrid energy
management.
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