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In order to solve the problem of the time offset between the supervisory control and data
acquisition system and phasor measurement unit and the unknown distribution of non-
Gauss noise, this paper proposes a robust state estimation method for power systems
based on the Maximum Exponential Square and data fusion. Firstly, the robust
Mahalanobis distance is used to detect system outliers and assign appropriate
weights to the selected PMU buffer measurement. Then, the MES-based estimator
uses these weights to filter out non-Gauss PMU measurement noise to generate a set
of state estimation results. At the same time, the MES estimator is used to process the
received SCADA measurement with unknown measurement noise, thereby generating
another set of state estimation results. Finally, the two sets of estimation results from two
independent MES estimators are fused by using data fusion theory to obtain the final
optimal state estimation results. Based on IEEE-14 and 30-buses standard system, the
simulation results prove the effectiveness and robustness of the method proposed in
this paper.
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1 INTRODUCTION

State Estimation technology can be used to improve the state awareness and defense against bad data
in smart grid monitoring, reliability analysis and optimal load distribution, etc. (Liu Y et al., 2021).
Reliable data foundation is the cornerstone of other advanced applications (Alnowibet et al., 2021).
The purpose of SE is to obtain the best estimate of the current system node voltage modulus and
phase angle given a set of redundant measurements and accurate network topology and parameters
(Ma et al., 2021). Therefore, the performance of SE is highly dependent on the accuracy of the
measurement and the estimation model established under the assumptions, and reasonable
assumptions are crucial to the establishment of the model (Wang H et al., 2021). In SE,
measurements can be affected by the errors of the measuring instruments, and even serious
errors can occur due to instrument failures, impulse communication noise, etc. (Yu et al., 2021)
Due to changes in the environment and temperature, the network parameters will also change over
time, thus introducing uncertainty into the assumed SEmodel (Zanni et al., 2020). In addition, in the
absence of sufficient field information or lack of calibration, the zero-injection information of the
contact node may also be wrong (Zhao and Mili, 2018). Therefore, the measurement noise is
unknown in the actual power system, and the uncertainty is strong, not the traditional Gauss noise.

However, in the existing research on power systems, measurement noise is often assumed to be
Gaussian distribution, but actual measurement statistics show that measurement noise often deviates
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from the assumed Gauss model, resulting in outliers. In this case,
the performance of existing SE methods, which rely on the Gauss
assumption that measurement noise is Gaussian, may be
significantly degraded (Zhao and Mili, 2018). With the
widespread deployment of PMUs, PMUs can provide more
and more simultaneous voltage and current phasor
measurements with time stamps and higher accuracy than
traditional SCADA measurements, so are often used to
improve the accuracy of SE as well as enhance Detection and
identification of bad data. However, the sampling frequencies of
the measurements from the SCADA system and the PMU are
very different, leading to time offset issues, which must be unified
under the same time profile (Thomas and Mili, 2007; Gandhi and
Mili, 2010; Zhang et al., 2013; Murugesan et al., 2015; Zhao et al.,
2015; Le et al., 2020).

To address this issue, PMUmeasurements can be buffered and
hypothesis testing used to select the optimal buffer length
(Thomas and Mili, 2007; Gandhi and Mili, 2010; Zhang et al.,
2013; Murugesan et al., 2015; Zhao et al., 2015; Le et al., 2020).
The sample mean and covariance of these buffered PMU
measurements are then combined with SCADA measurements
for SE. For PMU measurement, it is generally assumed that its
error follows Gauss distribution. However, the latest statistical
research shows that PMU measurement noise follows heavy-
tailed distribution rather than Gaussian distribution (Zhao and
Mili, 2018). Based on this, the literature (Zhao and Mili, 2018)
improves the traditional static SE in the case of non-Gauss noise,
but this literature does not consider the time offset problem
between SCADA and PMU measurements.

Data Fusion theory is a relatively new area in the fields of
aerospace, information theory, and signal processing, dealing
with processes or states monitored by different classes of
sensors and performing information fusion. Each class of
sensors may have common characteristics, such as underlying
technology, level of accuracy, etc., and then combine the data
generated by the various sensors in an optimal way, in a sense,
relative to the information obtained from a single sensor; the
resulting final fused information quality is improved. Taking
SCADA and phasor measurements as different sources of
information for monitoring the state of the same power grid,
and applying data fusion technology to integrate PMU
measurements into state estimation, SCADA and phasor data
can be fused to improve the quality of the fusion data (Zheng,
2015; Li et al., 2021).

To improve the monitoring state awareness and deal with
unknown non-Gauss noise and time offset between SCADA and
PMU measurements, this paper proposes a robust SE method for
power systems based on MES and data fusion. In this method,
robust Mahalanobis distances are utilized to detect system
anomalies and assign appropriate weights to each selected
PMU buffering measure. These weights are further exploited
based on the MES estimator to filter out non-Gauss PMU noise
and help suppress outliers. At the same time, theMES estimator is
also used to process the received SCADA measurements with
unknown measurement noise, resulting in another set of SEs.
Finally, the effectiveness and robustness of the proposed method
are verified based on IEEE-14 and 30-node standard systems.

The contributions of this paper are as follows: embed the zero-
injection expression in the MES estimation model to eliminate
the equality constraints, which can improve the efficiency of the
algorithm; calculate the PMU buffer based on the robust
Mahalanobis distance, and unify the PMU and SCADA data
to a unified cross-sectional scale, which can eliminate the time
delay problem; use the state fusion based on data fusion theory
which can obtain the optimal state estimation result.

2 MEASUREMENT EQUATION

By the Wiener approximation theorem, the non-Gauss
distribution p(x) can be well approximated by the known
Gaussian distribution, so the following model can be used to
simulate the non-Gaussian distribution error:

p(x) � ∑NA

i�1 aiΦ(�xi,∑
i

) (1)

Based on whether the known measurement error obeys the
Gauss distribution, the above formula can be further expressed as
follows (Zhao and Mili, 2018):

G(e) � (1 − ε)Φ(e) + εK(e) (2)
where Φ(e) is the majority distribution of measurement noise,
usually modeled as Gauss distribution; K(e) is the unknown
distribution, which is considered to be a heavy-tailed density,
such as a Laplace density or Gauss density with large variance;
0≤ ε≤ 0.5,contamination coefficient, which adjusts the
contribution of non-Gauss components, e.g. for small ε, the
model indicates that most of the errors follow a Gauss
distribution, while maintaining a small fraction of non-Gauss
errors.

The measurement equation under non-Gauss noise can be
expressed as follows:

z � h(x) + G(e) (3)

3 PMU OPTIMAL BUFFER LENGTH
CALCULATION

Since the sampling frequency of the PMU is much higher than
that of the SCADA measurement, there is a time skew problem
for the PMU and SCADAmeasurements. In the existing research,
such as the literature (Zhang et al., 2013) and (Murugesan et al.,
2015), it is proposed to use the hypothesis test method to select
the optimal buffer length of the PMU measurement between two
SCADA measurement scans, but this is only for a single PMU
measurement point, therefore, it is necessary to calculate each
measuring point one by one, which is inefficient.

In this paper, based on Mahalanobis distance, the optimal
buffer length of multiple PMU measuring points is determined
(Zhao andMili, 2018), and all PMUmeasuring points are taken as
a whole.
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Let the PMU sample nr�30 samples/s per second, the SCADA
sampling interval Nt � 5s, in a interval, the PMU sampling
number N � Ntpnr�150 samples, use Z to represent the
sampling matrix, and divide it into nsubset � Nt � 5 subsets;
Z � [Y1, Y2, Y3, Y4, Y5], PMU Optimal Buffer Length
calculated based on the following steps:

(1) Calculate the median value of the Z matrix:

Y′ � median(z) � [y1
′, y2

′, y3
′, y4

′, y5
′] (4)

(2) Perform change point detection on Y5, if there is a change
point, use the last PMU data; otherwise,Y5 will be included in
the PMU buffer set;

(3) Based on the Mahalanobis distance, the system changes are
detected for η1 � [y5

′, y4
′], η2 � [y4

′, y3
′], . . . , η4 � [y2

′, y1
′]:

Pi � max⎛⎝
∣∣∣∣∣yT

i v −median(yT
j v)∣∣∣∣∣

λ ·median(∣∣∣∣∣yT
k v −median(yT

j v)∣∣∣∣∣)⎞⎠, ‖v‖ � 1 (5)

If all of Mahalanobis distance Pi in η1 are less than ς1,
ς1 � χ22,0.975, then contains Y4 in buffing set Z’, otherwise the
algorithm stops; and continue to check
η2 � [y4

′, y3
′], . . . , η4 � [y2

′, y1
′], until the end.

(4) Calculate the measurement mean �h and variance �C in the
PMU buffer set:

�C � ∑α
i�1(wi1hi − �h)(wi1hi − �h)T∑α

i�1wi1 − 1
(6)

�h � ∑α
i�1wi1hi∑α
i�1wi1

(7)

Based on the above steps, the optimal buffer length of multiple
PMU measuring points can be obtained. After calculating the
mean �h and variance �C, it can be matched with the SCADA data
under the same section.

4 ROBUST SE METHOD BASED ON MES
AND DATA FUSION

4.1 MES-Based SCADA Robust SE
Based on the MES estimation method, the MES estimation model
is established by using SCADA measurement, and its expression
is as follows:

⎧⎪⎪⎨⎪⎪⎩
max J1(x) � ∑m

i�1
wi exp( − [zi − hi(x)]2

2σ2 )
s.t.c(x) � 0

(8)

The zero injection constraint in polar coordinates can be
expressed as:

{xB � Ψ(xN)
Ψ � ΦΓΦ−1 (9)

Γ is:

Γ � −[YIm,BB YRe,BB

YRe,BB −YIm,BB
]−1[YIm,BN YRe,BN

YRe,BN −YIm,BN
] (10)

Φ is:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
uk �

������
e2k + f2

k

√
θk � arctan(fk

ek
) (11)

Φ−1 is:

{ ek � uk cos(θk)
fk � uksin(θk) (12)

Substituting this constraint into the MES estimation model,
we get:

max J1(xN) �

∑m
i�1
wi exp( − [zi − hi(xN,ΦFΦ−1(xN))]2

2σ2
) (13)

make:

rwi � −[zi − hi(x)]�
2

√
σ

(14)
fi(x) � exp(−r2wi) (15)

Using Newton’s method to solve, the modified equation is
obtained:

Δxk � [ Δxk
B

Δxk
N

] � −QHTF(z − h(xk
N,ΦΓΦ−1(xk

N))) (16)

Where F and Q are:

F(x) � diag{Fii(x)} � diag{wifi(x)
σ2

} (17)

Q � −HTF[I − diag([z − h(x)2
σ2

)]H (18)

The state quantity is corrected to:

xk+1
N � xk

N + Δxk
N (19)

xk+1
B � ΦFΦ−1(xk+1

N ) (20)

xk+1 � [xk+1
B

xk+1
N

] (21)

The iterative calculation flow of estimation based on MES is
shown in Figure 1:

The calculation flow of MES estimator is as follows:

(1) Initialization parameters, k � 0, set the initial value of xk,N

(2) Calculate xk,B from xk,N according to Formula (20)
(3) Calculate the matrices H, F and Q, solve Eq 16, get Δxk

N,
update xk+1

N � xk
N + Δxk

N, and calculate xk+1
B

(4) If max |Δxk|< ε, the state estimation is converged and the
calculation is over, otherwise go to step ⑶.
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The state error variance matrix of SCADA-based MES
estimation is:

∑
s
� E[(x − x̂)(x − x̂)T] � [HT(x)F(x)H(x)]−1 (22)

It should be noted that this paper embeds the zero-injection
expression in the MES estimation model, so that the equality
constraints do not have to be explicitly expressed, and the equality
constraints are eliminated. It is not necessary to use Lagrange
multiplier method to improve the efficiency of the algorithm,
which is one of the main tasks in this paper.

4.2 MES-Based PMU Robust SE
Similar to SCADA robust SE, PMU measurement alone is used
for robust estimation based on MES model (Min et al., 2021;
Wang Q et al., 2021), but PMU measurement is a voltage and
current phasor, and its measurement function is a linear function:

�h � Ax + ε (23)

Based on the MES model, we can get:

max J1(xN) �

∑m
i�1
wi exp( − [zi − �h(xN,ΦFΦ−1(xN))]2

2σ2
) (24)

The Newton method is also used to solve the equation, and the
modified equation is obtained:

Δxk � [ Δxk
B

Δxk
N

] − QATF(z − h(xk
N,ΦFΦ−1(xk

N))) (25)

The state quantity correction is the same as formulas
(19)-(21).

After iterative convergence, the state error variance matrix of
the PMU-based MES estimation is:

∑
p
� E[(x − x̂)(x − x̂)T] � [ATF(x)A]−1 (26)

FIGURE 1 | MES calculation flowchart.
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4.3 State Fusion Based on Data Fusion
Theory
In this paper, referring to data fusion theory, SCADA and
PMUmeasurements are regarded as different data sources and
their measurements are represented by zS and zP, respectively.
The SCADA-based and PMU-based SE devices are called SSE
and PSE, respectively. After processing zS and zP respectively,
two independent SE results x̂s and x̂p can be generated, and the
corresponding error variance matrix is represented by ∑s and∑p.

Based on a, b, c and d, the best state fusion result is obtained by
data fusion:

x̂ � ∑p∑p + ∑s

x̂s + ∑s∑p +∑s

x̂p (27)

As can be seen from the above formula, the denominator of the
weight of the SE of xs and xp is the same, and the numerators are∑p and ∑s respectively. It means that the size of the weight is
inversely proportional to the variance of the estimation result,
that is, the estimation result with higher precision has a
correspondingly larger weight, and the estimation result with
lower precision has a correspondingly smaller weight. The above
estimation method is called the data fusion SE method.

Combining data fusion with MES estimation model is the
second main work of this paper.

The schematic diagram of the fusion SE calculation logic is
shown in Figure 2.

FIGURE 2 | Data fusion SE calculation flowchart.

FIGURE 3 | IEEE-14 buses standard system network structure.

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8605565

Yu et al. Robust State Estimation for Power System

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


5 CASE SIMULATION AND ANALYSIS

5.1 Basic Data and Simulation Conditions
In order to verify the performance of the robust SE method based
on MES and data fusion proposed in this paper, simulations are
carried out based on the IEEE-14 node and IEEE-30 node
standard system, and the topology diagrams are shown in
Figures 3, 4, respectively.

For the IEEE-14 node standard system, three PMUs were
deployed on nodes 4, 7, and 14, and 31 SCADA measurements
were considered, including 16 branch power, 14 injected power, and
one node voltage amplitude. For the IEEE-30 node standard system,
38 pairs of power measurements are considered, including 15 pairs
of active and reactive power injection and 23 pairs of branch active
and reactive power measurements; active and reactive power
injection at nodes 11, 12, 24,27,30, and active and reactive power
at branches 24-23, 25-26, 30-27 are key measurements, six PMUs
are deployed on nodes 8, 9, 12, 24, 25, and 26.

At each layout point, PMU provides the voltage of the layout
point and the branch current vector associated with the layout
point; SCADA provides the voltage amplitude of the layout point,
injected active power, reactive power and the branch active
power, reactive power associated with the layout point.

1) Hybrid data WLS estimator (ie HWLS) (Li et al., 2013), which
combines buffered PMU measurements with SCADA
measurements for SE.

2) Two-stage WLS estimator (ie TWLS) (Liu X et al., 2021),
which first performs traditional SE based on SCADA
measurements, and its SE estimation results are further
combined with PMU measurements to perform second-
stage linear SE.

Using the MAE of the voltage modulus value and the angle
estimate value as the overall performance evaluation index, the

algorithm relationship between the method proposed in this
paper and the HWLS and TWLS methods is shown in Figure 5.

5.2 Simulation Results and Analysis
5.2.1 Under Gaussian Noise
First consider adding known Gauss noise to SCADA and PMU
measurements to better understand the best performance of each
method (Al-Saud et al., 2019; Mohamed et al., 2019).

For this, the noise of each SCADA and PMU measurement is
assumed to be Gaussian random variables with zero mean and
variance of 2 × 10–4 and 2 × 10–6 respectively. The mean absolute
errors of the voltage modulus and angle estimated by each
method are shown in Tables 1, 2, respectively.

It can be seen from Tables 1, 2 that under the Gauss
measurement noise, for the IEEE-14 node standard system,
the voltage modulus value and the MAE of the phase angle of
the HWLS are 5.01 × 10–4 and 3.94 × 10–2, respectively. The
voltage modulus of TWLS and the MAE of the phase angle are
4.52 × 10–4 and 3.55 × 10–2, respectively. The voltage modulus
value and the phase angle MAE of the method proposed in this
paper are 3.74 × 10–4 and 3.43 × 10–2 respectively. For the IEEE-
30 node standard system, theMAE of the HWLS voltage modulus
and phase angle is 3.77 × 10–4 and 2.71 × 10–2, respectively. The
voltage modulus value and phase angle MAE of TWLS are 2.99 ×
10–4 and 9.96 × 10–3 respectively. The MAE of the voltage
modulus and the phase angle of the method proposed in this
paper are 2.53 × 10–4 and 6.72 × 10–3, respectively.

Therefore, the method proposed in this paper is better than
TWLS and outperforms the HWLS method. This is because both
the proposed method and TWLS fully consider the buffered PMU
measurement, which avoids the influence of SCADA with lower
measurement accuracy on the PMU with higher measurement
accuracy in the hybrid measurement, thereby improving the
estimation accuracy.

To further evaluate the performance of various methods at
another Gauss noise level. Assuming that the variance of each
SCADA and PMU measurement is increased to 6 × 10–3 and 6 ×
10–5, respectively, the verification is performed based on the
IEEE-30 node standard system, and the results are shown in
Table 3.

It can be seen from Table 3 that for HWLS, TWLS and the
proposed method, the MAEs of the estimated voltage modulus
values are 1.57 × 10–3, 1.35 × 10–3, and 1.21 × 10–3,
respectively, and the MAEs of the estimated voltage phase
angles are 4.32 × 10–2, 3.33 × 10–2 and 1.94 × 10–2. It can be
seen that the estimation error of all methods increases slightly
as the noise level increases, because at a given measurement
redundancy level, the estimation statistical efficiency will
decrease if the noise level increases. However, the proposed
method still outperforms the other two HWLS and TWLS
methods.

5.2.2 Under Non-Gaussian Noise
In practical applications, the noise statistics of SCADA and PMU
measurements are usually unknown and deviate from Gauss
assumptions due to the aging process of voltage and current
transformers, changes in ambient temperature, communication

FIGURE 4 | IEEE-30 buses standard system network structure diagram.
Use two methods to compare with the method proposed in this paper.
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channel noise, etc. To evaluate the performance of each method
against unknown statistical noise, non-Gauss noise models,
namely Gauss mixture model and heavy-tailed Laplacian
noise, were used for simulation. Specifically, for SCADA

measurements, a Gaussian mixture model with two Gauss
components (non-Gaussian after mixing) is assumed, which is
represented by zero mean and variance 2 × 10–4 and 2 × 10–3 with
weights of 0.95 and 0.05, respectively. For the PMU
measurement, the variances are assumed to be 2 × 10–6 and
2 × 10–4, and the weights are 0.9 and 0.1. In the second case, a
Laplacian distribution with zero mean and scale parameter 10–3 is
used for the noise of SCADA and PMU measurements.

Tables 4, 5 present the MAE results for the voltage modulo
values and angles estimated by each method in the presence of

FIGURE 5 | The algorithm relationship diagram between the method proposed in this article and the HWLS and TWLS methods.

TABLE 1 | Average absolute error of voltage amplitude under Gaussian noise (pu).

Standard System HWLS TWLS Proposed method

EEE-14 node 5.01 × 10–4 4.52 × 10-4 3.74 × 10–4

IEEE-30 node 3.77 × 10–4 2.99 × 10-4 2.53 × 10–4

TABLE 2 | Average absolute error of voltage phase angle under Gaussian noise (°).

Standard System HWLS TWLS Proposed method

IEEE-14 node 3.94 × 10–2 3.55 × 10-2 3.43 × 10–2

IEEE-30 node 2.71 × 10–2 9.96 × 10-3 6.72 × 10–3

TABLE 3 | Average absolute error of voltage under Gaussian noise in three
methods.

Standard System HWLS TWLS Proposed method

Modulus value (pu) 1.57 × 10–3 1.35 × 10–3 1.21 × 10–3

Phase angle (o) 4.32 × 10–2 3.33 × 10–2 1.94 × 10–2

TABLE 4 | Average absolute error of voltage amplitude under non-Gaussian
noise (pu).

Standard System HWLS TWLS Proposed method

IEEE-14 node 9.41 × 10-3 8.37 × 10-3 6.75 × 10-3
IEEE-30 node 4.91 × 10-3 1.95 × 10-3 1.42 × 10-3

TABLE 5 | Average absolute error of voltage phase angle under non-Gaussian
noise (°).

Standard System HWLS TWLS Proposed method

IEEE-14 node 0.51 0.39 0.18
IEEE-30 node 0.34 0.27 0.13
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non-Gauss measurement noise simulated by the Gauss hybrid
model, respectively. Under the Gauss mixed model noise, for the
IEEE-14 node standard system, the voltage modulus value and
phase angle MAE of HWLS are 9.41 × 10–3 and 0.51, respectively,
and the voltage modulus value and phase angleMAE of TWLS are
8.37 × 10–3 and 0.39, the MAE of the voltage modulus and the
phase angle of the method proposed in this paper are 6.75 × 10–3

and 0.18, respectively. For the IEEE-30 node standard system, the
voltage modulus value and phase angle MAE of HWLS are 4.91 ×
10–3 and 0.34, respectively, and the voltage modulus value and
phase angle MAE of TWLS are 1.95 × 10–3 and 0.27, respectively.
The voltage modulus value and the phase angle MAE of the
proposed method are 1.42 × 10–3 and 0.13, respectively.

Compared with the Gauss noise cases in Tables 1, 2, the
estimation errors of all three methods are increased. But HWLS
and TWLS have a larger increase in estimation error because they
rely heavily on the Gauss assumption of SE. In contrast, the
robust estimator proposed in this paper based on MES and data
fusion is more robust and produces more reasonable SE results.

Figures 6, 7 show the absolute error values of HWLS,
TWLS and the proposed method under Laplace measurement
noise. As can be seen from the results in the figures, the results
are in complete agreement with those shown in Tables 4, 5.
Therefore, it can be concluded that the robust estimator based

FIGURE 6 | The absolute error of the voltage amplitude of each method
under Laplace measurement noise.

FIGURE 7 | The absolute error of the voltage phase angle of each
method under Laplace measurement noise.

FIGURE 8 | The absolute error of the voltage amplitude under
different cases.

FIGURE 9 | The absolute error of the voltage phase angle
different cases.
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on MES and data fusion proposed in this paper does not
require the measurement noise to be Gauss noise, and has
better robustness in dealing with non-Gauss noise.

5.2.3 Robustness to Bad Data
In order to verify the robustness of the robust estimator proposed
in this paper to various types of bad data, in the presence of bad
data for bad leverage points, bad key measurements, and
measurements of multiple interactions, based on the IEEE-30
node standard system simulation.

Set up the following four simulation schemes:

Scheme 1: In the case of a single bad data, change the active power
injection into P8 of Section 8 to 0.1pu.
Solution 1: For bad lever measurement, change P19 and P19-
20 to 0.1pu.
Solution 2: For bad key measurement, change P11 to 0.2pu.
Scheme 3: For bad data affected by multiple interactions,
change P2 and Q2 to the original opposite numbers.

Figure 8, 9 show the simulation results of different types of bad
data under the four schemes. Obviously, since the robustness of the
robust estimator based on MES and data fusion proposed in this
paper is provided by the robust Mahalanobis distance and MES
estimator. The influence of various types of bad data is bounded,
resulting in a very small estimation deviation. The maximum
deviation of the voltage modulus value estimation is 0.00094pu,
and the maximum deviation of the voltage phase angle estimation is
0.0075°, which can be ignored in practical applications.

6 CONCLUSION

To solve the problem of unknown non-Gauss noise and time
offset of SCADA and PMU measurements, this paper proposes a
robust SE method for power systems based on MES and data
fusion based on data fusion theory and MES estimation model.
This method has the following characteristics:

(1) The zero injection expression is embedded in theMES estimation
model, so that the equality constraints do not need to be expressed
explicitly, and the equality constraints are eliminated, and the
Lagrange multiplier method is no longer required to process,
thereby improving the efficiency of the algorithm;

(2) PMU buffer measurement based on robustMahalanobis distance
selection, and assign weights, further based on MES SE method,
which can filter non-Gauss measurement noise and outliers;

(3) Based onMES and data fusion theory, perform SE for PMU and
SCADA measurements with unknown measurement noise.

Based on the two sets of estimation results, the estimation
results from two independent MES estimators are fused by
using data fusion theory to obtain the final optimal SE.

Based on the IEEE-14 and IEEE-30 node standard systems, the
simulation results show that the proposed method is effective and
robust, and has obvious advantages compared with the existing
methods.
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NOMENCLATURE

Supervisory control and data acquisition system SCADA

Phasor measurement unit PMU

State Estimation SE

Data Fusion DF

Maximum Exponential Square MES

Mean absolute error MAE

Variables

The weight of measurement (∑NA
i�1 ai � 1) ai

The number of Gauss elements NA

The mean of measurement �xi

The variance of measurement ∑i

The non-Gauss distribution p(x)
The Gauss distribution Φ(�xi,∑i)
The unknown distribution K(e)
Contamination coefficient ε

The measurement z

The nonlinear measurement function h(x)
The measurement error G(e)
Mahalanobis distance Pi

The buffing set Z’

The number of columns of Z’ α

The weight of the ith column of Z’ ,
wi1 � min(1, ς2P2

i
), ς2 � χ2α,0.975 wi1

The measurement of Z’ hi

The state quantity x

The measurement function hi(x)
The ith measurement weight wi

The ith measurement zi

The Parzen window width σ

The zero injection node constraint c(x) = 0

The zero injection power node B

The non-zero injection node N

The transformation relationship between xB and xN Ψ

The measurement Jacobian matrix H

Themean value of the measurement in the PMU buffer set �h

The relationship matrix between the PMU and the state
quantity A

The PMU measurement error variance in the PMU buffer
set �C
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