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Solar and wind assets are climate-dependent and changes in climate will result in
variations in their generation and intermittency. Developers of solar and wind parks in India
have observed changes in climate conditions and variability in solar irradiation and wind
profiles at the seasonal and year-to-year timescales. Future climate change perturbations,
including monsoon shifts, could lead to lower-than-predicted wind and solar energy
production and affect the economics of solar and wind assets. Regional climate models
(RCMs) are the basis of climate impact assessments and the most trusted source of
information to extract knowledge about future trends in climate variables. However, RCM
projections are tainted with variability and uncertainty about the future trends. For India
as a case study, we use the RCMs generated by the Coordinated Regional Climate
Downscaling Experiment West Asia project (CORDEX WAS) to calculate individual wind,
radiation, and temperature trends at selected sites; estimate wind and solar PV energy
time series; and embed them in portfolio methods to test the impact of combining wind
and solar assets on the variability of the total production and the uncertainty about
the predicted production. We include a comparison of CORDEX RCMs with the ERA5
reanalysis dataset and conclude that all available RCMs reasonably simulate the main
annual and seasonality features of wind speed, surface solar radiation, and temperature
in India. The analysis demonstrates that the uncertainty about the portfolio return can be
reduced by optimizing the combination of wind and solar assets in a producer portfolio,
thus mitigating the economic impact of climate change. We find that the reduction
obtained with a mixed portfolio ranges from 33 to 50% compared to a wind only portfolio,
and from 30 to 96% compared to a solar only portfolio.

Keywords: CORDEX, climate change, wind energy, solar PV, India, uncertainty, portfolio analysis

1 INTRODUCTION

India is favored with abundance of wind and sunlight availability across most of its geography
with wind-rich regions in the south and west (Sherman et al., 2021) and promising locations for
solar energy in the south (Kumar, 2021), but even more so—largely untapped—in the mountains
(Dujardin et al., 2021). Wind and solar energy offer benefits in mitigating greenhouse gas emissions
and increasing energy security. Frequent and severe heatwaves, heavy rainfall events, and rising
sea levels are among the foreseeable natural disasters mainly due to climate that India is already
witnessing today (Krishnan et al., 2020). Global climate models (GCMs) within the Coupled Model
Intercomparison Project phase 5 (CMIP5) and CMIP6 (latest simulations) predict an increase in
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monsoon precipitation and variability in the future with
climate change (Katzenberger et al., 2021; Mitra, 2021). In order
to avoid these dramatic consequences predicted by climate
models, the Government of India has publicized striving plans
for renewable energy deployment to decarbonize its energy
production (Sharma et al., 2012; Kapoor et al., 2014; Hairat
and Ghosh, 2017; Mohanty et al., 2017; Rathore et al., 2018;
Sharma, 2019). The aggressive renewable energy policies of India
combined with its huge renewable resource potential favor fast
growth in wind and solar power generation throughout the
country. India aims at reaching a target of 450 gigawatts of
renewable capacity by 2030 (International Energy Agency, 2021),
which represents many opportunities for investors as wind
and solar energies are expected to cover a substantial portion
of India’s future demand for electricity (Lu et al., 2020). The
decarbonization of the power sector in India faces numerous
risks adding to the complexity of facing the threat of climate
change. The assessment by Kumar et al. (2022) of recent wind
policy development in India highlights that the slowing growth
in wind energy development observed since the beginning
of the global pandemic can hinder its renewable energy
ambitions.

In addition to their intrinsic variability and seasonal
disparity, wind and solar energy are also sensitive to climate.
The variability of monsoon under future climate conditions
is a crucial factor likely to impact wind energy production
(Turner and Annamalai, 2012; Sherman et al., 2021). Pryor and
Barthelmie (2011) and Solaun and Cerdá (2019) provide an
exhaustive overview of climate change impacts on wind energy
production. Gernaat et al. (2021) identify a decrease in wind
energy at the global scale under the influence of future global
warming.These studies conclude that climate change affects wind
production via changes in daily and seasonal distribution of wind
speed and temperature. These changes may be caused by large-
scale circulation and seasonal patterns such as El Nino Southern
Oscillation or local land-use changes, including urbanization
and deforestation (Wu et al., 2018). India has experienced a
depression in monsoon circulation and a delay in monsoon
onset because of the Indian Ocean warming as a result of
increased greenhouse gases and changes to the regional aerosol
emissions (Roxy and Chaithra, 2018; Wang et al., 2021). During
the last decades of the twentieth century, wind resources in
India were affected by the stilling effect, a decrease in wind
speeds, also reported at the global level (Zeng et al., 2018). This
stilling, or reduction in wind power potential, is attributed to an
increase in temperatures in the Indian Ocean (Gao et al., 2018).
Sabeerali and Ajayamohan (2017) warn about the possibility
of a shortening of the monsoon season in the future. This
shortening could hinder wind energy production in the
regions where most of the production relies on monsoonal
winds. Hence, it is beneficial to examine the effects of
changing climatic conditions on the current and future wind
sites.

Climate change impacts the quantity of solar radiation
reaching the surface of the planet driven by the change of
radiation as a result of changes in the snow cover and cloudiness
(IPCC, 2007). The factors that impact solar photovoltaic

(PV) production and can be aggravated by climate change
are surface temperatures, solar irradiation, wind speed, and
changing concentrations of dirt, dust, snow, and atmospheric
particles (Patt et al., 2013;Wild et al., 2015). Monsoon anomalies
can provoke extreme weather events (Zhisheng et al., 2015) and
are also likely to impact PV power output (Feron et al., 2021).
Solar radiation has not remained constant over the past decades
in India (Soni et al., 2012). Singh and Kumar (2016) describe the
occurrence of the solar dimming phenomenon, which is the
systematic reduction of solar radiation reaching the ground in
the cities of Jodhpur, NewDelhi, Nagpur, and Kolkata up to 2003,
while solar brightening (increase of solar radiation reaching the
ground) was observed in some other regions since 1990 driven
by the efforts to reduce pollution. Project developers need to be
wary of such phenomena even though reductions in the amount
of solar radiation received do not necessarily imply decreases in
solar energy production because the latter depends mostly on
changing temperatures (Peters and Buonassisi, 2019).

The scientific community quantifies climate change impacts
on wind and solar power generation in various regions. Solaun
and Cerdá (2019) review most relevant studies that present
quantitative results. As an example, regional assessments in
Asia indicate that wind energy density throughout the twenty-
first century is projected to decline in Taiwan, and slight
wind variations are expected in China (Weber et al., 2018).
Sherman et al. (2021) use East Asia CORDEX simulations to
study changes in wind resource availability in India and China
to assess projected changes under climate change scenarios and
find an overall decline of two percent in the annual generation
potential of India up to the year 2060. Sherman et al. (2021) do
not include the projections for solar potential, which is another
renewable energy source subject to regional climate changes and
key to successful energy transition. In our previous study (SETA-
D-21-03116), we demonstrate that wind projections from climate
models indicate an increase in some parts of India, triggering
more enthusiasm for wind development in the northwest of
the country. Solar PV output is estimated to decrease in large
parts of the world due to global warming and decreasing all-sky
radiation over the coming decades. Positive trends in solar PV are
expected in regions where the cloud cover decreases substantially
or clear-sky radiation increases (Schlott et al., 2018).

RCMs are the most modern tool for projecting climate
conditions in specific areas (Stefanidis et al., 2020). Estimates
of future changes in the climate are expressed in terms of
mean changes (Evin et al., 2021) or predictions of future trends
in wind speeds, temperature, and radiation. These estimates
can also be converted to impacts such as changes in energy
production. Despite the engagement of the climate modeling
community for RCM improvements (Randall and Taylor, 2007),
the uncertainty of the trends predicted by climate models can
be high. In our previous work (SETA-D-21-03116), we studied
trends in wind alone for CORDEX WAS-22 projections in
India under climate change scenarios and found that some of
the trends were highly uncertain. The availability of a large
number of climate projections enables to produce multimodel
ensembles (MMEs) that can be exploited to assess mean
changes in climate over different time periods and related

Frontiers in Energy Research | www.frontiersin.org 2 May 2022 | Volume 10 | Article 859321

https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Zakari et al. Climate Change Solar Wind India

uncertainties. The IPCC (2013) indicates that projections are
considered to be robust when the magnitude of change is
smaller than the associated uncertainty. Uncertainty assessments
in regional climate projections range from methods based on
simple agreement heuristics to characterize positive or negative
trends in a climate variable from different RCMs and quantitative
uncertainty estimates based on the median and intermodel
range of a variable across a series of model projections to
attaching probabilities to a group of scenarios on a regional scale
(Intergovernmental Panel on Climate Change, 2014).

The sources of uncertainty in climate projections are scenario
uncertainty, model diversity, and inherent natural variability.
Their quantification in ensembles of climate projections
supports the understanding of where targeting efforts reduce
them (Evin et al., 2019). The methods to characterize the
different sources of uncertainty associated with the projections
of climate variables include advanced Bayesian analysis of
variance (ANOVA) (Bichet et al., 2020) and QUALYPSO
(Evin et al., 2021), which is another statistical approach to
calculate the total uncertainty of projections. These methods
are computationally expensive and time-consuming procedures.
Therefore, although the partitioning of uncertainty sources
increases the understanding of the future role of climate change
in India, its study is beyond the scope of this article and will be
the focus of our future research.

The perceived inaccuracy of climate models has so far
limited their consideration in strategic planning. That being
said, it suggests that to encourage their adoption, risk-averse
decision-makers could benefit from planning tools that reduce
uncertainty (Ando et al., 2018). Portfolio theory is one of
these tools and diversifies investments between multiple assets
(things in which one could invest) to reduce uncertainty
in total future returns with minimized loss in the expected
value of returns (Ando et al., 2018). Tantet et al. (2019) use
mean–variance analysis in Italy to show the benefits of spatial
diversification. Spatial diversification means that the variability
may be partly mitigated by aggregating the production from
different sources and sites at different places. Hu et al. (2019)
used the same framework to optimize the geographical location
of wind and solar portfolios in China and reduce the variability
which limits the use of storage in the system. In this study,
we suggest the adaptation of portfolio theory to use it as a
tool to reduce the uncertainty of climate predictions when
the impacts are converted to energy estimates. Solar and wind
resources are often negatively correlated in space and time
(Hu et al., 2019; Tantet et al., 2019). Combining the energy
production from wind and solar sources reduces the variability
in the power supply due to the balance between meteorological
variables. Dujardin et al. (2021) demonstrate that skillfully
complementing and coordinating renewable energies over large
regions in Switzerland can smoothen intermittencies by reducing
correlations among generators and consumers. It shows that
optimizing the spatiotemporal variability of wind, solar, and
hydropower energy reduces storage needs and fits the local
demand. The southwestern monsoon and the annual solar cycle
drive the variability in wind and solar energy in India. Peak
wind resources occur during the monsoon season, precisely

when the cloud cover affects solar PV production. Solar energy,
on the other hand, peaks during the summer precisely when
wind energy is at its lowest (Lolla et al., 2015). Hence, India
can be a hub of green energy supply if it exploits geographical
advantages in energy supply sources (Pachar et al., 2021).
Climate change makes the Indian monsoon season more chaotic
and impacts its predictability, which could be dramatic for
resource planning and energy production scheduling (K and
T, 2018; Jin et al., 2021). However, should the monsoon become
stronger or weaker in the future and should its patterns shift,
exploiting the correlation between wind and solar energy could
serve to reduce the uncertainty on their respective future trends,
given that the combined perspective has a lower error that the
individual ones. Can we use the anti-correlation of solar and
wind resources to reduce uncertainty in the estimation of future
yield if the combined generation of solar and wind power is
considered?

In order to answer this research question, we divide the
analysis into two parts. In the first part, we analyze CORDEX
simulations to understand future trends of the climate variables
influencing solar and wind production under climate change
scenario RCP 8.5. Then, we select regions where future wind
and solar farms could be installed and use portfolio methods to
exploit the negative correlation between wind and solar energy
and assess its impact reducing the uncertainty climate simulation
trends.

2 MATERIALS AND METHODS

2.1 Data Used
In this study, we used CORDEX WAS-22 regional downscaled
experiments for all Coupled Model Inter-comparison Panel 5
(CMIP5) models available on the Earth System Grid Federation
(ESGF). We focused on three climate variables from CORDEX,
namely, near-surface wind speeds (sfcWind) at 10 m height,
surface temperature (tas), and downward surface radiation
(rsds) at the monthly resolution, and 0.22° (about 22 km)
horizontal spacing. We defined the study area in India as
6.70°N to 35.5°N and 68.1°W to 97.3°W. CORDEX simulations
are available for a historical period (1979–2005) and future
projections starting from 2006 to the end of the century with
representative concentration pathway (RCP) scenarios RCP
2.6, the lower emission scenario for CMIP5, and RCP 8.5,
the scenario assuming a continued increase in greenhouse
gases throughout the end of the century (Riahi et al., 2011).
Three RCM families are available for CORDEX WAS-22: 1)
the Abdus Salam International Center for Theoretical Physics
(ICTP) RegCM system (ICTP-RegCM4-7 (Giorgi et al., 2012),
noted RegCM4 hereafter); 2) COSMO-crCLIM-v1-1.v1
(COSMO (Sorland et al., 2021)); and 3) REMO2015.v1 (REMO
(Jacob et al., 2012)). Table 1 summarizes RCM names, with
their driving GCM parent, scenarios available, and acronyms
of CORDEX simulations.

As a necessary prerequisite for this work, we evaluate monthly
CORDEX WAS-22 simulations for the three climate variables
over the period 1981–2005 with comparison to the ERA5
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TABLE 1 | Summary of the models used in this study.

Regional climate model Driving model Scenarios Model’s acronym

ICTP-RegCM4-7 NCC-NorESM1-M hist, RCP 2.6, RCP 8.5 RegCM4-NCC
MPI-M-MPI-ESM-MR hist, RCP 2.6, RCP 8.5 RegCM4-MPI
MIROC-MIROC5 hist, RCP 2.6, RCP 8.5 RegCM4-MIROC

COSMO-crCLIM-v1-1.v1 NCC-NorESM1-M hist, RCP 2.6, RCP 8.5 COSMO-NCC
MPI-M-MPI-ESM-L hist, RCP 2.6, RCP 8.5 COSMO-MPI
ICHEC-EC-EARTH hist, RCP 8.5 COSMO-ICHEC

REMO2015.v1 NCC-NorESM1-M hist, RCP 2.6, RCP 8.5 REMO-NCC
MPI-M-MPI-ESM-LR hist, RCP 2.6, RCP 8.5 REMO-MPI
MOHC-HadGEM2-ES hist, RCP 2.6, RCP 8.5 REMO-MOHC

reanalysis dataset (Sabater, 2019). We examine how well they
reproduce the spatial distribution of annual and seasonal means
during specified time periods (denoted climatology) and trends
at each grid point and the spatial averages.

2.2 Variability at Existing Wind and Solar
Sites
We analyze the temporal patterns of wind speed at three existing
wind sites and radiation and temperature at four solar sites for
ERA5 and the individual CORDEX WAS-22 models. Table 2
outlines the name, location, and total capacity inmegawatt (MW)
of the sites considered in this study.They are selected because they
all belong to theCLPGroup and are used as a benchmark of a real-
life portfolio whose structure will be the model of the portfolios
simulated later on in India. On the selected sites, we evaluate the
standardizedmonthly anomalies derived during a 25-year period
extending from 1981 to the end of 2005 to examine the seasonal
variations.

2.3 Evaluation of Future Changes
One way to use RCM projections is to assess the magnitude and
degree of consistency in the simulations in terms of changes
in 1) climate variables or 2) impacts when the wind speed
or solar radiation and temperature are converted to energy
estimates (Intergovernmental Panel on Climate Change, 2014).
These changes can be expressed in linear trends of annual,
seasonal, or monthly mean quantities between certain time
periods. For the evaluation of future changes, we analyze annual
and seasonal climatology and trends in surface wind speeds,
temperature, and radiation from CORDEX WAS-22 models in

TABLE 2 | Summary of the characteristics for the CLP sites used in this study.

Asset type Site name Location Gross capacity
(state) in MW

Wind Tejuva Rajasthan 100.8
Jath Maharashtra 60
Theni Tamil Nadu 99

Solar Veltoor Telangana 100
Gale Maharashtra 50
Clean Solar PVT LTD. Telangana 30
DSPL Telangana 50

the Indian subcontinent for RCP 2.6 and RCP 8.5 scenarios
during two subperiods; from 2025 to 2055 and from2065 to 2095.
We focus the discussion in themain text on simulations with RCP
8.5 to identify the largest bounds of changes in wind, radiation,
and temperatures in themodels.The length of the two subperiods
simulates the economic lifetime of wind and solar assets. When
the seasonality is considered, we refer to winter as the months
from December to February, pre-monsoon as the months from
March to May, monsoon as the months from June to September
(noted JJAS), and the post-monsoon (months of October and
November) seasons. We use linear regression and the Theil–Sen
(Theil, 1950; Sen, 1968) nonparametric method to analyze trend
magnitudes, which are tested for statistical significance using the
Mann–Kendall test (Mann, 1945; Kendall, 1948). To illustrate
the spread of model projections, we take the most extreme
and the median trend values of all considered models at every
grid point. Thus, we evaluate the smallest trends; strongest
negative or smallest positive trends, the largest trends; strongest
positive or smallest negative trends, and the median trends.
After analyzing the whole study domain, we divide it into five
subregions described in Figure 1 to summarize the regional
trends. This step is motivated by the need to identify regions
where wind and solar monsoon trends are anti-correlated as
this is a binding condition in our work. Once these regions
are identified, we focus on two of them for this analysis. In
each region, we select three locations for wind assets and
four others for solar assets. For the application of portfolio
methods, we produce energy time series for wind and solar
PV at selected locations according to the method discussed in
Section 2.4.

2.4 Energy Production Estimates
After identifying the regions where wind and solar are anti-
correlated during the monsoon season, we pick the locations
for the wind and solar sites. Hereafter, we lay out the method
used to estimate the returns of the wind and solar PV assets,
which then serve as an input in the portfolio analysis explained in
Section 2.5. We determine the energy production for each wind
and solar asset using CORDEX data and express this return in the
form of capacity factors and PV potential as actual production
estimates depend on local weather and installations. For wind
assets, the capacity factor CFwind is defined as the fraction of the
potential production of wind power at the wind site and the
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FIGURE 1 | Map of the study area and illustration of the subdomains
represented by boxes: North (yellow), northwest (blue), central west (purple),
East (orange), and South (orange) that are utilized for analysis.

maximum possible energy (P rated, times the amount of time
energy was produced, t):

CFwind =
Eproduced

Prated ∗ t
. (1)

At the three wind farm locations considered, we assume 30
Suzlon 111 wind turbines installed at a hub height of 90 m,
with a turbine diameter equal to 111.9 m and a rated power
of 2.1 MW. To project surface wind speed to hub height, we
extrapolate wind speed data v1 at 10 m height to the 90 m
hub height using the power law (Archer and Jacobson, 2005) to
obtain v2:

v2 = v1(
z2
z1
)
α
, (2)

where the friction coefficient α is equal to 1
7
. The total energy

production of each wind farm is estimated by summing the
production (resp. nameplate capacity) of each wind turbine
over the life of the asset. We assimilate the life of the turbines
to 25 years to align with time periods selected to evaluate
the impact of climate change. Our analysis is independent of
a specific investment life-cycle. Therefore, we do not assume
that all turbines need to be installed at a certain point in
time, and the conclusions do not depend on the 25-year
assumption.

For solar sites, in order to make a first-order estimate
and translate solar radiation and temperature into potential
changes in PV generation, we use the methods presented

TABLE 3 | Definition of the values for the parameters in Eqs 3–5.

Variable name Value Units

rsdsSTC 1000 Wm−2

Γ 0.005 °C−1

TSTC 25 °C
c1 4.3 °C
c2 0.943 −
c3 0.028 °C W−1m2

c4 1.528 °C m−1s

by Jerez et al. (2015) and Crook et al. (2011) to calculate PVpot,
which is defined as the fraction of the power output under
standard conditions that a PV module may have according to
Eq. 3:

PVpot = PR
rsds

rsdsSTC
. (3)

PVpot is unit-less, rsds is the surface downward radiation
at each time from ERA5, rsdsSTC is radiation under standard
conditions which is equal to 1000Wm−2, and PR is the
performance ratio calculated from Eq. 4:

PR = 1− γ (Tcell −TSTC) , (4)

where TSTC is equal to 25°C, γ = 0.005°C−1 assuming the
behavior of monocrystalline silicon solar panels, and Tcell is the
temperature of the PV cell calculated with Eq. 5:

Tcell = c1 + c2T + c3rsds− c4sfcWind (5)

sfcWind is surface wind speed, c1, c2, c3 and c4 values are listed
in Table 3, along with the other variables and constants and their
units.

See Supplementary Figure S1 for an illustration of PV
potential (PVpot) and on-shore wind capacity factors (CFwind)
in the Indian sub-continent from ERA5 data and the period
extending from 1981 to 2006. In Section 2.5, we show howCFwind
and PVpot estimated fromCORDEX data are used in the portfolio
analysis framework to investigate the impact of combining wind
and solar assets on the uncertainty of portfolio returns.

2.5 Portfolio Analysis
Portfolio analysis supports the decision-making subject to the
tradeoff between the expected return and the volatility of this
return.The framework enables the assignment ofweights to assets
included in a portfolio such that the total return is maximized
and the volatility of this return is minimized. Decision makers
can evaluate the performance of each optimal portfolio formed
by a combination of assets. The optimal solutions of the trade-
off in the portfolio analysis are graphically represented on an
efficient frontier, which is a plot of optimal returns and their
volatility. In the following section, we explain how it is adapted
to calculate the uncertainty on returns calculated from climate
models. First of all, we use a set of wind and solar sites as an input
to the bi-objective function.We consider that these candidates are
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FIGURE 2 | Illustration of efficient frontiers of five assets.

part of a portfolio whose structure mimics the existing portfolio
discussed earlier, with three wind farms and four solar PV assets.
The sites selected sit on locationswherewind and radiation trends
are anti-correlated during the monsoon season. We solve the bi-
optimization problem three times for each set of locations in a
way thatwe have 1) onlywind sites, 2) only solar sites, and 3)wind
and solar sites combined as an input. By doing so, we can compare
the efficient frontiers obtained from the standalone perspective
with wind-only or solar-only portfolios and themixed portfolios.
The examination of the three efficient frontiers obtained enables
us to highlight the effects of the combination of wind and solar
energy in the portfolio and its impact on the volatility of the
return, as opposed to the nonmixed portfolios. The analysis is
repeated for each individual RCM model for a certain RCP
scenario. Finally, by doing so, we canmeasure the spread between
the curves of the efficient frontiers for each one of the portfolio
types and examine how the combination of asset types affects this
spread.

Formally, the mean–variance analysis consists of a bi-
optimization problem Eqs 6, 7, where μk is the average
production of wind or solar power in each location k, and the
mean portfolio return μp (approximated by its total capacity
factor) is maximized while its variance σ2

p is minimized, subject
to the constraints that the sum of the weights wk is equal to one
and that all capacity factors are positive.

max μp =∑
k
wkμk

s.t. ∑
k
wk ≤ 1
. (6)

min σ2
p =∑

k
∑
m
wkwmcov(k,m)

s.t. ∑
k
wk ≤ 1

. (7)

Hence, we calculate the average production at each location k,
namely, the mean μwind that is approximated by CFwind in the

case of wind sites and by PVpot in the case of solar sites. In
Eqs 6, 7, wk is the weight of each asset in the portfolio. For the
minimization of the portfolio variance σ2

p in Eq. 7, we calculate
the covariance matrix cov(k,m) between the different assets k and
m based on their geographical distribution using time-series.
Furthermore, we limit the weight for each asset in the optimal
portfolio, which cannot be larger than 50%. After solving the
bi-objective function presented earlier, we obtain the efficient
frontiers or the set of optimal portfolios; each point on the
frontier is a combination of assets according to certain weights
to form a portfolio with a certain return and its corresponding
volatility value.The algorithm defines the assets considered in the
portfolio.

We simulate returns for five assets to illustrate the concept
of the efficient frontier in Figure 2. The five points represent
the mean return and standard deviation for each one of the five
individual assets. The resolution of the bi-optimization problem
described in Eqs. 6, 7 enable finding the combination of assets
where returns are maximized for a given level of volatility or
minimized volatility for a given level of return. The set of
these optimal solutions constitutes the efficient frontier. On this
graph, the higher a point is to the left the better an asset is
because the expected return is higher and the related volatility is
lower.

3 RESULTS AND DISCUSSION

3.1 Evaluation of the Performance of
CORDEX WAS-22 Against the ERA5
Reanalysis Dataset
Theresults of the comparison betweenCORDEXWAS-22models
and ERA5 are presented in Figure 3 for sfcWind, Figure 4 for
tas, and Figure 5 for rsds. Regarding the annual climatology
of wind speeds, the results in Figure 3A demonstrate that the
geographical pattern of CORDEX WAS-22 models resembles
the one found for ERA5, although differences exist in the
south of Tibet. For the annual trends of surface winds, the
comparison in Figure 3B shows that not all individual climate
models reproduce the pattern of ERA5. In general, we find that
the ensemble mean for wind speed, noted sfcWindhist (first row
and second column in Figure 3C satisfactorily captures wind
speed annual trends, and shows similarities in the pattern of
the monsoonal trend (Figure 3D). This result is in general a
key finding because it increases confidence in the ability of
CORDEX models in reproducing the monsoon pattern, which
is a majorly impacting climatological feature on wind energy in
India.

We include a similar assessment for temperature and solar
radiation as they are used to estimate solar energy time series.
We find a strong resemblance in the spatial pattern of annual
temperature climatology between ERA5 and CORDEX WAS-22
individual models displayed in Figure 4A. Discrepancies in the
annual climatology for temperature are found in mountainous
areas toward the Himalayas in northern India because the
resolution of climate models cannot capture the complexity
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FIGURE 3 | Surface wind speeds: comparison of the annual climatology (A) and trends (B) of ERA5 and CORDEX WAS-22 (first row) and seasonal climatology
(C, D) in the two data sources (second row).
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FIGURE 4 | Surface temperature: comparison of the annual climatology (A) and trends (B) of ERA5 and CORDEX WAS-22 (first row) and seasonal climatology
(C, D) in the two data sources (second row).

of local spatial variability. There is also a good agreement in
the annual temperature trends (Figure 4B), and all datasets
exhibit trends with a positive slope. According to the results
for wind speeds, we find large similarities in the seasonal

temperature climatology between ERA5 (Figure 4C) and the
historical ensemble (Figure 4D).

We see in Figure 5A that differences exist in the spatial
pattern of the annual climatology for radiation, while ERA5
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FIGURE 5 | Surface shortwave downward radiation: comparison of the annual climatology (A) and trends (B) of ERA5 and CORDEX WAS-22 (first row) and
seasonal climatology (C) and (D) in the two data sources (second row).
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FIGURE 6 | Monthly standardized anomalies for wind speeds (A), surface downward radiation (B), and surface temperature (C) extracted from ERA5 and CORDEX
WAS-22 in the Indian subcontinent for the period between 1981 and the end of 2005.

data and the ensemble mean outline a good agreement with
only a slight difference in the spatial average (230 Wm−2 for
ERA5 and 220 Wm−2 for the ensemble mean). We notice
a high variability between ERA5 and the individual models
for the annual radiation trends in Figure 5B. Similar to the
annual pattern, we find a significant similarity in the seasonal
climatology for radiation between ERA5 (Figure 5C) and the
historical ensemble (Figure 5D).

In summary, we conclude that CORDEX WAS-22 models
for the three climate variables reproduce ERA5 data with

a reasonable degree of fidelity, and the resemblance in the
spatial distribution is stronger at the annual level than at the
seasonal level. Section 3.3 includes an evaluation of the temporal
variability at existing wind and solar sites.

3.2 Analysis of the Variability of CORDEX
WAS-22 Models at Existing Wind and Solar
Sites
Figure 6A outlines the temporal variability of standardized wind
speed at three existing wind-farm sites and compares CORDEX
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models with ERA5 (black line). In the three sites, the peak inwind
speeds reflected by ERA5 coincides with the monsoon season.
However, REMO models represented in purple shades outline a
peak delayed and occurring later during the year.The delay in the
monsoon peak for wind speeds from REMO models is apparent
while looking at the plots of the seasonality component. COSMO
and RegCM4 models show good correspondence in the seasonal
component of the individual models with ERA5. We see that
there are differences in the individual models and that in some
instances, the individual models are not able to reproduce the
peak in wind speed during monsoon.

At the four solar sites, we observe that the peak in radiation
(Figure 6B) reported by ERA5 (black line) occurs betweenMarch
and May. The time of occurrence of the peak for RegCM4 and
COSMOmodels coincideswell with that of ERA5. REMOmodels
(lines in the purple shade) fail to reproduce that as the peak
of these purple lines occurs later around the monsoon season.
This delay in peak radiation for REMO models also appears
when we analyze the seasonality component for radiation. In
Veltoor, the correspondence in the trends between ERA5 and
RegCM4 models is the highest which could indicate that not all
available models are equally suitable for a particular location.The
differences between the RCMs can be partially explained by the
fact that COSMO, for example, has difficulties over domains with
a climate substantially different from that of Europe where it has
been developed (Sørland et al., 2021). On the other hand, IITM-
RegCM4 over South Asia was developed at an Indian institute.

For temperature (Figure 6C), the peak that occurs in June
or July according to ERA5 data is accurately reported by
RegCM4models (green) andCOSMOones, while REMOmodels
persistently show delay with a peak occurring only after the
monsoon season and toward the end of the year.

The evaluation of the temporal variability between the
individual models in wind and solar locations highlights one of
the problems when evaluating climate change; these differences
between the ERA5 data and CORDEX models can be attributed
to differences in the parametrization of the models and shows
that uncertainty of climate predictions may still be large. Now
that we highlighted some differences in the models, we study the
trends for future projections before testing how the combination
of wind and solar energy can reduce the variability in the
trends.

3.3 Trends in CORDEX WAS-22
Predictions and Seasonal Variation of Both
Wind and Radiation Trends
In this section, we describe the geographical distribution of long-
termannual and seasonal climatology and trends for surfacewind
speed, temperature, and radiation in India under the RCP 8.5
scenario. The results for the annual climatology for the three
climate variables are presented in Figure 7. The evaluation
of the climatology between the two periods (2025–2055) and
(2065–2095) in Figures 7A,B shows that the median value of the
annual wind speed increases by 2.6%. Looking at the seasonal
climatology for surface wind in Figure 8, we observe that the

FIGURE 7 | Distribution of the annual climatology under the RCP 8.5
scenario: annual climatology for wind speed for the period between 2025
and 2055 (A) and 2065 and 2095 (B), radiation between 2025 and 2055 (C)
and 2065 and 2095 (D), and temperature between 2025 and 2055 (E) and
2065 and 2095 (F), (first row in each panel) and between 2065 and 2095
(second row of each panel).
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FIGURE 8 | Surface wind speed RCP 8.5 scenario: smallest (A), median (B), and largest (C) ensemble seasonal climatology for the period between 2025 and 2055,
and analogously (D–F) for the period between 2065 and 2095. (G–I) are the smallest, median, and largest ensembles during the 2025-2055 period, respectively,
and (J–L) are the smallest, median, and largest ensembles from 2065 to 2095. White areas indicate that at these grid points, trends are statistically nonsignificant at
the level 0.05.
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FIGURE 9 | Surface downward shortwave radiation RCP 8.5 scenario: smallest (A), median (B), and largest (C) ensemble seasonal climatology for the period
between 2025 and 2055, and analogously (D–F) for the period between 2065 and 2095. (G–I) are the smallest, median, and largest ensembles during the
2025-2055 period, respectively, and (J–L) are the smallest, median, and largest ensembles from 2065 to 2095, respectively. White areas indicate that at these grid
points, trends are statistically nonsignificant at the level 0.05.
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TABLE 4 | Spatially averaged seasonal correlation coefficients between rsds and sfcWind for the five subdomains analyzed for the two RCP scenarios and time
periods defined in each quarter of the year (noted Qtr).

Scenario RCP 2.6

Periods 2025–2055 2065–2095

Region Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Top-north 0.52 0.47 0.46 0.53 −0.83 −0.76 −0.79 −0.85
Northwest 0.31 0.34 0.27 0.19 0.04 0.08 0.32 0.33
Center 0.06 0.07 −0.02 −0.10 0.27 0.36 0.59 0.59
East 0.20 0.15 0.15 0.16 0.12 0.31 0.47 0.34
South −0.63 −0.44 −0.55 −0.70 0.80 0.83 0.91 0.90

Scenario RCP 8.5

Periods 2025–2055 2065–2095

Region Qtr1 Qtr2 Qtr3 Qtr4 Qtr1 Qtr2 Qtr3 Qtr4

Top-north −0.30 −0.42 −0.34 −0.26 −0.19 −0.29 −0.16 −0.10
Northwest 0.93 0.94 0.67 0.67 0.90 0.90 0.64 0.65
Center 0.52 0.19 −0.23 −0.02 0.44 0.17 −0.21 −0.04
East 0.76 0.48 0.20 0.47 0.70 0.46 0.22 0.45
South −0.32 −0.48 −0.66 −0.68 −0.27 −0.42 −0.62 −0.63

minimum seasonal values shown in Figure 8A increase for
monsoon and winter winds during the first time period, while
pre-monsoon and maximum monsoon wind speeds increased
in the later part of the century in Figure 8F. Regarding
the seasonal trends during the first period (Figures 8G, H,
I), we find a positive wind speed trend during the pre-
monsoon in the northwest and some southern areas during
the monsoon and winter seasons. We also find some increase
in the northeast for winter wind speeds from the maximum
ensemble. During the second period extending from 2065 to
2095 (Figures 8J, K, L ), we find a positive trend in the
northwest and southeastern coast for pre-monsoon wind speeds.
We can also report on some positive trends for monsoon wind
speeds in areas located in the northwest and northeast. Looking
at the maximum ensemble, we find a positive trend in the
north and northeast, indicating an increase in extreme wind
speeds. The spatial distribution of the annual climatology for the
downward surface radiation is presented in Figure 9. The highest
values are found in the north of India toward the Himalayas and
in the northwestern and southwestern parts of India. The annual
and seasonal mean climatology remains the same between the
first and second periods. Looking at the median ensemble for

the first period (Figures 9A–C), we see no significant change in
the pre/post-monsoon climatology. During the monsoon season
(Figures 9G–I), the northwest and northeast regions near the
coast have significant negative trends. During the second period,
the results show a positive trend in the north of India during
the monsoon that would involve an increase in PV output in
the region (Figures 9J–L). For temperature, we find a higher
climatology and positive trend toward the end of the century
and extreme temperatures increasing during the monsoon in the
whole of India except the South. Assuming that there will be
no changes in future solar radiation, these trends would imply
decreasing power output for solar PV as solar panel decrease
in efficiency with increasing temperatures (Dubey et al., 2013).
Prior to the portfolio analysis, we investigate the seasonal
correlation between surface downward radiation and wind speed
in the subregions defined earlier in Table 4. This table shows
that the two regions where the anti-correlation in wind and
radiation is strongly distinguishable and consistent for the two
RCP scenarios are the South from 2025 to 2055 and the North
from 2065 to 2095. Hence, we select two sets of wind and solar
assets in these two regions as candidates for the application of the
portfolio analysis.

TABLE 5 | Latitude and longitude of the assets in the South and North.

Assets South North

Latitude [in °] Longitude Latitude Longitude

Wind 1 74.2 14.7 79.4 34.8
Wind 2 74.6 14.3 78.3 33.3
Wind 3 76.0 9.6 77.2 32.8
Solar 1 78.8 16.4 78.7 35.3
Solar 2 75.1 16.2 74.1 31.1
Solar 3 78.2 18.0 78.9 34.8
Solar 4 75.1 15.3 77.4 34.4
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3.4 Portfolio Analysis and its Practical
Application to Future Wind and Solar
Energy Installations
We apply the portfolio framework in two sets of wind and solar
assets in the South and the North where the two solar radiation
and wind speed variables are anti-correlated. The characteristics
of the two sets are summarized in Table 5. We analyze how the

combination of wind and solar energy impacts the uncertainty
of prediction on energy returns. For the analysis of the results,
we evaluate how the spread of the efficient frontiers associated
with the mixed portfolios differs from the one found for wind-
and solar-only portfolios. The results are presented in Figure 10,
where the first row depicts the results for the set located in the
South from 2025 to 2055 and the second row depicts the ones for
the set located in the North for the second time-period. In the

FIGURE 10 | Efficient frontiers from the CORDEX WAS models in the portfolio set 1 located in the South for the period between 2025 and 2055 under RCP 2.6
scenario (A) and RCP 8.5 scenario (B). (C,D) are the efficient frontiers obtained for portfolio set 2 in the North for the period between 2065 and 2095 for RCP 2.6
and RCP 8.5, respectively. On each graph, the black horizontal dashed line represents the level of portfolio return examined, and vertical dashed lines represent the
spread of its associated standard deviation for mixed (orange lines), wind-only (pink lines), and solar-only (purple lines) portfolios.
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southern region, under RCP 2.6 and during the first time-period,
the evaluation of the efficient frontiers obtained for the set of asset
in Figure 10A shows that for a return level of 0.25, the standard
deviation of the portfolio for solar-only portfolios ranges between
0.035 and 0.045. The efficient frontier of wind-only portfolios
has only one optimal solution for the level of return, and the
standard deviation converges to a single value of 0.032. Different
weight values of the three wind assets currently evaluated cannot
improve the optimal return and thus its attached standard
deviation. The standard portfolio for mixed portfolios ranges

from 0.025 to 0.032. The mixed portfolio reduces the spread of
the standard deviation of the portfolio for this return level by
30% compared to the solar-only type. In the same region and
time period, under RCP 8.5, Figure 10B shows that for the same
return level of 0.25, the reduction of the uncertainty range for
the mixed portfolio compared to the solar-only type is also valid
as the standard deviation of the portfolio for solar-only varies
from 0.035 to 0.049, while it ranges between 0.025 and 0.035 for
the mixed type, which also corresponds to a reduction of 30%.
In the North, where the seasonal anti-correlation between wind

FIGURE 11 | Efficient frontiers from CORDEX WAS models at the daily time resolution in the portfolio set 1 located in the South for the period between 2025 and
2055 under RCP 2.6 scenario (A) and RCP 8.5 scenario (B). (C, D) are the efficient frontiers obtained for portfolio set 2 in the North for the period between 2065
and 2095 for RCP 2.6 and RCP 8.5, respectively. On each graph, the black horizontal dashed line represents the level of portfolio return examined, and vertical
dashed lines represent the spread of its associated standard deviation for mixed (orange lines), wind-only (pink lines), and solar-only (purple lines) portfolios.
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and solar radiation variables extends throughout the year under
RCP 2.6 and between 2065 and 2095, Figure 10C highlights that
for a return level of 0.31, the spread of the standard deviation
of solar-only portfolios ranges from 0.041 to 0.48, from 0.082 to
0.085 for the wind-only type, and from 0.039 to 0.041 for the
mixed portfolio. Hence, the reduction obtained with the mixed
portfolio reaches a level of 71.4% compared to the solar-only and
33.3% compared to the wind-only type. For this same set, under
RCP 8.5, we find that for a return level of 0.34 (Figure 10D), the
spread of the standard deviation for solar-only portfolios ranges
from0.052 to 0.097, forwind-only portfolios is between 0.092 and
0.096, and for the mixed portfolios is between 0.047 and 0.490.
This entails that the range obtained with the mixed portfolio for
the return level evaluated leads to reduction of the uncertainty
on the standard deviation by 96% compared to the solar-only
portfolio type and 50% compared to the wind-only one. The
benefits of the portfolio method are demonstrated in the two
regions presented considering the reduction of the spread in the
efficient frontiers for a certain return value when the portfolios
aremixed compared to the portfolios of solar-only type in the first
case and both wind and solar for the second case. We highlight
that we also find cases where the reduction of the spread for
the mixed portfolios does not hold. Yet, we consistently find that
mixed portfolios offer a great advantage in reaching higher return
levels for low- to-medium-risk portfolios (efficient frontiers on
the left), and this constitutes a desired advantage for investors.
The results also indicate that the reduction in the uncertainty
is more substantial for the solar-only portfolios than the wind-
only ones. The variability at the monthly time-scales is higher
for wind than solar portfolios. We investigate the impact of time
resolution on the findings and redo the analysis in the same
regions with daily data for CORDEX WAS-22 data under both
RCP scenarios. We evaluate the differences in the spread of the
mixed portfolio compared to the single portfolio types from daily
data for the same return levels defined for monthly data. The
results are included inFigure 11. In the South, with daily data, the
reduction in the spread of the uncertainty for the mixed portfolio
compared to the solar-only type is effective for return levels below
0.22. The efficient frontiers for wind portfolios from daily data
have the same characteristicswith a single optimal solution. In the
North, with daily data, we find that mixed portfolios have a lower
uncertainty spread than solar ones for high return levels (above
0.30). The conclusions found at the monthly resolution remain
valid with daily data.

4 CONCLUSION

Seasonal monsoons play a crucial role in determining the local
climate in India and are also impacted by climate change.
Recognizing the uncertainty in climate models, the underlying
idea in this study is to highlight that if climate models wrongly
predict a future modification in a weather pattern such as
monsoon, then the potential loss in one parameter, for example,
solar radiation can be compensated by a potential increase in
another one, wind, since these two variables are often anti-
correlated. To exemplify this idea, we first compare surface

wind speed, temperature, and solar radiation variables from
CORDEX WAS-22 data with ERA5 to assess their performance
in reproducing climatological characteristics in an historical
period. The examination of the standardized anomalies for
wind speed and solar radiation in different locations illustrates
variability between climate models but shows in general a
good performance. We then determine the annual and seasonal
climatology and trends of these climate variables during two
periods in the future, namely, 2025 to 2055 and 2065 to 2095
and calculate the seasonal trends in five subregions of the Indian
territory in order to identify regions where the trends between
radiation and wind are anti-correlated during the monsoon.
Finally, we construct solar assets in selected locations to test if
the portfolio methods reduce the uncertainty of the projections.
The research outcomes infer that thismethod does not necessarily
influence the level of the total return obtained, intending not
the energy output expressed in terms of a capacity factor, but
the uncertainty of this estimated return. Hence, we show that by
accounting for the correlation between wind and solar energy
in two different Indian regions, the application of the portfolio
framework highlights not only the diversification potential,
which is a known benefit, but also enables reducing uncertainty
estimates compared to a single variable, wind-only, or solar-
only assessment. The analyses and conclusion on any upward or
downward trend in wind and solar energy output are from the
energy resource perspective. Whether these available resources
can be fully converted into energy output would be subjected
to other technical, commercial, and operational factors in the
lifetime of the asset (e.g., component or system degradation
reduces the output over time).

This research is carried out in a climate change assessment
perspective in an effort to push forward the inclusion of climate
models in future discount cash flow models of investors that
engage in the energy transition with a rapid shift to clean energy.
We develop an analysis that is simple and reproducible in any
other region where wind and solar trends are anti-correlated.
The exercise can be carried out in existing or planned wind and
solar assets without a limitation on a specific portfolio structure.
Therefore, future analysis should explore other regions in South
Asia heavily influenced by monsoon interactions, which can be
good candidates for further case studies.

We acknowledge that one major limitation of this study is the
use of raw climate data to estimate portfolio returns instead of
bias-corrected datasets. However, we want to point out that the
portfolio method could be applied to current data from climate
models and for current local data. The comparison between the
three pairs (CORDEX, reanalysis, and local data) would then
allow to estimate more local effects since it is known that the
climate change signal, that is, the difference between the current
and future climate portfolio will often be preserved during
downscaling (Michel et al., 2021). Furthermore, the use of bias
correction techniques with local data would strongly be limited
in our case because we do not have access to good data that we
can use to compare the corrected dataset and validate the results.
As an illustration, wind speed measurements in India from the
Integrated Surface Database (ISD) of the National Center for
Environmental Information (NCEI) of the National Oceanic
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and Atmospheric Administration (NOAA) (Smith et al., 2011)
present gaps, and the available stations are not necessarily close
enough to the locations studied.The gap in the availability of solar
data in India because of the unavailability of ground monitoring
stations is discussed in the literature (Kumar, 2021).

The first practical implication of our research for investors
in India resides in the fact that there are locations where the
risk is decreased when combining two asset types and other
locations where the combination appears less effective. This
information may be useful in picking sites for development
of wind and solar renewable assets. We also see the value
of our study to portfolio managers interested in investigating
future investment possibilities in regions with no long-term
track of wind and solar measurements. Ziegler et al. (2018);
Kumar et al. (2022) recommend the extension of the lifetime
for existing wind farms in order to increase investment values.
Therefore, further applications of portfolio methods with climate
models can also tackle the threats to wind development linked
to aging installations in the context of re-powering decisions to
increase efficiency.
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