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Implementation of remote monitoring technology for real wind turbine structures designed
to detect potential sources of failure is described. An innovative multi-axis contactless
acoustic sensor measuring acoustic intensity as well as previously known accelerometers
were used for this purpose. Signal processing methods were proposed, including feature
extraction and data analysis. Two strategies were examined: Mel Frequency Cepstral
Coefficients pruned with principal component analysis and autoencoder-based feature
extraction. The scientific experiment resulted in data gathering and analysis to predict
potential wind turbine mechanism failures.
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1 INTRODUCTION

Wind turbines require constant monitoring for damage and irregularities. Such factors as deposits on
rotor blades (requiring periodic cleaning), damage resulting from wear and tear of materials (e.g.,
bearings, oil), mechanical damage (e.g., the impact of heavy objects), and construction and material
defects are taken into account. The primary method of damage detection is a periodic inspection by
technicians. However, it is not a sufficiently effective solution as it does not allow for the quick
detection of irregularities. Furthermore, damage to a turbine results in a decrease in generated power
output and an increase in generated noise. Consequently, it may lead to rising energy production
costs, damage the entire turbine, or even its permanent destruction. Therefore, automated systems
are being developed that continuously monitor the condition of wind turbines to reduce the cost of
their maintenance and help detect any deviations from the norm as quickly as possible.

Monitoring of noise from wind farms is primarily used to determine the degree of annoyance of
wind turbines to nearby residents. Although wind turbines are considered to be an environmentally
friendly source of energy, there is a lot of controversy about their presence near buildings. The main
problem is the noise generated by turbines, which has a specific, amplitude-modulated character.
Many studies try to prove the negative influence of noise on inhabitants, pointing to effects such as
sleep disorders, bad mood, migraines, neurosis, etc. On the other hand, proponents of wind farms try
to refute these theories with relevant research. In both cases, the primary tool is monitoring the level
and nature of noise from wind turbines (Deshmukh et al., 2019). An example of such a study is the
paper (Castellani et al., 2020), in which tower vibrations are measured and analyzed. In addition, a
test case of a faulty wind turbine bearing (information provided by the manufacturer) is studied. An
interesting intuition of that study is that the statistical novelty of the faulty signal can be enhanced by
measuring vibrations at more than one wind turbine simultaneously and by analyzing the difference
between the target wind turbine and references.
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Noise generated by wind turbines can also have useful
applications. Long-term noise analysis and detection of
deviations from regular character can be helpful in detecting
damage to a wind turbine, especially rotor blades. This topic is not
sufficiently studied and described in the literature. Most wind
turbine condition monitoring systems use “contact” sensors
(accelerometers and microphones) placed directly on the
turbine components. Meanwhile, as the author and his co-
workers showed, contactless acoustic and video monitoring
have the potential for investigating wind turbine conditions
(Cygert and Czyzewski, 2018; Czyżewski, 2019).

The research project was carried out, employing the methods
and results shown in this article, including using different sensors
that record and analyze the sound generated by wind turbines,
especially the acoustic intensity sensor that measures the acoustic
speed and pressure.

The following assumptions were formulated in the research
work, which should be fulfilled by the developed vibroacoustic
and acoustic analyzer of the wind turbine condition. The first
scenario assumes the monitoring of the wind turbine utilizing
measurement sensors located at a certain distance from the wind
turbine. Hence, in this first measurement scenario, labeled SC1
(External Analyzer), the following parameters can be monitored:

⁃ environmental noise emitted by the turbine, in particular
blade noise, the expected result is an assessment of the blade
sheath condition, the realization of the functionality will be
achieved by using environmental microphones and/or a 3D
intensity probe,
⁃ vibrations of the turbine tower, the functionality will be
realized by using a special sensor called inclinometer,
⁃ an inspection of the wind turbine condition performed from
an unmanned aerial vehicle (drone), in this case, a drone with a
vision camera can be used, mounted in a specialized mount to
eliminate vibrations of the aircraft, the acquired vision
material containing images of selected elements of the
turbine, in particular the blade surface, may be analyzed
using proprietary digital image processing algorithms to
support the detection of sheathing damages.

The second scenario assumes that the wind turbine is
monitored using measurement sensors located inside the wind
turbine nacelle. This measurement scenario has been designated
as SC2 (Internal Analyzer). The following parameters can be
monitored:

⁃ distribution of sound intensity inside the nacelle, with the
possibility to indicate the source of noise, the functionality will
be realized by using a 3D vector intensity probe, enabling
detection of the arrival of the front of the acoustic wave,
⁃ vibrations inside the nacelle monitored by accelerometers.

For the research, the concept of a method for processing
signals from sensors monitoring a wind turbine was developed.

Both scenarios were put into practice, yielding research results.
The research description associated with the first scenario is
treated in this article abbreviated but shows the use case of the

constructed acoustic intensity probe working outside the turbine.
The second scenario is related to the diagnostics of turbine
mechanisms conducted in the interior of the turbine nacelle.
In this case, the paper shows in a detailed way how acoustic
signals are processed to observe the turbine mechanism working.
The feature extraction methods and an application of the
machine learning method (autoencoder) are discussed and
presented with hitherto obtained results.

An overview of the issues involved is presented before the
measurement methods, the equipment used for this purpose, and
themeans of data analysis related to the research project are shown.

2 NOISE SOURCES IN WIND TURBINES

Noise generated during the operation of a wind turbine can be
divided into two types: mechanical noise, associated with the
elements inside the nacelle, and aerodynamic noise, related to the
rotation of the blades and the influence of the wind (Deshmukh
et al., 2019). Mechanical noise can be transmitted through the air
(air-borne) and turbine structures (structure-borne). The
primary sources of mechanical noise are (Rogers et al., 2002):

⁃ transmission,
⁃ generator,
⁃ the nacelle swivel system,
⁃ fans,
⁃ auxiliary equipment, e.g., hydraulic.

Due to the high height of the nacelle above the ground, the
confinement of equipment inside the nacelle, and the use of
sound attenuation systems, mechanical noise is generally not a
nuisance to residents (unlike aerodynamic noise) but can be
necessary for acoustic monitoring of turbine condition.

Aerodynamic noise is associated with wind movement and the
phenomena that occur when an airstream falls on a wind turbine.
The three most important factors causing aerodynamic noise are
listed below (Oerlemans, 2011a; Okada et al., 2015).

⁃ Low-frequency sounds and infrasound are produced if the
rotor blades cross local airflow minima caused by wind flow
around the tower, changes in wind strength, etc.,
⁃ The turbulence created when the air stream falls on the front
edge of the rotor blade makes noise.
⁃ The cutting of the air stream through the blade tip causes a
vortex (tip vortex), resulting in acoustic waves,
⁃ The most important source of aerodynamic noise is air
turbulence generated at the blade trailing edge (trailing
edge flow). It results in a band noise (typically from 770 Hz
to 2 kHz), although tonal components may also appear if blade
damage is present. Importantly, for a stationary observer on
the ground, this noise is amplitude-modulated by the rotor
blade rotation (an effect referred to in English as swish),
increasing its annoyance to listeners.

The airstream impinging on the rotor blade adheres, forming a
turbulent boundary layer. As a result, the air moves along the
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blade cross-section (airfoil), hitting a sharp back edge where the
air turbulence detaches from the blade surface, causing sound
waves. This is the leading cause of aerodynamic noise in wind
turbines (Oerlemans, 2011a). Okada made a detailed
measurement of the directional characteristics of wind turbine
noise (Okada et al., 2015). The noise level distribution in the
horizontal plane for different frequencies and different turbine
speeds reveals that the characteristics are octahedral in shape; a
higher noise level was recorded on the wind axis and a lower noise
level of about 5 dB on the lateral direction. The noise level
decreases as the measured frequency band increases.
Increasing the rotational speed obviously increases the noise level.

Amplitude modulation of wind turbine noise is the subject of
much ongoing research (RenewableUK, 2013). Ordinary
amplitude modulation, as described earlier, causes noise level
fluctuations of up to 6 dB. It is audible only in the vicinity of the
turbine (at a distance of up to about two rotor diameters); at
greater distances, it disappears. However, the modulation effect is
observed at much greater distances (in residential buildings), the
amplitude of modulation is much greater, and it varies in time.
This effect is called enhanced amplitude modulation (EAM). The
causes of EAM in wind turbines have not yet been sufficiently
explained. Factors such as changes in wind strength and
direction, interactions of noise from different turbines in the
farm, interactions between rotor and tower, inaccuracies in
nacelle positioning relative to wind directions, and others have
been reported (Bowdler, 2008; Oerlemans, 2011b).

Moller studied low-frequency sounds and infrasound
propagation around wind turbines (Mollasalehi et al., 2017).
The results indicate that the larger the turbine rotor diameter
and higher the turbine power, the more energy is concentrated,
and the lower the frequency range. Low-frequency noise is
disruptive to the environment due to less attenuation of sound
waves in this range (more extensive noise range). Turbines emit
infrasound, but their level is lower than the threshold of human
perception in this range.

3 CONDITION MONITORING OF WIND
TURBINES

Wind farms require constant monitoring to detect at early stage
irregularities that may cause permanent damage to the wind
turbine and increase the level of generated noise. The primary
monitoring method is an inspection performed by operators.
However, it is cumbersome, time-consuming, and costly;
therefore, it is performed only periodically, which may cause
significant irregularities to be overlooked. Furthermore, a
technician cannot notice every defect since hidden defects can
be challenging to detect. Human monitoring can be preventive
(inspection to find abnormalities that may lead to damage to
turbine components) and corrective (repair of damaged
components) (García Márquez et al., 2012). Preventive
monitoring involves replacing worn parts (oil, filters) and
tightening fastening bolts.

Since ad hoc inspection monitoring is not sufficient to ensure
the continuous operation of wind farms, automated systems for

constant monitoring of wind turbines play a vital role. The issue
of condition monitoring is referred to as condition monitoring
(CM). Systems oriented towards the detection of abnormalities in
the operation of wind turbines are called Condition Monitoring
Systems (CMS), while systems that monitor damage to the
turbine structure (e.g., cracks) are called Structural Health
Monitoring (SHM) (Coronado and Fischer, 2015; Fuentes
et al., 2020).

CMS systems consist of a set of sensors placed on wind turbine
components and a data analysis system, in practice, a computer
with software implementing advanced data analysis algorithms.
The general principle of CMS systems can be stated as follows:
“any significant change in the measured parameters is an
indicator of system malfunction.” (Pedregal et al., 2009).
Monitoring can be carried out online (analysis on the fly and
on-site) or offline (analysis of data collected for a certain period of
time, carried out in the monitoring center). The most important
turbine components to be observed are rotor blades, gearbox,
generator, main bearing, and tower structure.

Modern condition monitoring systems for wind turbines are
primarily based on monitoring vibrations of rotating elements of
the power transmission system, namely, the main bearing,
gearbox (bearings, shafts, gears), generator bearing, and
frequent vibrations of the tower itself. Systems of this type
have become well established in the wind turbine market and
have proved useful in practice in many cases. For this reason, they
are recommended as standard equipment for multi-megawatt
wind turbines and offshore wind farms (Gellermann, 2013). Most
of the sensors used in condition monitoring systems based on
vibration analysis are accelerometers installed at specific locations
in the power train. Different types of accelerometers are used in
wind turbines, measuring from very low to high frequencies. The
selection of a sensor requires consideration of the frequency range
and the dynamic range and sensitivity of the sensor. It is
important, for example, at low frequencies where the
acceleration amplitudes may be very small, less than 1 mg.
Selection of the sensor type can be carried out based on ISO
13373-1 (International standard ISO 13373-1, 2002), which
provides an overview of commonly used transducer types,
together with frequency ranges suitable for particular
applications. Standard terminology for the various sensors
used in wind turbine condition monitoring systems and their
recommended positioning and orientation are listed in ISO
61400-25-6 (International standard ISO 61400-25-6, 2010). In
addition, general requirements and recommendations for sensor
positioning are given in the 2013 certification guidelines of the
Germanischer Lloyd (DNV-GL) classification society.
(Germanischer Lloyd, 2018). For example, one sensor should
be used for the rotor bearing and four for the gearbox, in the range
of 0.1 Hz–10 kHz.

3.1 Modalities and Analysis Methods for
Wind Farm Monitoring
Modern CMS systems used in wind farms use many techniques
and modalities. The most important ones are (Pedregal et al.,
2009):
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⁃ vibration analysis with accelerometers, most commonly used
for gears and bearings,
⁃ acoustic emission testing using miniature microphones
applied to both mechanical systems (mainly bearings) and
aerodynamic components (rotor blades),
⁃ ultrasonic testing, used primarily for tower and rotor blade
damage monitoring,
⁃ analysis of oil condition in mechanical systems (mainly in the
gearbox),
⁃ stress (strain) analysis, applied principally to rotor blades,
⁃ electrical signal analysis - used to monitor the generator
⁃ shock pulse method (SPM) - used in bearing monitoring,
⁃ radiographic analysis, i.e., X-ray imaging of turbine elements
- for obvious reasons, it is used only temporarily and is
expensive, although it is also effective in detecting micro-
damage,
⁃ thermographic analysis - detection of “hot spots” indicating
local damage is cumbersome and expensive; the analysis is
performed offline,
⁃ vision-based vibration amplification requires costly
equipment and is applied on an ad-hoc basis, with offline
analysis.

Data analysis methods used in CMS include preprocessing
(“cleaning” the data with filters) and fundamental analysis, in
which the following approaches are used (Pedregal et al., 2009):
statistical methods (determination of statistical metrics and
analysis of deviations from the norm), trend analysis
(detection of deviations from the trend), time synchronous
averaging (TSA) - useful for analysis of vibration
measurements in gearboxes, spectral analysis (FFT) - detection
of deviations from the normal character of the spectrum (e.g.,
appearance of tonal components), cepstral analysis - used, for
example, in gearbox monitoring, amplitude demodulation -
detection of slow signal components, used in the analysis of
vibrations in the gearbox, can also be useful in the analysis of the
acoustic signal from rotor blades, wavelet analysis - a method
often used in the analysis of vibrations measured in mechanical
systems, it allows detecting changes in the analyzed signal, hidden
Markov models (HMM) - used to detect patterns in the analyzed
waveforms that indicate irregularities, machine learningmethods,
including deep learning methods using neural networks trained
on datasets from sensors and corresponding system states (fault
types and magnitudes). Time-domain methods include statistical
and parametric methods that evaluate statistical moments such as
mean value, variance, kurtosis, or parameters such as, for
example, minimum and maximum value, peak-to-peak value,
RMS, or peak factor. The values calculated by such means are
often input parameters for more sophisticated analysis. A
description of many of the above-listed approaches, along with
bibliographic links to descriptions of example applications, can be
found in Marquez’s papers (Pedregal et al., 2009; García Márquez
et al., 2012).

Trend analysis compares physical quantities measured under
normal operating conditions with current operating values.
Trend analysis can also be performed on values obtained from
statistical and parameter-based methods or on relevant

descriptors obtained by more advanced techniques. This can
be, for example, the vibration level at a specific interlocking
frequency (Teng, 2021). Furthermore, the norm ISO 13379-1
(International standard ISO 13379-1, 2012) recommends
different descriptors as diagnostic parameters due to their
selectivity to particular faults, facilitating the analysis process.
Therefore, trending based on descriptors is a valuable method to
identify faults and assess their evolutionary dynamics and
severity.

Time Synchronous Averaging (TSA, Time Synchronous
Averaging) is one of the most widely used methods for gear
condition monitoring (Siegel et al., 2014). Synchronous signal
averaging eliminates the influence of random noise by improving
the signal-to-noise ratio (Bechhoefer and Kingsley, 2009). This
method is used to identify defects in rotating bearings or
gearboxes. TSA can be used to determine the characteristics of
the vibration signal occurring in a given period, separating the
vibration characteristics of the gear wheel from other vibration
sources that are not synchronous with the gear wheel under
analysis. The TSA algorithm requires a reference pulse to align
the data to the rotation period of the particular shaft on which the
gear wheel is attached. In addition, increasing the number of
averaging periods leads to an improved signal-to-noise ratio
(SNR) (Sheng, 2012).

Other methods include drone wearable inspection, video
inspection conducted from ground level (Sokołowski et al.,
2019), thermal imaging analysis, and enhancement of small
pixel movements in the image. Meanwhile, machine learning-
based approaches are becoming increasingly popular among
existing approaches (Cui et al., 2018; Stetco et al., 2019).

3.2 Acoustic Monitoring of Wind Turbines
Acoustic monitoring of the turbine can be done either from
outside or inside the nacelle. The spatial noise distribution of
wind turbine noise observed on the ground in front of the turbine
shows that the noise generated by rotor blade rotation is
dominant. It can be seen that the maximum is located slightly
above the back edge of the blade. It is interesting to note that
although the sound is created when the blade is in a horizontal
position and begins its downward movement, due to the
propagation time of the acoustic wave, a person standing on
the ground will usually only hear the sound when the blade passes
the turbine tower. It can also be seen that noise is generated where
the blades overlap the tower and in the nacelle, but the noise level
is much lower than that generated by the rotor. Okada has
measured the directional characteristics of wind turbine noise
in detail (Fuentes et al., 2020). The noise level distribution
characteristics in the horizontal plane, for different frequencies
and different turbine speeds, have an octahedral shape; a higher
noise level was recorded on the wind axis, a lower noise level of
about 5 dB on the lateral direction. The noise level decreases as
the measured frequency band increases. Increasing the rotational
speed increases the noise level.

The study of acoustic waves is relatively often used in
monitoring mechanical systems (bearings, gearbox). Damage
to mechanical components causes the formation of elastic
waves. This phenomenon is referred to as acoustic emission
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(AE) (Van Dam and Bond, 2015). Research has shown that
acoustic monitoring detects damage earlier than vibration
analysis. A less common application area for acoustic
monitoring is rotor blade testing. Acoustic emission testing is
performed using acoustic sensors (e.g., piezoelectric sensors)
attached to the test components to isolate them from the
effects of vibration (e.g., using gel). In the case of a rotor, the
sensors are fixed inside or outside the rotor blade. Several or more
sensors are used placed in different places of the tested system so
that it is possible to localize a defect.

Much of the research on acoustic emissions in wind turbines is
laboratory-based (Sokołowski et al., 2019), but a few reports are
on installations in actual wind turbines. For example,
Papasalouros et al. performed a test installation of acoustic
sensors inside the rotor blade of a wind turbine (Papasalouros
et al., 2013). They used 3 PAC-R61-AST and 5 PAC-R151-AST
sensors, with resonant frequencies of 60 and 150 kHz,
respectively. The sensors were placed inside the rotor blade in
two lines of three sensors, each along the blade edge and a third
group at the blade root.

Bouzid et al. applied an acoustic emission study using a
wireless sensor network (Bouzid et al., 2015). The study was
conducted on a small test turbine. Benthowave’s BII-7070 sensors
were used, with a bandwidth of 0.1 Hz–400 kHz and a diameter of
18.6 mm. Data from the sensors were transmitted over a network
operating in the 2.4 GHz band; each sensor had its network
device, communicating with the base station. The task of the
system was to detect acoustic emission events and determine
where they occurred. Due to many sensors and the nature of the
signals, low sampling rates were used.

The disadvantage of the acoustic emission approach is the
need to mount sensors on the wind turbine components.
Therefore, there is also work on remote monitoring of wind
turbines in a non-contact manner. These methods are similar to
wind turbine noise measurement methods; the analysis focuses
on detecting anomalies in the recorded waveforms. However,
although this solution focuses primarily on observing the turbine
blades due to the nature of turbine noise, it also does not allow for
the exact location of faults. Therefore, it does not detect them as
quickly as the acoustic emission method or accelerator-based
solutions.

An example of a remote acoustic monitoring method for a
wind turbine is the work of Fazenda (Fazenda and Comboni,
2012). This work aimed to detect the effect of sediment
accumulation at the ends of rotor blades in a small wind
turbine, using a microphone placed in front of the turbine.
The study was conducted under laboratory conditions; the
deposit was applied to the rotor blade. Signal fragments of
about 2.7 s were converted to the spectral domain using FFT,
after which statistical descriptors of the signal were calculated.
Experiments showed that increasing sediment mass caused an
increase in the amplitude of the tonal component in the spectrum.
In further work, the authors proposed a fuzzy logic-based
decision-making system that determines the degree of blade
tip damage based on spectral parameters.

Condition monitoring of mechanical elements (gears,
bearings) utilizing acoustic emission is performed similarly to

rotor blades. Sensors are attached to the mechanical components;
their task is to detect and localize acoustic emission events arising
from mechanical damage to the components, e.g., gears. In
addition, a wavelet transform is often used for data analysis,
which allows for the temporal localization of acoustic events. An
overview of acoustic emission-based monitoring methods can be
found in the work of Naumann (2016).

Also, the remote acoustic monitoring approach can be used for
mechanical components. This method is ideal for monitoring
machines with rotating elements, bearings, and gears, which
constantly generate noise above ambient noise levels. Practical
experience shows that a trained engineer’s ear can detect the
difference between a fully operational bearing and a damaged one
even without specialized equipment. Additionally, the
measurements performed and the appropriate analysis of the
acoustic signals confirm the effectiveness of such a measurement
method. However, such testing in the case of a wind turbine is
rather challenging to perform from the ground level.

Additionally, in contrast to other machines operating with
bearings, in the case of wind turbines, additional factors make it
challenging to monitor the condition through remote acoustic
monitoring. One such factor is the extensive range of the sound
spectrum generated by all turbine components and, at the same
time, the lack of control of rotor speed as it depends on the
momentary parameters of the wind. Another unusual factor is the
gearbox operation and bearing at a relatively low speed but with a
very high load, making it difficult to perceive the spectral changes
in the generated acoustic signal. For this reason, the measurement
of acoustic emission directly in the material is most commonly
used. Nevertheless, despite the difficulties, remote acoustic
monitoring is being attempted. One interesting approach is
presented in Mollasalehi et al. (2017), where acoustic
monitoring was attempted inside a wind turbine tower. This
study showed that the sound level generated by the bearings and
gearbox was significantly higher than the ambient noise level,
which is a good prediction for conducting tests in this
configuration.

It should be noted that when attempting remote acoustic
measurement, the critical issue is the proper location of the
measuring apparatus and adequate registration of signals. To
analyze the measurements and recordings made, one can then use
methods already applied in the analysis of acoustic emission
measurements, adapting them to different characteristics of
acoustic signals, reaching the meter not through elastic
structures of the material but the air. It is also possible to
develop new acoustic analysis methods, which can diagnose
damage to bearings and gears in real-time. The ongoing
project that is the subject of this article has taken up such a
challenge.

3.3 Turbine Condition Monitoring With
Accelerometers
Modern condition monitoring systems for wind turbines are
primarily based on monitoring vibrations of rotating elements
of the power transmission system, namely, the main bearing,
gearbox (bearings, shafts, gears), generator bearing, and frequent
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vibrations of the tower itself. Systems of this type have become
well established in the wind turbine market and have proved
useful in practice in many cases. For this reason, they are
recommended as standard equipment for multi-megawatt
wind turbines and offshore wind farms (International standard
ISO 13373-2, 2016). Condition monitoring systems using
vibration analysis take advantage of the fact that most faults in
rotating machine parts result in increased vibration. Each
mechanical system imbalance or defect generates a unique
vibration pattern.

Different types of accelerometers are used in wind turbines,
measuring from very low to high frequencies. The choice of the
sensor requires consideration of the frequency range and the
dynamic range and sensitivity of the sensor. This is important, for
example, at low frequencies where the acceleration amplitudes
may be very small, such as <1 mg. Selection of the sensor type can
be carried out based on ISO 13373-1 (International standard ISO
13373-1, 2002), which provides an overview of commonly used
transducer types, together with frequency ranges suitable for
particular applications. Standard terminology for the various
sensors in wind turbine condition monitoring systems and
their recommended positioning and orientation is in ISO
61400-25-6 (International standard ISO 61400-25-6, 2010). In
addition, general requirements and recommendations for sensor
positioning are given in the 2013 certification guidelines of the
Germanischer Lloyd (DNV-GL) classification society.
(Germanischer Lloyd, 2018). For example, one sensor should
be used for the rotor bearing and four for the gearbox, in the range
of 0.1 Hz–10 kHz.

The vibration signal spectrum is usually obtained from a time
course utilizing the Fast Fourier Transform (FFT). Considering
the specific geometry and kinematics of machine components,
such as bearings or gears, it is possible to distinguish between
frequencies occurring in the regular operation of the
components and frequencies characteristic of defects arising
in them. In this way, the vibration signal spectrum can reveal
detailed diagnostic information about the type of defect. More
computationally sophisticated methods are also used, such as
power density spectrum analysis for gear fault detection
(Hameed et al., 2009).

The row analysis method applies to the study of machines in
which the rotational speed is variable in time. In this case,
applying the Fourier transform is impossible, which gives
correct results for a stationary signal (constant rotational
speed). Moreover, the signal frequency components are a
function of the rotational speed. Therefore, order analysis
allows going from the time to the speed domain. The method
assumes synchronous sampling, i.e., data are collected according
to the shaft rotation and not to the signal in the time domain. It
means that samples are recorded for equal values of rotation
angles instead of uniform time intervals (Luo et al., 2013). This
helps avoid the effect of energy blurring in the frequency domain
that would otherwise result from variations in rotational speed
during uniform time sampling (Bechhoefer and Kingsley, 2009).

Many other approaches are also used in the analysis of signals
from accelerometers, such as cepstral analysis (Wismer, 1994),
row analysis (Luo et al., 2013), wavelet analysis (Wang and

McFadden, 1996), envelope analysis (Brüel and Kjaer Vibro,
2014). A study based on video images (thermal imaging, RGB
cameras interacting with pixel motion magnification algorithm)
and many others are different methods applied by the authors;
however, this paper does not include this subject. In this work, a
different approach is used, based on the application of learning
algorithms to vibroacoustic and acoustic signal processing,
described later on.

4 A NEW CONCEPT OF ACOUSTIC-VISUAL
NOISE ANALYZER FOR WIND TURBINES

It was assumed that the implementation of measurement
scenarios SC1 (External Analyzer) and SC2 (Internal Analyzer)
must not interfere with the operation of the wind turbine. The
installation of measurement sensors for the SC2 measurement
scenario requires the prior approval of the relevant persons
responsible for the proper operation of the wind turbine.

4.1 Application of Acoustic Intensity Probe
for Wind Turbine Blade Motion Analysis
Standard microphones for recording acoustic signals are acoustic
pressure sensors; they record the scalar pressure value at a given
point. An intensity probe also called an acoustic vector sensor
(AVS), measures acoustic intensity. It is a vector quantity that
describes the energy flow of an acoustic wave in a given direction.
The intensity probe measures intensity in two or three orthogonal
directions. With the intensity probe, by analyzing the relationship
between the intensity measured in different directions, it is
possible to determine the direction of the sound wave. The
intensity probe can be used to monitor the operation of a
wind turbine, e.g., to analyze the movement of rotor blades or
to acoustically analyze the generator. In comparison to standard
point pressure sensors, it provides information about the spatial
distribution of the sound sources.

The project was carried out using the engineered intensity
probe, developed and constructed in the Gdansk University of
Technology (Cygert and Czyzewski, 2018). The probe consists of
six digital MEMS microphones (model IvenSense INMP441),
with omnidirectional characteristics, built into mounting plates
in the form of a square with a side length of 10 mm (Figure 1).
The acoustic vector probe module consists of three main
components:

• Acoustic sensor, shown in Figures 1A,B
• A housing containing the sensor power supply and LVDS
line circuits for data transmission as in Figure 1C

• A windproof enclosure as in Figure 1D

The tiles are assembled in a cubic structure so that the pairs of
microphones form the axes of a Cartesian system. The
microphones communicate with the recording device via a
digital interface I2S. The operating principle of the probe can
be briefly described as follows. First, each microphone records an
acoustic pressure signal.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8589586

Czyżewski Remote Health Monitoring of Wind Turbines

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


The pressure difference between the microphones of each pair
allows us to determine the pressure gradient and thus the vector
representation of the acoustic velocity. The calculation of the
acoustic intensity estimate consists in multiplying the acoustic
velocity signal measured on a given axis by the averaged value of
the acoustic pressure measured by all microphones and then

integrating this product (which in the case of digital signals boils
down to adding up the values from a given time interval). In the
experiments, the integration period was assumed to be 256
samples at a sampling rate of 48 kHz, so the integration
period is 125 ms and the resulting reading frequency is
187.5 Hz. The probe in question does not measure the

FIGURE 1 | Acoustic probe: (A) interior view of the vector probe sensor, (B) complete vector probe sensor, (C) vector probe without windscreen, (D) complete
vector probe.

FIGURE 2 | Block diagram of the signal processing algorithm of the acoustic intensity probe developed in Gdansk University of Technology (Kotus and Szwoch,
2018)
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physical magnitude of the intensity but only a quantity
proportional to it. However, only the relative relationships
between the intensity vectors are relevant. Therefore, it is
sufficient to calculate the azimuth and elevation angles to
determine the sound wave direction. Before the probe can be
used for measurements, it has to be calibrated in an anechoic
chamber, where the gain and phase of signals in individual
microphone paths are corrected. The calibration was
performed in our department at Gdańsk University of
Technology (see Figure 2) (Kotus and Szwoch, 2018;
Czyżewski et al., 2020).

An experiment was conducted to record the sound emitted
by the blades of a wind turbine. The place of recording was a
wind farm located in Puck commune, Pomeranian voivodeship,
in Poland. The recordings were made at relatively high wind
speed. The intensity probe was mounted on a tripod at the
height of approximately 1 m above the ground. The tripod was
set on the back (leeward) side of an operating Nordex wind
turbine (model N80, 2.5 MW), slightly to the left
(approximately at an azimuth angle of 220° in the ground
plane concerning the rotor position), at a distance of
approximately 30 m from the tower (Figure 3). The
coordinate probe system was set so that X-axis was directed
vertically downwards, Y-axis - horizontally in the direction
parallel to the turbine blades, Z-axis - horizontally towards
the turbine. The probe signals were recorded on a laptop
computer using Audacity software. Therefore, the following
will only show the analysis results for the X and Z channel
signals. The signal analysis was performed using scripts written
in Python language.

Figures 4A,B show the sound intensity waveforms measured in
X (vertical) and Z (horizontal) directions. The calculated intensity
signals were smoothed with the Sawicki-Golay filter of order 51 and
degree 3 to remove the noise. The cyclic nature of the waveforms is
apparent. Each local maximum occurs when air is cut by one of the
rotor blades. The amplitudes of the waveforms are variable, likely
due to fluctuations in wind speed. Although the waveforms for both
directions have the opposite phase, there is also a slight,
approximately constant shift between the minimum for the

X-axis and the maximum for the Z-axis. The signal from X-axis
(vertical) is characterized by significantly higher noise. Figure 4C
shows a plot of the elevation angle calculated from the intensity
signals from the X and Z axes. The cyclic nature of the waveform is
also evident. The changes in the waveform values represent the
movement of the apparent sound source, i.e., the turbine blades. The
intervals between the maxima are approximately constant and
describe the rotational motion of the turbine, but there are
differences between the individual cycles.

Figure 5 shows the spectrogram of the resulting sound
intensity calculated in three dimensions (in this case, in two,
due to lack of data for the Y channel). The spectrogram is a three-
dimensional plot; the color intensity represents the amplitude of
the spectral components (in linear scale) on the time-frequency
plane and is made by calculating the signal spectrum in frames of
2048 samples with 75% overlap. In the graph, the effect of strong
wind gusts on the recorded signals can be seen in components
with high amplitude (green color) and low frequency (close to
zero). These components cause rescaling of the graph and
somewhat blur the fundamental intensity signal. However, a
blurred waveform can be observed at a frequency of about
3 Hz. After searching for a spectral maximum in the range
from 1.8 Hz (to remove the influence of noise) for each time
frame and averaging this result, a value of 3.05 Hz was obtained,
corresponding to a period of 328 ms. This value corresponds to
the rotational speed of the turbine blades; a complete rotation
cycle is approximately equal to 3 × 328 = 984 ms.

Results of the experiments indicated the possibility of using
an intensity probe to monitor the condition of a wind turbine.
From the obtained intensity waveforms, it is possible to
calculate the current rotational speed of the blades. More
complex analyses are also possible. In the intensity and angle
waveforms, every third maximum is caused by the same blade.
Therefore, it is possible to select every third maximum for each
blade from the run and average the readings over some time
interval to remove the influence of variable wind speed. By
comparing the readings obtained for each blade, an attempt can
be made to detect blade damage if the results obtained for one
blade are significantly different from the others. It is necessary to
record signals from different wind turbines with varying levels
of blade wear to perform experiments in this regard. It is also
planned to record signals at different points in relation to the
turbine to find the optimal measurement point and assess the
influence of the probe position on the obtained results. It was
also planned to use an intensity probe inside the nacelle to
monitor the generator and detect irregularities in its operation.
However, this issue requires separate experiments, described
later in this paper.

4.2 Internal Analyser Concept
Realization of the SC2 measurement scenario, which assumes the
monitoring of the wind turbine condition through sensors
installed inside, requires physical access to the inside of the
nacelle. For this purpose, access to the inside of the wind
turbine nacelle located in Wydminy village was obtained.
Wydminy is a village in Poland located in Warmińsko-
Mazurskie Voivodeship, in Giżycko County, in Wydminy

FIGURE 3 | Intensity probe in the windshield during signal recording.
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FIGURE 4 | Acoustic intensity: (A) measured in directions X and Z, (B) enlargement of the fragment of the upper diagram, (C) the course of the elevation angle
calculated from the intensity signals in the X and Z axes.
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Commune. Installed wind turbines are 3 Fuhrländer FL MD 77,
with a capacity of 1.5 MW each. The nacelle is installed at the
height of 104 m. The rotor diameter is 77 m. The power plant
starts working at a wind speed of 3 m/s. It obtains rated power at a
wind speed exceeding 10 m/s. The maximum wind speed which
ensures safe operation is 20 m/s. Above this speed, the emergency
brake is activated.

The inspection of the inside of the nacelle was to obtain the
information necessary to determine how to implement the SC2
scenario. The nacelle is equipped with an elevator (the trip to the
top takes about 5 min). In addition, mechanical devices
responsible for the production of electricity are installed on
the upper deck of the nacelle. They include a slowly rotating
shaft (to which the rotor is attached) with a set of bearings,
gearbox, fast rotating shaft, power generator. These elements are
critical components of the wind turbine, and their monitoring
was performed as part of the SC2 measurement scenario.

4.2.1 Acoustic Analyzer Usage Scenarios
The basic scenario for using the proposed acoustic modality-
based outdoor analyzer (SC1) is to install a noise monitoring
station in the vicinity of the selected wind turbine. Once deployed,
the station operates autonomously, performing continuous
monitoring of acoustic signals. The acoustic signals are
acquired using a selected acoustic sensor. The 3D intensity
probe provides sound intensity signals. The sound intensity
signal analysis complements the results of sound pressure
analysis with information about the direction of the sound.
Therefore, it is possible to locate the noise source and
eliminate interference coming from directions other than the
position of the analyzed wind turbine.

Due to the need to limit the volume of this article, the SC1
scenario is only hinted at, while in the following chapters, the
analysis results presented will refer to the second scenario (SC2).
For the internal measurement scenario (SC2), installing the
equipment inside the nacelle is necessary.

5 DEVELOPED MEASURING STATION

The block diagram showing the concept of using the data
acquisition module is shown in Figure 6A. The data acquisition
module has a segmented structure, allowing multiplication (from 1
to max. 8) of two-channel signal transducers built into
accelerometers. Thus, it is possible to obtain up to 16 channels.
A single segment is 2-channel, can serve two accelerometers in the
IEPE standard, and outputs an I2S digital signal in the form of two
channels on a single signal line. A visualization of the modular
measuring station is shown in Figure 6B.

Software gain control is provided from −12 to 32 dB with 0.5 dB
step. The control is implemented via an I2C serial interface using two
lines from theRaspberry Pi computer. In addition, an I2Cmultiplexer
electronic circuit is used to allow conflict-free addressing of the I2S
converters. The 16-channel recorder is an MCH Streamer-type
transmitter connected to the data-logging computer.

Two communication variants are provided for the measuring
station, wired and wireless (over cellular networks). The station is
also equipped with an SSD storage module. A 1 TB SSD disk was
used as mass storage.

5.1 Artificial Intelligence Module
Neural networks have been successfully used for the classification
of acoustic and video signals; however, their main drawback
which hinders their practical application is the required
considerable computational power at the stage of training and
post-training of the network and less but significant
computational power at the stage of inference and
classification of data by the network.

A hybrid solution has been proposed by separating logically
and physically the training and learning processes using mixed
priorities (Figure 7). The system requires a central host unit and a
dedicated neural coprocessor. The host CPU manages the system
and performs acquisition, data recording, initial analysis, and
parameterization, e.g., determination of the spectrogram of the

FIGURE 5 | Spectrogram of the sound intensity.
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acoustic signal. The training is conducted based on historical
input data stored on disk, with low priority on the CPU, only
when computational resources are available. Input classification
is performed on live data acquired on a dedicated neural
coprocessor, without latency and high priority. During
training, the network states are stored in the main unit
memory. The most accurate state, obtaining the smallest error
value on validation data, is selected every fixed time interval.
Then, an update of the network weights in the coprocessor is
performed, and the training continues.

The described approach ensures optimized use of resources
andminimal delays in response to input data, e.g., classification of
threat situations recorded in the video and acoustic domain.
However, in the research portion addressed in this paper, no
neural network was trained for classifying signals. Therefore, this
subject is deferred until the turbine is monitored for a long time
until there are enough failures or signs of wear on the turbine
mechanical components. However, since the autoencoder-type o
neural network was used for feature extraction, thus this part of
the system has already found a practical application.

FIGURE 6 | Data acquisition module: (A) block diagram, (B) module design. Some elements of the developed device prototypes are patent pending [41].
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5.2 Implementation and Startup of
Autoencoder on Intel Compute Stick
Platform
Running the solution on an embedded neural computing
accelerator requires taking several steps to prepare the
working environment. OpenVINO is a collection of software
tools that enable developers of solutions based on artificial
neural networks to run their designed networks on neural
computing accelerators, including the Neural Compute Stick
accelerator. The OpenVINO package also allows you to run
optimized machine learning models on a CPU and other
development platforms, a complete list of which can be
found in the solution documentation (OpenVINO, 2022).
Examples of such platforms are FPGAs, for example, or
graphics cards.

The model used during inference can be computed using
popular libraries Caffe or Tensorflow. For the experiment
described in this report, model training was performed in the
Tensorflow library version 2.0. It is a popular library for training
neural networks. Still, for the use of such acquired machine
learning models, it was necessary to convert the model format
to that used in the TensorFlow library version 1.14. This is the
format accepted by the OpenVINO software package. This
conversion can be done by writing the raw model weights,
e.g., to an HDF file (with h5 extension). Then it is possible to
create the graph of the model in the library in the target version
(TensorFlow 1.14) and perform the so-called freezing of
the model.

In this way, the converted model, which is saved in an
intermediate format (the file has the extension. pb), can then
be processed by the optimization module of the OpenVINO
package; When developing the neural network architecture, it
is essential to keep in mind that, depending on the platform on
which they will be run, some of the components that build
neural networks may not be available. For example, in the case
of networks described in this report, it was necessary to
replace the layers performing one-dimensional splicing
(Conv1D) with layers formally performing two-dimensional
splicing (Conv2D), in which one of the dimensions was set to

1. Such a formal procedure was necessary because MYRIAD
processor built-in Neural Compute Stick accelerator does not
support the Conv1D layer. The process of preparing model
files and running them using the inference engine is shown in
Figure 8.

In addition, the execution time is measured. This was used to
test the accelerator performance concerning computation on a
virtual machine that has 8 GB of RAM allocated by software. The
machine was run on a PC equipped with an AMD FX-8350
processor. PC calculators are the benchmark for calculations
performed on the accelerator from the hardware platform
developed within the project. The results of measuring the
parameterization time of a single frame of a one-dimensional
signal coming from sensors mounted on the turbine (see next
section) are presented in Table 1.

Calculations performed with the accelerator were, on average,
about 6.42 times faster than calculations using a CPU simulated
in a virtual machine. The minimum cost-effective number of
frames to compute with the accelerator was calculated using the
following formula (Eq. 1):

Nmin � ceil( Tinit,MYRIAD

Tobl.,CPU − Tobl.,MYRIAD
) (1)

where:

Nmin - is the minimum viable number of frames computed
simultaneously by the accelerator,
Tinit,MYRIAD - is the average accelerator initialization time,
Tobl.,CPU - average request time per CPU,
Tobl.,MYRIAD - average inference time on the Neural Compute
Stick accelerator.

A model prepared and tested in this way is transferable
between different types of inference engines, including the
possibility of transferring the model to an engine developed
with the Raspbian operating system. Furthermore, it is the
preferred path for prototyping and applying machine learning
models on a Raspberry PI board equipped with a neural
computing accelerator.

FIGURE 7 | Block diagram of the hybrid host and neural coprocessor system for input data classification.
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6 DATA ANALYSIS

The sensors of the prototype recorder placed in the wind turbine
are shown in Figure 9.

Measurement data were collected from a period of about 2 weeks,
for each accelerometer a total of 308 h, for the intensity acoustic
probe a total of 135 h. The stable operation of the turbine turned out
to be relatively short throughout the time of continuous data
recording, which was independent of the performed
measurements and depended on the wind conditions. Therefore,
the collected signals are characterized by a relatively small share of
activity of the workingmechanisms of the turbine, at the level of 15%
of the whole time of data collection. The data were collected at a rate
of 22 kSa/s with 16-bit resolution, and the intensity probe data at
48 kSa/s in six channels with 24-bit resolution.

6.1 Parameterization and Classification of
Signals
For the research, the concept of amethod for processing signals from
sensors monitoring a wind turbine was developed. The first step is a

data acquisition and source synchronization. The Mobile
Measurement Station is responsible for these steps. Next, the
parameterization is carried out, which consists in calculating two
types of parameters: 1) from the time course of the signal and 2)
from the spectral-time representation, i.e., the spectrogram. From
the time signal, we get information about instantaneous amplitude,
RMS value of the signal, frequency of transitions through zero,
maximum amplitude. From spectrogram and FFT transforms
information about spectral components and their changes in
time, coefficients of FFT transform, mel-cepstral coefficients of
MFCC transform (mel-frequency spectral coefficients).

The rationale for selecting the signal analysis method based on
MFCC coefficients and autoencoders is its effectiveness proven in
some previously known applications to noise analysis developed
and tested with the author’s participation (Czyżewski et al., 2019).

The determination of MFCC coefficients is a multi-step
procedure that is widely known from the literature, so it will
not be described here (Zheng et al., 2001). However, it should be
added that the research presented in this paper uses the first 40
MFCCs–20 first MFCC’s average values, 20 first MFCC’s variance
values, and 20 deltaMFCC and 20 delta-delta MFCCCoefficients.

FIGURE 8 | Schematic representation of successive model conversion steps from formats used by popular libraries for implementing machine learning algorithms
to the internal format of the OpenVINO tool.

TABLE 1 | Execution times of the inference procedure on the CPU and MYRIAD platforms. The times for loading the data into the VM memory or the Neural Compute Stick
accelerator memory (the column: “initialization”) are also included.

Repetition no CPU (Initialization) [ms] CPU_calc (Calculation) [ms] MYRIAD (Initialization) [ms] MYRIAD (Calculation) [ms]

1 130.39 50.00 3,240.83 8.83
2 134.99 55.75 3,260.99 9.03
3 137.91 50.91 3,276.25 8.94
4 128.33 55.10 3,240.42 9.32
5 130.91 62.68 3,266.35 8.72
6 147.45 56.84 3,263.16 8.86
7 131.98 61.70 3,220.79 8.97
8 132.93 57.32 3,202.78 8.83
9 166.37 60.32 3,220.08 8.81
10 160.62 68.33 3,266.21 8.91
median 140.19 57.89 3,245.79 8.92
mean value 133.96 57.08 3,250.91 8.89
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Using formula (2) it is possible to calculate the first and second-
order derivatives of MFCC:

dt � ∑2
n�1n(ct + n − ct − n)

2∑2
n�1n2

(2)

where c is the nth cepstral coefficient and first-order dynamic
coefficient, and t stands for time.

The parameters can be subjected to classification by selected
methods such as: spline neural networks to process spectrograms,
which are two-dimensional signals (time-frequency), and SVM
classifiers, decision trees, or neural networks to process one-
dimensional parameters vectors (amplitude, FFT, MFCC). In
such a case, using a hardware accelerator (Intel Neural Compute
Stick - NCS2 with Movidius chip) connected to a central unit in the
Mobile Measurement Station for computations related to neural
network inference is beneficial.

It is always expected that dedicated classifiers would efficiently
classify a given period of turbine operation as typical or atypical
and ascertain the degree of deviation from the nominal mode of
operation (though regression). A concept of binary classifier
operation is illustrated in Figure 10A.

A binary classifier that determines an atypical condition in a
monitored device uses statistical dependencies to determine which
of the measured parameters of the recorded signals should be
considered typical and which significantly deviate from the
expected values. It is assumed to use a hybrid combination of
several approaches, including statistical and intelligent classifiers
(e.g., neural networks and machine learning). The algorithm
selected is intended to model statistical distributions of typical
values (Figure 10B) and determine whether a new measurement
deviates significantly from regular observations. Several types of
deviations are possible: 1) a single anomaly or multiple anomalies
clustered in the decision parameter space and significantly distant

from the cluster (cluster) of typical values; 2) the occurrence of
several clusters of typical values (e.g., associated with different
regular turbine operating modes) and the observation of an
anomaly significantly distant from each cluster.

Anomaly analysis can involve different types of parameter
space. The type of parameters that form the basis of the analysis
defines the arrangement of points and the sensitivity of the system
to outliers in the general trends observed for the data as a whole.
In the case of acoustic signals, MFCC parameters (mel-frequency
cepstral coefficients) are applicable. They are characterized by the
fact that they represent how acoustic stimuli are perceived by
human hearing. Still, numerous studies have found them well
suited for extracting the distinctive features of acoustic signals of
various types for their automatic classification. Thus, this
mechanism also works well in machine learning and acoustic
signal classification tasks. The effect of parameterization of this
type is the visualization of the course of a given phenomenon in
the form of a system of points in the decision space. The initial
high-dimensional decision space is helpful from the point of view
of machine learning techniques used for target signal
classification. On the other hand, visualization is helpful to
visualize the test space using a dimensionality reduction
technique such as PCA (Figure 10C).

In practice, unfortunately, a very rare phenomenon is the
separation of individual states of the tested signal in the form of
separate clusters. Instead, more subtle changes in the character
of acoustic signals are often marked in the form of shifting
locations of points related to a given period within one larger
cluster. Such a tendency is illustrated in Figure 11, which shows
the localization of individual states of the turbine activity on
individual large clusters associated with the on and off state of
the investigated turbine. Locating points in the decision space
can define a distance metric between points and clusters of
points. This type of metric, in turn, can form the basis for the

FIGURE 9 | Sensors of the prototype recorder placed in the wind turbine (MEMS intensity probe means acoustic intensity sensor manufactured in micro-electro-
mechanical, i.e., MEMS technology).
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definition of a classifier. It can be minimal-distance or
probabilistic like mixed Gaussian models. In this type of
case, clusters of points in the decision space computed from
the source material are described by multivariate Gaussian
distributions. The inference is then performed by
determining the probability of the origin of new points from
each of the determined clusters.

Figures 12A,B show the results of parameterization of the
audio signal recorded with the intensity probe (single channel in
this case) using the discussed MFCC-PCA method. Groups of
points characteristic of regular operation, anomalous operation,
and abnormal situation are illustrated. The blue point cloud
denotes the distribution in parameter space for the entire
experiment, while the red points represent class-specific
clusters. Figures 12C,D show the results of parameterization
of the signal recorded with accelerometer one using the discussed

MFCC-PCA method. Groups of points characteristics of regular
operation, anomalous operation, and abnormal situation are
illustrated. The blue point cloud indicates the distribution in
parameter space for the whole experiment, while the red areas
indicate the clusters characteristic of a particular class.

Performed analyses of vibroacoustic damage data of wind
generators showed that the proposed methods for analyzing
data from multi-modal sensors of a mobile measurement
station are suitable for use as classifiers of normal and
abnormal states for this type of mechanism.

6.2 Parameterization Using an Autoencoder
Neural Network
Parameterization can also be carried out based on other than statistic
method allowing to take into account specificity of the signal acquired

FIGURE 10 | Concept of signal processing for deviation detection (A), examples of possible deviations from the standard (B), visualization of parameters obtained
from the acoustic signal of the turbine (C).
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from monitored devices. An example of such a solution is a
neural network with autoencoder architecture. An example of
the general architecture of such a network is shown in
Figure 13A. An autoencoder consists of two neural
networks, an encoder, and a decoder. The encoder performs
dimensionality reduction of multiple input modalities and
represents them in the form of an n-element parameter
vector, the so-called representation. The decoder is mainly
used to learn the network - it reconstructs the signals of
input modalities. The whole set of network-encoder and
decoder is trained to make modality reconstruction errors as
small as possible. The autoencoder with the encoder structure
depicted in Figure 13B was used to analyze the signals from the
turbines.

The decoder had an analog (inverse) construction to the
network encoder. A fragment of the signal was selected on
which the correct operation of the device could be heard and
a fragment in which the operation of the device was intentionally
disturbed. The signal collected during the experiment had a
sampling rate of 48 kSa/s. A half-hour fragment of normal
work and a half-hour fragment of disturbing work were
selected for calculations. These fragments were then divided
into frames of 4,800 samples, corresponding to 100 ms at a
sampling rate of 48 kSa/s. Thus, for both types of signal,
18,000 frames were obtained corresponding to successive
fragments of the acoustic signal of 100 ms in length. An
intensity acoustic probe recorded the acoustic signal. An
autoencoder network fragment processed consecutive frames.
After being split into frames and parameterized by the
autoencoder neural network, the signal was subjected to a
clustering process using the k average algorithm. The number
of clusters k for the example with the fan was defined as k = 2. For

the signal coming from the wind turbine, it was assumed that k =
3. The effects of such a clustering process are presented in
Figure 13C and Figure 13D.

When analyzing the graphs in Figure 13C and Figure 13D, it
is essential to keep in mind that the visualizations in the figures
represent the effect obtained by dimensionality reduction (to
visualize on the 2d plane of the graph). Therefore, clusters that are
separable in high-dimensional space (40-dimensional in the case
under consideration) do not always have to be visible as separate
clusters in the visualization. However, the effect of separating
separate clusters can be seen very clearly in Figure 13E Each
point from the visualization is assigned to a single frame of the
acoustic signal in temporal form. These frames have
4,800 samples, which corresponds to a length of 100 ms at a
sampling rate of 48,000 Sa/s, which the analyzed recordings have.

The clustering effects transferred to the time domain are
shown in Figure 13F. In the case of the signal from the actual
turbine, the detection of outlier observations allowed the
detection of impulsive signals in the recording. These were
due to the clatter that occurred during the operation of the
turbine. Additionally, clusters 2 and 3 correspond to the
turbine on (running) state, with cluster 2 (green)
corresponding to less intense operation and cluster 3 (red) to
more intense operation. Finally, cluster 1 (orange) corresponds to
the turbine shutdown state.

The final step was to check the statistical significance of the
separation of the individual clusters. The standard level of
significance was adopted α � 0.05 to check it. Therefore, a
reference cluster was chosen for both cases. For the reference
cluster, its center of gravity was calculated, relative to which
distances to all other points in the two considered decision
spaces were then calculated. The locations of impulsive

FIGURE 11 | Illustration of wind turbine activity states in time course and parameter space, example of modeling the probability distribution of point placement
based on its membership in a given class for operation under normal conditions, continuous operation, signals from the acoustic intensity probe.
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disturbances in the source recordings were then manually
marked, and in the case of the turbine, the active and
inactive states were also marked. Statistical tests were then
performed to verify that the distance to the reference cluster
varies depending on which group of points (on state, off state,
interference) we consider. The result of this test is shown in
Figures 13G and Figure 13H.

Student’s t-test was calculated to verify the statistical significance
of the differences observed for the turbine signal. The statistic value
of this test is equal to 19.3. The associated p-value is less than 10−3 the
mean distance from cluster one is statistically significantly more
significant for pulsed signals.

In the case of the turbine signal, it was necessary to use a
statistical test to compare three groups of distances. The results of
tests for normality of distance distributions were characterized by
p-values smaller than 10−3. Therefore the assumption of ANOVA
test for normality of the distributions compared is not fulfilled, so
to determine the statistical significance of the differences, it is
necessary to use a non-parametric test. The test chosen was the
Kruskal–Wallis test, whose test statistic had the value of 15,353,
p-value, in this case, is less than 10−3. The conclusion is that the

differences between at least one pair of distance groups observed
in Fig. 32 and Fig. 33 are statistically significant. Dunn’s posthoc
test was calculated to assess whether all differences seen in the
figure are statistically significant. The result of the test is shown in
Table 2.

7 CONCLUSION

The constructed measuring station and its application in
monitoring wind turbines were described in the paper. An
engineered acoustic intensity probe was used in addition to
accelerometers. Therefore, multi-way monitoring of the
turbine mechanism performance became possible.

As it was said in Chapter 6, measurement data were collected
from a period of about 2 weeks, for each accelerometer a total of
308 h, for the intensity acoustic probe a total of 135 h. Unfortunately,
we do not yet have multi-year data for machine learning at the
current stage of the project development, which has made it
impossible to apply deep learning methods at the present stage.
Still, the results are promising, as the described research has

FIGURE 12 |Operation under normal conditions, on/off - signals from the acoustic intensity probe (A), rotor deceleration - signals from acoustic intensity probe (B),
continuous operation -signals from the accelerometer (C), on/off signals from the accelerometer (D).
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FIGURE13 |Neural network application: (A) the architecture of an autoencoder neural network, (B) autoencoder architecture used to analyze acoustic signals from
wind turbines, (C) result of parameterization and signal clustering-visualization was obtained by parameter reduction with PCA method, (D) result of parameterization
and clustering obtained by reducing the parameters with the PCA method, (E) and (F) results in the time domain, (G) and (H)-box plots illustrating the distance of points
extracted from individual signal fragments from cluster 1.
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demonstrated the correctness of the signal acquisition system in the
conditions prevailing in the wind turbine and the effectiveness of the
proposed data analysis method.

The MFCC coefficients (mel-frequency spectral coefficients) were
used to represent acquired signals. An autoencoder-type neural
network is also an alternative solution for feature extraction. In
this case, we do not have to calculate MFCC coefficients. Still, we
rely on the automatic operation of the autoencoder, which reduces
given frames of signal samples to the parameterized form. This is a
second way to show and investigate outlier observations.

The algorithm was designed for unsupervised (autonomous)
training to identify statistically significantly different parameter
values clusters. These clusters are interpreted in practice as
periods of typical operation of the monitored device and
abnormal events.

The graphs depicting the condition of the monitored wind
turbine are interesting. They allow us to detect disturbing
changes in noise that were registered. Still, the algorithm created
separate clusters associated with periods of more and less intense
turbine operation for the period when the turbine was on. Therefore,
it is possible to assume that this solution may be suitable for
automatic monitoring of the correct operation of wind turbine
mechanisms, especially bearings, shafts, and gears.

Prospective work may involve analyzing data collected over an
appropriate (very long) period to detect and describe temporal
changes in cluster characteristics related to the in-service wear of
powertrain components. As the components of the device wear
out over several months and years, the parameters determined
from the signal will change, affecting the displacement of values
in the clusters. Applying even more sophisticated methods to
interpret outlier observations and model turbine operating states

will become possible, including mixed Gaussian mixture
algorithms at the signal parameterization stage and deep
learning in classification. It is planned for the future when the
system will collect data from such a lengthy operation that a
significant number of abnormal states of the turbine caused by
wear or damage of its mechanisms might occur.
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