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Biorefinery processes for converting lignocellulosic biomass to fuels and chemicals
proceed via an integrated series of steps. Biomass is first pretreated and
deconstructed using chemical catalysts and/or enzymes to liberate sugar monomers
and lignin fragments. Deconstruction is followed by a conversion step in which engineered
host organisms assimilate the released sugar monomers and lignin fragments, and
produce value-added fuels and chemicals. Over the past couple of decades, a
significant amount of work has been done to develop innovative biomass
deconstruction and conversion processes that efficiently solubilize biomass, separate
lignin from the biomass, maximize yields of bioavailable sugars and lignin fragments and
convert the majority of these carbon sources into fuels, commodity chemicals, and
materials. Herein, we advocate that advanced in silico approaches provide a
theoretical framework for developing efficient processes for lignocellulosic biomass
valorization and maximizing yields of sugars and lignin fragments during deconstruction
and fuel and chemical titers during conversion. This manuscript surveys the latest
developments in lignocellulosic biomass valorization with special attention given to
highlighting computational approaches used in process optimization for lignocellulose
pretreatment; enzyme engineering for enhanced saccharification and delignification; and
prediction of the genome modification necessary for desired pathway fine-tuning to
upgrade products from biomass deconstruction into value-added products. Physics-
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based modeling approaches such as density functional theory calculations and molecular
dynamics simulations have been most impactful in studies aimed at exploring the
molecular level details of solvent-biomass interactions, reaction mechanisms occurring
in biomass-solvent systems, and the catalytic mechanisms and engineering of enzymes
involved in biomass degradation. More recently, with ever increasing amounts of data
from, for example, advanced mutli-omics experiments, machine learning approaches have
begun to make important contributions in synthetic biology and optimization of metabolic
pathways for production of biofuels and chemicals.

Keywords: multi-omic analyses, lignin peroxidase, cellulase, predictive biology, ionic liquid, lignocellulosic biomass,
computational biology, and chemistry

INTRODUCTION

Plant biomass is the most abundant renewable source of carbon
accessible to humanity. Lignocellulosic biomass is primarily
comprised of three natural polymers: cellulose, hemicellulose,
and lignin (Higuchi, 1997) (Figure 1). Cellulose is a linear,
homologous polymer consisting of β-D-glucose units bonded
together by β-1-4-glycosidic bonds. The degree of polymerization
(DP) of cellulose is variable in different types of biomass (Hallac
and Ragauskas, 2011). For example, the DP of cellulose chains
ranges from 10,000 to 15,000 for native wood and cotton,
respectively. The glucose polymers of cellulose are held
together by van der Waals bonds and networks of strong
H-bonds, enforcing crystalline regions and leading to the great
strength and recalcitrance of cellulose (Shen and Gnanakaran,
2009). These cellulose microfibrils are entangled with
hemicellulose and lignin within the plant cell wall.
Hemicellulose is a heteropolysaccharide composed of pentose

polymers (xylose and arabinose) and hexose polymers (glucose,
galactose, and mannose) with DP ranging from 50 to
200 monosaccharides (Farhat et al., 2017; You et al., 2019)
and sugar (uronic) acids (Huffman, 2003). Lignin is the third
component and comprises 15 – 35 wt% of lignocellulose. Lignin is
a three-dimensional amorphous polymer composed of three
phenylpropanoid monolignols: ρ-coumaryl, coniferyl, and
sinapyl alcohols, which in the lignin polymer are the ρ-
hydroxyphenyl (H), guaicyl (G), and syringyl (S) units,
respectively. The ratio of the three monolignols varies among
plant phenotypes, resulting in many different lignin forms. The
creation of a variety of linkages among these monolignols
during lignin polymerization in the cell wall makes lignin a
highly branched complex heterologous polymer. These
linkages between H, G and S subunits are β-O-4′, β-5, α-O-
4, 4-O-5′, β-β in primary and β-1′, and 5-5′ in minor content
(Yoo et al., 2016). The predominant linkages in lignin are beta-
aryl ether bonds, typically 50% in softwood and 60% in

FIGURE 1 | Computational strategies used in process optimization for lignocellulose biomass deconstruction and upgrading to valuable fuels and chemicals.
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hardwood (Yoo et al., 2016). Several parameters affect the
structure of lignocellulose, including the DP of cellulose fibers,
the degree of crystallinity, how well the hemicellulose coats
cellulose, the amount of lignin, and how the lignin protects the
cellulose fibers. Therefore, the information on lignocellulose
structure and composition will govern and direct strategies for
deconstructing lignocellulose and converting it into value-
added products.

Due to the complex nature of biomass and variation in its
composition and structure, there is no universally optimized
process for physical-chemical pretreatment and conversion of
lignocellulosic biomass to valuable products (Ray et al., 2020).
The recalcitrance of biomass to deconstruction and conversion is
created in part by the crystallinity of cellulose, the complex
interactions among cellulose, hemicellulose, and lignin, and
the heterogeneity of lignin. This limits biomass deconstruction
and escalates the pretreatment and enzymatic saccharification
costs. To help optimize the processing steps, computational
approaches have been used to develop a fundamental
understanding of the interactions among biomass components
and solvents for improving the accessibility to carbohydrate fibers
before enzyme-catalyzed saccharification, the structure and
function of biomass-degrading enzymes for engineering
improved stability and activity under harsh pretreatment
conditions, and the engineering of metabolic pathways in
production hosts for improved titers and metabolic rates. The
use of advanced computational techniques to optimize integrated
pretreatment technologies (Figure 1, left panel) is discussed in
Section 2. Computational methods, including quantum
mechanical and molecular mechanical calculations, have been
employed to help develop novel strategies for enzyme
preparation, enzyme engineering, and enzyme mixture
formulations to improve saccharification and lignolysis. Some
of the latest studies on protein engineering approaches are
discussed in Section 3 (Figure 1, middle panel). Finally, in
Section 4 (Figure 1, right panel) of this review, we survey
computational tools applied to system biology studies,
including advanced technologies, multi-omics, and additional
tools necessary for desired pathway engineering and fine-
tuning to maximize yields from upgrading products produced
during biomass deconstruction into value-added fuels, chemicals,
and other products.

HIGHLIGHTS IN THE APPLICATION OF
COMPUTATIONAL METHODS IN
LIGNOCELLULOSE PRETREATMENT
Lignocellulosic biomass, including human-inedible agricultural,
forest, and herbaceous residues, stands out as a sustainable
alternative for renewable, carbon-neutral production of fuels,
chemicals, materials, and energy (Castilla-Archilla et al., 2019).
However, the direct use of lignocellulosic biomass is restricted
due to its recalcitrance to degradation, which is due to the strong
covalent and hydrogen bond interactions among the complex
chemical structure of its constituents, namely, cellulose,
hemicellulose, and lignin, and thus, pretreatment is necessary

(Gibson, 2012; Haghighi Mood et al., 2013). Existing approaches
include biological, abiotic (physical, chemical, and
physicochemical), and hybrid technologies (Figure 2) (Tu and
Hallett, 2019). An ideal pretreatment technology would
successfully disrupt the strong interactions among
biopolymers, leading to their selective fractionation, minimize
by-product formation, and be economically viable. Nevertheless,
optimizing these objectives alone or in combination is essential to
benefit the overall process, as each pretreatment technology,
owing to its unique characteristics, is applicable to a specific
biomass type and source. For example, physical pretreatment
approaches are the most conventional methods for lignocellulosic
biomass pretreatment. However, their limited scalability, high
energy requirements, and multiple feedstock non-viability
narrow their applicability. Chemical pretreatment methods
involving hot water, dilute acid, ionic liquids, alkali, organic
solvents (organosolv), and ammonia fiber expansion have been
widely studied (Haghighi Mood et al., 2013; Bhardwaj et al.,
2019). While requiring less energy and being generally non-toxic,
biological pretreatments typically require longer retention times
for effective pretreatment, hindering their commercial feasibility.

Pretreatment of lignocellulosic biomass facilitates the
production of biologically available intermediates such as
glucose, cellulose, and lignin fragments that can be converted
to final products such as biohydrogen, biomethane, bioethanol,
biomethanol, biobutanol, and bio-diesel. The efficiency of a given
pretreatment process is a function of the constituents of the
biomass and how they interact with the pretreatment process.
Rigorous efforts to optimize a single biomass pretreatment
technology or combinations of technologies have improved
economic viability and environmental sustainability. However,
the mission is still not accomplished, given the vast number of
variables involved in optimizing pretreatment technologies. In
this regard, computational tools that leverage experimental
datasets have become essential in identifying sustainable and
robust multi-product biorefinery methodologies. The field of
computational chemistry and biology has become increasingly
predictive in the twenty-first century, and active applications have
been extended to studies, predictions, and optimization of
biomass pretreatment technologies. These simulation
approaches predict desired outputs based on existing
experimental datasets in which pretreatment efficacy has been
measured for a diverse set of feedstocks under a variety of
pretreatment conditions. Computational methods used to
understand and predict pretreatment efficacy have
predominantly used atomistic physics-based modeling, but
atomic scale machine learning methods are also being
developed that have the potential to speed up pretreatment
optimization.

Atomic-scale modeling techniques, including density
functional theory (DFT) and molecular dynamics (MD), have
been instrumental in advancing the understanding of
experimental pretreatment results and predicting the
properties of biomass-solvent systems at the level of atom-by-
atom interactions among biomass, water, and solvent. DFT is a
powerful tool for obtaining static properties such as local energy
minima, reaction pathways, and transition states and calculating
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other thermodynamic properties for a relatively small system
(tens to hundreds of atoms) (Cohen et al., 2012). For evaluation of
larger systems (thousands to millions of atoms), MD simulations
are critical in calculating equilibrium thermodynamic and
physical properties (as a function of hydrogen bonds),
sampling conformational states, and evaluating femtosecond to
millisecond dynamics and the role of long-range forces (Rapaport
et al., 1996; Frenkel and Smit, 2002). It is to be noted that classical
MD simulations are limited to studying equilibrium states and
properties of the system, and quantum chemistries such as bond-
breaking and bond-forming are not considered. However,
accurate force fields for calculating non-bonded interactions,
including van der Waals and Coulombic interactions, are
essential to understanding interactions between lignocellulosic
biomass components and pretreatment solvents to design an
efficient process. The total potential energy of the given
lignocellulosic biomass system is calculated using empirical
force fields such as GROningen MOlecular Simulation
(GROMOS), Polymer Consistent Force Field (PCFF), and
Chemistry at Harvard Macromolecular Mechanics
(CHARMM). The MD methods using these force fields to
study biomass–solvent interactions are discussed in the
upcoming sections.

Machine learning (ML) approaches have the potential to
generate predictive models of biomass pretreatment efficacy
and would provide potentially much faster ways to evaluate

and optimize pretreatment technologies. However, ML
approaches require either very large databases from which to
learn how to predict pretreatment outcomes from inputs and/or
the ability to account for and features the atomic scale forces
governing biomass–solvent interactions. Recently, neural
networks have been developed that provide insights into the
atomistic properties of molecules and are trained to look for a
specific “structure” or “moiety” with a defined interaction or
activity (Grisafi and Ceriotti, 2019). They computed the atom-
global information on the structure and composition utilizing
Smooth Overlap of Atomic Properties (SOAP), long-distance
equivariant (LODE), and similar ideas to improve the accuracy
and efficiency of long-range information. This ML approach
provides a representation of the system that accounts for both
short-range atomistic interactions and long-range interactions,
giving it the potential to help design and optimize an efficient
pretreatment method.

Modeling Cellulose and Lignin Structures
The structures of cellulose, hemicellulose, and lignin and their
interactions play an essential role in accurately predicting the
pretreatment efficacies, i.e., creating the initial coordinates in
terms of biopolymer structure is vital for investigating their
properties and their interactions with solvents (Ciesielski et al.,
2020). Typical tools for building structures of sugar polymers
include “Cellulose Builder” (Gomes and Skaf, 2012) and

FIGURE 2 | Pivotal pretreatment approaches for the valorization of lignocellulosic biomass.
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“doGlycans” (Danne et al., 2017). While the former facilitates the
construction of any length of various cellulose crystalline forms
such as Iα, Iβ, II, and III, the latter enables a structural topology for
cellulose and hemicellulose. In 2003, amorphous and crystalline
cellulose models were compared using MD simulations for the
first time. The study also analyzed various properties and showed
that their conformational states, density, and hydrogen bonding
networks were consistent with available experimental data
(Mazeau and Heux, 2003). Since then, significant progress has
been made in modeling cellulose crystal structures and their
hydrogen-bonding networks (Ciesielski et al., 2020). MD
simulations have also been employed to study twisted
conformations of cellulose around their glycosidic linkages, as
was observed in atomic force and transmission electron
microscopy studies (Hanley et al., 1997; Bowling et al., 2001).
The deviation of glycosidic linkages from 180° was suggested
using MD simulations; however, the twisted microfibril was
unstable and reverted to the original untwisted structure
independent of the temperature (Matthews et al., 2011;
Matthews et al., 2012). In another interesting study, the anti-
and syn-conformations of four different glucan decasaccharides
were evaluated using the CHARMM36 force field and compared
with small-angle X-ray scattering to unveil the glycosidic linkage
flexibility (Kameda et al., 2018). MD simulation of branched
hemicelluloses revealed the higher stiffness of the glucomannan
backbone compared to the xylan backbone (Martínez-Abad et al.,
2017), stability of various conformers (Berglund et al., 2019), and
impact of acetylation on cellulosic interactions (Busse-Wicher
et al., 2014).

Similarly, “Lignin Builder” (Vermaas et al., 2018) enables the
design of representative lignin linkages into models of lignin
polymers (hardwood, softwood, and grass) for simulation studies.
Several other approaches based on kinetic Monte Carlo and DFT
have also been reported to generate lignin structures (Zhang et al.,
2011; Dellon et al., 2017; Orella et al., 2019). Based on the
structures developed, quantum chemical calculations using
AM1, HF, and DFT/B3LYP levels of theory were employed to
examine the interaction characteristics such as hydrogen bonding
between cellulose-hemicellulose and covalent bond linkages for
hemicellulose-lignin systems (Zhang et al., 2011). These studies
predicted the potential to disrupt or dissociate C1-O bonds in
xylan-lignin complexes and β-O bonds in lignin-glucomannan
complexes during pretreatment. In addition, an exciting study
highlighted the variability of interaction energy based on the
orientation of these biopolymers, i.e., a stacked configuration
between polymers affords higher interactions (Yang et al., 2019).
As discussed in the next section, these builder tools have
facilitated the building of various lignocellulosic models and
the understanding of interactions between biomass and
various solvents.

Understanding the Interactions of Biomass
With Pretreatment Solvents
In this section, we will limit our discussions to molecular and
ionic solvent-based pretreatment technologies. The limitless
possibilities of molecular and ionic solvents limit the full

exploration of every unique combination within the context of
experimental methodologies. Computational methods have been
used to help understand the dominant factors governing the
efficacy of solvent-based pretreatment of lignocellulosic biomass.
Typically, in biomass pretreatment, quantum chemical (QC) and
MD simulations have been adapted to understand the
interactions of the various biomass components with the
pretreatment solvent, which in turn helps to understand and
predict the fractionation abilities of the solvent (or solvent class)
under consideration (Table 1). Also, pre-existing solubility
parameters such as Hildebrand (Quesada-Medina et al., 2010),
Hansen solubility parameters (HSP) (Hansen, 2007; Cheng et al.,
2018), and Conductor like Screening Model for Real Solvents
(COSMO-RS) models have been extensively studied for several
chemical pretreatment technologies employing organic solvents,
deep eutectic solvents, and ionic liquids (Balaji et al., 2012; Casas
et al., 2013; Achinivu et al., 2021). Recently, ionic liquids (salts
possessing organic cations with a melting point below 100°C)
have attracted significant attention as a promising pretreatment
solvent. Several modeling methods have been developed to
understand how these solvents fractionate or solubilize
lignocellulosic biomass. For instance, the solubility of lignin in
a given solvent was determined based on the Hildebrand
solubility and thermodynamic parameters such as activity
coefficients and excess enthalpy (Casas et al., 2012). These
studies concluded that more robust exothermic behavior and
lower activity coefficient values are required for enhanced
interaction/solubility for any given solute-solvent pair. In
another instance, density functional theory (DFT) studies were
employed to calculate the hydrogen bonding interaction between
solvent (ionic liquid) and biopolymer (lignin) to determine the
pretreatment efficacies of these solvents (Rashid et al., 2016;
Zhang et al., 2017). Dispersion-corrected DFT models
established the role of cations in regulating the solubilities of
lignocellulosic components as a function π-stacking (Janesko,
2011). Ji and Lv suggested that both C-H···π and strong hydrogen
bonding are critical to enhanced delignification performance
using three solvent systems, namely para-toluenesulfonic acid,
choline chloride-lactic acid eutectic, and 1-allyl-3-
methylimidazolium chloride (Ji and Lv, 2020). Singh et al.
have extensively studied the dissolution of cellulose in pure 1-
ethyl-3-methylimidazolium acetate ([C2mim][OAc]) and
mixtures of [C2mim][OAc] and water systems (Liu H. et al.,
2010; Shi et al., 2014; Parthasarathi et al., 2015). The role of water
as cosolvent was established in these studies, identifying the
“ideal” IL-water ratio (4:1 for [C2mim][OAc] and water
system) for maximum disruption of intermolecular hydrogen
bonding within cellulose.

Interestingly, the simulation studies suggested repacking de-
crystallized cellulose into an amorphous form with high water
content in pure [C2mim][OAc]. A recent study by Achinivu
et al. and team has screened various structurally and
functionally distinct amines and developed a toolset to
provide rapid identification of effective pretreatment solvents
(Achinivu et al., 2021). This study employed a theoretical
analysis (validated by an experimental dataset) to develop a
predictive model for a given class of solvent. In the first step, the
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interaction of biomass with organic solvents with various
functional groups was studied using HSP and COSMO-RS
toolsets to reveal amines as better solvents for lignocellulosic
pretreatment. Then, the differences in the interactions of
various amines were studied using the quantum theory of
atoms in molecules (QTAIM) and QC calculations
(interaction energies and natural bond orbital (NBO)
analysis) to suggest the importance of electrostatic
interactions and hydrogen bonding between amines and
lignin for enhanced solubility. Various computational studies
of ionic liquid solvent systems in the pretreatment of biomass
have heavily relied on COSMO-RS predictions and hydrogen
bond basicity to predict the biopolymer solubilities in the ionic
liquid (Chu and He, 2019; Iqbal et al., 2019). Yao et al. extended
the application of COSMO-RS prediction to demonstrate the
synergistic advantages of multiple ions in a cholinium-based
ionic liquid system for the pretreatment of sorghum biomass
(Yao et al., 2021). Mood et al. showed that solubility parameters
of ionic liquids and deep eutectic solvents calculated using
COSMO-RS are predictive of lignin solubility under the like-
dissolves-like principal and developed a new method to
calculate solubility parameters from MD simulation
trajectories, allowing predictions to be made for much larger
lignin polymers (Mohan et al., 2021; Mohan et al., 2022).

In summary, molecular simulations are necessary to support
experiments and provide critical missing links that experiments
cannot access, considering the complexity of the lignocellulosic
biomass structure. MD simulations are used to account for the
dynamical behavior of molecular systems and understand
solvent–biomass interactions during pretreatment. In contrast,
reactive force fields, which rely on the bond order, bond distance,
and bond energy, provide a detailed explanation of bond breaking
and bond-forming reactions during simulations. Multiscale
modeling has been used to successfully investigate physical
and chemical properties, reaction mechanisms, and overall
system dynamics. These tools and approaches also help
understand the structure-activity relationships and assist in
developing novel solvents and maximizing yields or selectivity
in multi-product biorefinery settings. These computational
toolsets have the potential to speed up the design,
development, and deployment of novel solvents for a robust
biorefinery and, when eventually combined with machine
learning, will provide tools for rapidly evaluating potential
new solvents and deconstruction processes. Despite all these
developments in both computational and experimental
techniques, a knowledge gap still exists in developing a robust
multi-product biorefinery, namely: 1) complete insights into the
whole molecular structure of biomass; 2) efficient and robust

TABLE 1 | Molecular simulation techniques used for understanding interactions between biomass-solvent.

Method [Basis set/Force
Field]

Substrate Solvent Reference

DFT [6-31G(d)] Cellobiose [C4mim]Cl Novoselov et al. (2007)
Dimethoxyglucose [C2mim][OAc] Ding et al. (2012)

DFT [6-311+G(d,p)] Cellobiose [C4mim]Cl Li et al. (2015b)
Lignin [C4mim]-anion Zhang et al. (2017)

DFT-D [6-311++G(2d,2p)] Glucose [C1mim]Cl Janesko, (2011)
DFT [6-311+G(d,p)]/MD [GLYCAM] 2,4,6-mer oligomers [C4mim]Cl Xu et al. (2012)

10-mer oligomer [C4mim][OAc] Zhao et al. (2013b)
MD [COMPASS] Glucose derivatives [Cnmim]Cl Derecskei and Derecskei-Kovacs, (2006)
MD [CHARMM] Microfibril [C4mim]Cl (Cho et al. 2011; Gross et al., 2011; 2012)
MD [AMBER] Cellulose Iβ [C4mim][OAc] Gupta et al. (2011)
MD [OPLS] Cellobiose [C4mim]Cl Zhang et al. (2012)

Cellulose bunch [C4mim]Cl (Rabideau et al. 2013; Rabideau et al. 2014; Rabideau and Ismail, 2015)
MD [OPLS-AA] Glucose [C1mim]Cl Youngs et al. (2006)

Glucose [C2mim][OAc] Felczak et al. (2011)
Glucose [C2mim][OAc] Andanson et al. (2014)
Cellulose Iβ [Cnmim]Cl Huo et al. (2013)
Lignin 9 ILs Hu et al. (2020)

MD [GLYCAM] Glucose [C4mim]Cl Jarin and Pfaendtner, (2014)
Glucose and Cellobiose [C2mim][OAc] Bharadwaj et al. (2015)
5,10,20-mer oligomers [C2mim][OAc] Liu et al. (2010a)
10-mer oligomer [C2mim]-anions Zhao et al. (2013a)
10-mer oligomer [C4mim]Cl Mostofian et al. (2014a)
Microfibril [C4mim]Cl (Mostofian et al. 2011; Mostofian et al. 2014b)
Microfibril [C2mim][OAc] Liu et al. (2012)
Cellulose bunch [C2mim][OAc] Li et al. (2015b)

COSMO-RS Glucose 320 ILs Casas et al. (2012)
Cellotriose >2000 ILs Kahlen et al. (2010)
3*3 structure 750 ILs Casas et al. (2013)
1,3,4-mer oligomers 357 ILs Liu et al. (2016)
Lignin Cholinium-Anions Yao et al. (2021)
Lignocellulosic biomass Ethanolamine and Acetic acid Huang et al. (2021)
Lignin Cholinium-Anions Mohan et al. (2021)
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processes for the conversion of biomass to chemicals; 3)
mechanistic understanding of the role of solvents during
pretreatment; and 4) key interactions and orientations of
polymer components. In addition, some of these simulations
are fundamentally expensive as they may take several days
depending on the complexity of the molecule involved. The
combination of experiments including imaging and
spectroscopy, computational modeling, and/or machine
learning is expected to contribute to the future design of
stratified structures of lignocellulosics and generate a large
number of structured materials and chemicals in the future.
Furthermore, the understanding developed through the
optimization of biomass pretreatment using these simulation
tools will promote overall process yields while reducing energy
requirements and carbon footprints.

COMPUTATIONAL MODELING METHODS
FOR UNDERSTANDING CATALYTIC
MECHANISMS AND ENGINEERING
ENZYMES

A variety of computational methods utilize new advances in
computing to understand the underlying mechanisms of the
biocatalysts used to promote efficient biotransformation of
substrates into value-added products. These computational
methods, which differ in computational cost and accuracy, can
simulate biocatalytic processes at different molecular levels. For
instance, protein-ligand or enzyme-substrate docking is a
molecular modeling technique that can predict a ligand’s
position and orientation (substrate, a small molecule) when it
is bound to a protein/enzyme (Kearsley et al., 1994; Friesner et al.,
2004; Wang and Pang, 2007; Zsoldos et al., 2007). Modeled
interactions between an enzyme and its substrate(s) provide
insights into predicting the activation or inhibition of an
enzyme and providing information for rational enzyme design.
In this method, dealing with receptor flexibility in docking
methodologies is still challenging due to the large number of
degrees of freedom of the enzyme the calculation needs to
consider (Totrov and Abagyan, 2008; Cerqueira et al., 2009;
Antunes et al., 2015). The enzyme-ligand complex is often the
starting point for molecular dynamics (MD) simulations, which
are used to analyze the physical movements of atoms and
molecules and the time evolution of enzyme-substrate
interactions (Levitt and Warshel, 1975; Warshel, 1976). MD
simulations explore the time evolution of a particular
interacting system for a fixed period of time on nano to
microsecond time scales, and the trajectories of atoms and
molecules are determined by numerically solving Newton’s
equations of motion. Theoretical studies utilizing MD
simulation provide insights into the intricate dynamics of
biological macromolecules (protein or protein-ligand complex)
through observing crucial interactions (e.g., hydrophobic
interactions, van der Waals, hydrogen bonds), thus
understanding protein folding and unfolding, protein stability,
and conformational changes (Levitt, 1982; Moal and Bates, 2012;

Khan et al., 2016). However, simulation accuracy is strongly
dependent on the quality of ligand parameterization, which
can be improved by using high-accuracy quantum mechanics/
molecular mechanics (QM/MM) methods (Warshel and Levitt,
1976; Brunk and Rothlisberger, 2015). This method combines the
strengths of ab initioQM calculation (accuracy) and MM (speed)
methods. However, it demands the high computational cost of
conformational searching and the limitations of implicit solvation
effects. In the last two decades, hybrid QM/MM calculations have
become a powerful approach to studying enzymatic reactions
(Martí et al., 2004; Mulholland, 2005; Riccardi et al., 2006; Senn
and Thiel, 2009; Warshel, 2014).

There has been exhaustive research to improve individual
enzyme characteristics through either rational design or directed
evolution strategies. The rational approach to protein engineering
via computational methods facilitates development in this field.
Simulation of an enzyme structure, substrate, or complex cam
provides molecular and structural mechanisms of enzymatic
action. This section highlights the increasing evidence of
computational modeling methods as a powerful tool in the
study and engineering of hydrolases and oxidoreductases,
especially for their application as biocatalysts in lignocellulose
deconstruction. We compiled and tabulated the computational
methods in the studies cited below in Table 2.

Cellulases and Hemicellulases
Cellulases are divided into three groups: endoglucanases (EC
3.2.1.4), cellobiohydrolases (EC 3.2.1.91), and β-glycosidases (3.
2. 1. 21), that work synergistically to catalyze the conversion of
cellulose to glucose in a process known as saccharification.
Endoglucanases (EGs) catalyze the breaking of internal
glycosidic bonds of the amorphous part of the cellulose chain,
producing new ends of glucose polymers (Medve et al., 1998).
Cellobiohydrolases (CBHs), also called exoglucanases, bind to
these newly created ends and catalyze hydrolysis of glycosidic
bonds in glucose polymers, producing cellobiose (Teeri, 1997).
Finally, β-glycosidases catalyze the break of glycosidic bonds in
cellobiose, producing glucose monomers (Riou et al., 1998;
Decker et al., 2001) and are typically the rate-limiting step in
the full conversion of cellulose to glucose. Due to the recalcitrant
nature of lignocellulosic, saccharification of cellulose to glucose is
slow, and in the second generation of conversion of lignocellulose
to ethanol requires several-fold more active hydrolytic enzymes
than for saccharification from starch (Balan, 2014). Low activity
and high costs of cellulases are the bottlenecks for their industrial
use in the valorization of lignocellulosic biomass. Some
endoglucanases and cellobiohydrolases are composed of a
catalytic domain (CD) and a carbohydrate-binding domain
(CBD). The CBD increases enzymatic activity on specific and
solid substrates and helps disrupt the crystalline structure of
cellulose. Several MD simulation studies have been conducted to
understand cellulase adsorption to cellulose and the role of CBDs.
A hundred nanosecond timescale MD simulations of Cel7A from
Geotrichum candidum strain 3C (GcaCel7A) were studied in
three different forms: free form, in complex with a
cellononaose substrate, and in complex with microfibrils of
cellulose. These simulations revealed a significant difference in
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the dynamics of substrate-bound enzymes compared with free
enzymes (Borisova et al., 2015). Similar studies on substrate-
bound enzymes revealed the cellulose-binding site was highly
conserved in other cellulases, Cel7A from Heterobasidion
irregulare (HirCel7A), Heterobasidion jecorina (HjeCel7A),
and Cel7D from Phanerochaete chrysosporium (PchCel7D),
and PfCBH1 from Penicillium funiculosum when bound with
cellononaose and microcrystalline cellulose (Momeni et al., 2013;
Ogunmolu et al., 2017). Forty nanosecond MD simulations of
Trichoderma reesei Cel6A and Cel7A showed the flexible
glycosylated linkers of CBD bind nonspecifically to cellulose
and can serve as the rate-limiting step in cellulose degradation
(Payne et al., 2013; Knott et al., 2014). While MD simulations
have been used to study the interaction between cellulases and
cellulose and cellulase CBDs and cellulose, QM/MM simulations
have been used to reveal the transition state of oligosaccharide
hydrolysis (Liu J. et al., 2010; Li et al., 2010; Wang et al., 2011;
Wang et al., 2016; Iglesias-Fernández et al., 2017; Zong et al.,
2019; Bharadwaj et al., 2020; Pereira et al., 2021). Li et al.
elucidated the mechanism of enzymatic catalysis of cellulase
Cel7A from Trichoderma reesei (Li et al., 2010). At the level of
accuracy of the applied theory, detailed structural and energetic
information revealed an S(N)2-type-like mechanism via loose
transition state structures. In similar work using QM/MM, an
endocyclic mechanism for PcCel45A was revealed in which an
acyclic oxocarbenium-like transition state is stabilized, leading to
the opening of the glucopyranose ring and the formation of an
unstable acyclic hemiacetal that can be readily decomposed into
hydrolysis products (Pereira et al., 2021).

Hemicellulases are a group of enzymes that catalyze the
hydrolysis of galactans, xylans, and mannans. The primary
enzyme is endoxylanase (EC 3.2.1.8), which hydrolyzes β-d
xylano pyranosyl linkages of xylan to form
xylooligosaccharides. Secondly, β-D xylosidase (EC 3.2.1.3,
xylobiase) catalyzes the hydrolysis of xylobiose or
xylooligosaccharides from the nonreducing end, producing
D-xylose sugar in the hydrolysates. Control of the desired
xylooligosaccharide size range is one of the most challenging
studies in xylose degradation, and several endoxylanase
engineering attempts have been aimed at changing the range
of xylooligosaccharides produced. For example, Pollet et al.
engineered the BsXynA xylanase from Bacillus subtilis by
replacing a Tyr at the binding site with an Ala and improved
the variety of xylooligosaccharides produced by the enzyme
(Pollet et al., 2010). A similar catalytic pattern in T-Xyn
xylanase from Talaromyces thermophilus F1208 was revealed
by double mutations at a region near the N-terminal and the
C-terminal, which resulted in the absence of xylose monomer
product (Li et al., 2017). Atomistic MD simulations were used to
understand the mechanisms underlying these efficiency losses.
The MD trajectory analysis suggested that the mutation-induced
binding pocket tilting resulted in an additional hydrophobic
contact between the reducing end of xylooligosaccharides and
Trp128 (Ngenyoung et al., 2021).

A secondary binding site (SBS) on the surface of the
GH11 xylanases has been discovered in a few endoxylanases
from Bacillus subtilis (PDB ID: 2QZ3) (Cuyvers et al., 2011),
Aspergillus niger (PDB ID: 2QZ2) (Vandermarliere et al., 2008),

TABLE 2 | List of hydrolases and lignin-modifying enzymes engineered by protein engineering.

Enzyme Organism Techniques Improvement/understanding References

Cellulase Geotrichum candidum Heterobasidion
irregulare Heterobasidion jecorina
Phanerocheate chrysosporium
Penicillium funiculosum

MD simulation Interaction between cellulase and
cellononaose, microfibril of cellulose

(Borisova et al. 2015; Momeni et al. 2013;
Ogunmolu et al. 2017)

Trichoderma reesei MD simulation Glycosylated linkers of CBM serve as the
rate-limiting step in cellulose degradation

(Payne et al. 2013; Knott et al. 2014)

Trichoderma reesei Phanerodontia
chrysosporium

QM/MM Hydrolysis mechanism via stabilization of
acyclic oxocarbenium-like transition state,
leading to the opening of the glucopyranose
ring and formation of an unstable acyclic
hemiacetal

(Li et al. 2010; Liu et al. 2010; Wang et al.
2011; Wang et al. 2016; Iglesias-Fernández
et al. 2017; Zong et al. 2019; Bharadwaj
et al. 2020; Pereira et al. 2021)

Xylanase Bacillus subtilis Talaromyces
thermophilus

MD simulation The hydrophobic site at N-terminal and
C-terminal plays a vital role in contact with
the reducing end of xylooligosaccharides

(Li et al. 2017; Ngenyoung et al. 2021)

Paenibacillus xylanivorans MD simulation Unveiling secondary binding site on the
surface of xylanases

Lignin
peroxidase

Phanerocheate chrysosporium
Trametopsis cervine Pleurotus eryngii
Klebsiella pneumoniae

QM/MM
calculation

Unveiling role of the surface-active site in the
oxidation of high redox potential substrates

(Smith et al. 2009; Bernini et al. 2012;
Romero et al. 2019; Miki et al. 2013;
Acebes et al. 2017; Nys et al. 2021)

Phanerocheate chrysosporium QM/MM
calculation

Identifying specific amino acids which
influence the oxidative power

(Castro et al. 2016; Pham et al. 2016; Singh
et al. 2021; Pham et al. 2021)

Manganese
peroxidase

Ceriporiopsis subvermispora Docking and
MD simulation

Two histidines, H220 and H142, interacted,
forming hydrogen bonds with ABTS’s
negatively charged ABTS sulfonates

Laccase Trametes versicolor QM/MM-FEP The oxidation state of the surrounding
residues affected the T1 copper site redox
potential

Götze and Bühl, (2016)

Frontiers in Energy Research | www.frontiersin.org July 2022 | Volume 10 | Article 8631538

Pham et al. Theoretical Tools for Valorizing Lignocellulose

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


and Bacillus circulans (BcX) (PDB ID: 1XNB) (Ludwiczek et al.,
2007). Recently, MD simulations of PxXyn11B from
Paenibacillus xylanivorans A57 revealed an essential role of
SBS in the activity and conformational mobility of the
enzyme, demonstrating that the SBS stabilizes ligand binding,
allowing it to be bound within the active site for a longer time
period and resulting in more controlled enzymatic breakdown to
products (Briganti et al., 2021). These findings explain the
observed enzyme kinetics and shed light on the product
control of the xylanase enzymes by protein engineering.

Lignin-Modifying Enzymes
Lignin-modifying enzymes (LMEs) are enzymes produced by
fungi and bacteria that catalyze bond breaking of a variety of
bonds in lignin polymers to degrade lignin to bioavailable
substrates. In nature, these lignin fragments are consumed by
microbes, and in synthetic biology applications they are fed to
organisms engineered to convert them into biofuels and
bioproducts. LMEs include peroxidases, such as lignin
peroxidase (LiP, EC 1.11.1.14), manganese peroxidase (MnP,
EC 1.11.1.13), versatile peroxidase (VP, EC 1.11.1.16), and
many phenol oxidases of the laccase type (EC 1.10.3.2). LiP
and MnP contain a heme-iron in their active sites that
participates as a reducing agent in the general peroxidase
catalytic mechanism. The heme-iron is first oxidized by
hydrogen peroxide, and electrons are then shuttled from lignin
through soluble mediators such as phenolic veratryl alcohol or, in
the case of MnP, Mn(II). VP shares the structural and catalytic
properties of both LiP and MnP (Ruiz-Dueñas and Martínez,
2009). Laccases are multi-copper oxidases that catalyze one-
electron oxidation of a wide range of phenolic compounds
(Hamid and Khalil ur, 2009; Pollegioni et al., 2015). Various
computation-aided studies have attempted to improve the
catalytic efficiency of LDEs through understanding lignin-
aromatic compound binding modes, critical structures that
impact oxidative power, and electron transfer pathways, using
the approaches elaborated in the following paragraphs.

Molecular docking studies have been carried out to predict the
binding modes of aromatic substrates and lignin model
compounds to LiP, MnP, and laccase, and MD simulations
were performed to study the resulting enzyme-substrate
complexes (Borrelli et al., 2005; Chen et al., 2011; Fernández-
Fueyo et al., 2014; Singh et al., 2021). Rational enzyme
engineering of MnP6 from C. subvermispora has also been
carried out with the help of computational methods (Acebes
et al., 2016). Acebes et al. started by using the protein energy
landscape exploration (PELE) algorithm to inspect the active sites
of both systems, ABTS-MnP6 and ABTS-MnP4. These
explorations showed that in the energetically minimum
structure of MnP4 located at the main heme channel, two
histidines, H220 and H142, interacted, forming hydrogen
bonds with the negatively charged sulfonates of ABTS.
Furthermore, the high-performance molecular dynamics
simulations-DESMOND were recently used to perform deep,
rigorous structural and functional fluctuation analyses of
docked complexes between lignin model compounds and LiP.
The findings demonstrated that LiP interacts with chlorinated

compounds through ionic interaction, while hydrophobic and
H-bond contacts have been observed in all lignin-model
compounds (Singh et al., 2021).

The oxidative power (redox potential) of LDE is a critical
factor in the successful degradation of bulky and recalcitrant
lignin substrates. QM/MM simulations have been used to identify
specific amino acids that influence the oxidative power of LiP,
which suggested mutations with higher oxidative abilities or with
the capacity to function under different pH conditions (Castro
et al., 2016; Pham et al., 2016; Kohler et al., 2018; Singh et al.,
2021). Recently, using ab initio molecular dynamic simulations
and climbing-image Nudge Elastic Band-based transition state
searches, Pham et al. suggested the effect of lower pH on LiP
activity is via protonation of aliphatic hydroxyl groups, which
resulted in lower energetic barriers for bond-cleavages,
particularly β-O-4′ bonds (Pham et al., 2021). Molecular
mechanical free-energy perturbation (QM/MM-FEP) methods
in combination with explicit solvent simulations have been used
to study the redox potentials (RP), acidity constants, and
isomerization reactions of the laccases (Hong et al., 2011;
Vázquez-Lima et al., 2012; Li J. et al., 2015; Götze and Bühl,
2016). More recently, the pH dependence and effect of mutants
on the laccase redox potentials at the T1 site were studied with
QM/MM approaches. The authors found that the oxidation state
of the surrounding residues affected the T1 copper site redox
potential by about 0.2–0.3 V and was changed to −1.37 V when
the replacement of a protonation state corresponded to a neutral
environment. The predicted change in the redox potential of the
F463M mutant (−0.1 V) was consistent with observations for a
related laccase (Götze and Bühl, 2016).

The extant peroxidases (LiP and VP), which have high redox
potentials, proved their ability to degrade non-phenolic lignin by
using a tryptophanyl radical interacting with the bulky polymer at
the surface of the enzyme (Ayuso-Fernández et al., 2018). LiP
oxidizes different non-phenolic lignin model compounds,
including β-O-4 linkage-type arylglycerol-aryl ethers, forming
a radical cation through one-electron oxidation. Radical cation
formation leads to side-chain cleavage, demethylation,
intramolecular addition, and rearrangements (Kirk et al., 1986;
Miki et al., 1986; Wong, 2009). Oxidation of non-phenolic
aromatic substrates of high redox potential such as veratryl
alcohol (VA) was mediated through the tryptophan radical
(Trp171) present in LiP from Phanerocheate chrysosporium,
which has been elucidated through QM/MM calculations at
the B3LYP/CHARMM level of theory (Bernini et al., 2012;
Romero et al., 2019). The experimental work was performed
to validate these calculations through the catalytic engineering
activity of Coprinus cinereus peroxidase (CiP) (Smith et al., 2009).
By mimicking the surroundings of Trp171 in Phanerocheate
chrysosporium LiP, some specific acid residues were introduced
to the catalytic Trp178 in CiP to create variant D178W/R257E/
R271D. The EPR characterization crucially showed that [Fe(IV) =
O Trp-179(*)] in engineered CiP was the reactive intermediate
with veratryl alcohol (Smith et al., 2009). Similar works reported
the electron transfer mechanism of VA at Tyr181 in Trametopsis
cervina LiP (Miki et al., 2013), at Trp164 in VP from Pleurotus
eryngii (Pogni et al., 2006; Bernini et al., 2014; Acebes et al., 2017)
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and ABTS oxidation at Y247 in Klebsiella pneumoniae dye-
decolorizing peroxidase (KpDyP) (Nys et al., 2021).

The MD, QM, and QM/MM simulations were mainly
presented as auxiliary tools to explain the experimental
evidence in aspects like cellulose and lignin fractionation
reported for these enzymes. A broad set of molecular and
computational tools allowed the creation of models and more
efficient screening methods. We believe that, during subsequent
years and advances in hardware, software, and algorithms, more
accurate and predictive computational tools will greatly benefit
studies aimed at rational protein design to improve the catalytic
activity of a given hydrolase and oxidoreductase for a specific
substrate. The conjunction of these experimental and
computational techniques will help design more efficient
biocatalysts for lignocellulosic bioconversion.

Auxiliary Enzymes
In addition to the three classes of synergistic cellulolytic enzymes
and the various lignin modifying enzymes described above,
additional auxiliary enzymes have been implicated as being
required for maximum bioconversion of lignocellulosic
biomass to compounds amenable to biological uptake and
conversion. Besides cellulolytic enzymes that cleave off various
monosaccharide side chains, other enzymes are required for the
deprotection of the polysaccharide backbone. Polysaccharide
sulfatases remove sulfate ester groups (Bäumgen et al., 2021),
while carbohydrate esterases catalyze the cleavage of O- and
N-acetyl groups from carbohydrates (Davies et al., 2005). In
contrast to the carbohydrate esterases (CEs), the sulfatases are
not included in the Crazy database but are listed in the SulfAtlas
database instead (Barbeyron et al., 2016).

Lignin-degrading auxiliary enzymes enable lignin degradation
through the sequential action of several proteins that may include
oxidative H2O2 (Kumar and Chandra, 2020). This group
includes cellobiose dehydrogenase, aryl alcohol oxidases,
glyoxal oxidase, glucose oxidase, and pyranose 2-oxidase
(Kumar and Chandra, 2020). Lignin-degrading auxiliary
enzymes cannot alone catalyze complete depolymerization of
lignin and typically work synergistically with additional
enzymes. The auxiliary enzyme classes, such as redox
enzymes, act in conjunction with other CAZymes, including
lytic polysaccharide monooxygenases (LPMOs), lignin
peroxidases and laccases. LPMO activity has been described as
crucial during cellulose hydrolysis and is currently present in
commercial cellulase preparations. These enzymes have also been
studied by molecular dynamics simulations to understand
binding properties and to design rational engineering
approaches (Liu et al., 2018; Guo et al., 2020). In particular,
MD simulations suggest roles for both aromatic and acidic
residues in the substrate-binding of LPMO from the white-rot
fungus Heterobasidion irregulare (Liu et al., 2018). This study
provided additional insight into cellulose binding by C1-specific
LPMOs, giving a molecular-level picture of active site substrate
interactions. Furthermore, a combination of information from
calculations run on the HotSpot Wizard 3.0, dezyme web server,
and MD simulations in the study of LPMO fromMyceliophthora
thermophila C1, was used to rationally design a mutant (R17L)

LPMO with a 1.8-fold increase in specific activity and a 1.92-fold
increase in catalytic efficiency (kcat/Km). The increased degree of
the reducing sugar yield frommicrocrystalline cellulose and three
plant biomass materials during hydrolysis using cellulase in
combination with the R17L LPMO mutant was approximately
two times higher than with the WT LPMO (Guo et al., 2020).

COMPUTATIONAL APPROACHES USED IN
HARNESSING MICROBIAL POTENTIAL
FOR LIGNOCELLULOSE VALORIZATION
Systems biology follows a holistic approach to analyzing cell
biology from subcellular levels to the entire organism using
computer-aided tools and mathematical models (Kitano,
2002). System biology tools include the following advanced
omics technologies: Genomics – the set of studies on the
structure, function, evolution, mapping, and editing of
genomes (Khoury et al., 2009); Transcriptomics - the complete
set of RNA transcripts (Piétu et al., 1999);
Proteomics – investigation of protein production, degradation,
modification, and their interactions (Dupree et al., 2020); and
Metabolomics - chemical processes involving small molecule
substrates, intermediates, and products of cell metabolism
(Clish, 2015). Each omics platform requires data handling,
annotation of biomolecules, design and analytic assumptions,
statistical power analysis, and data archiving and sharing.
However, a single omics analysis can’t fully solve the
complexities of microbial biology. Multi-omics techniques
have opened new avenues for exploring microbial diversity by
contributing to available databases (metabolite, RNA, DNA, and
protein databases) at a scale not imagined previously. Integrating
such diverse data types requires data normalization, statistical
power analysis, and big-data machine-learning tools for a multi-
omics analysis (Libbrecht and Noble, 2015; Min et al., 2016).
Available computational tools for interpretation and analysis of
analysis of omics data and integration of genomics and
metabolomics data include MapMan (Thimm et al., 2004),
Pathway Studio (Yuryev et al., 2009); for transcriptomics and
proteomics data include iCluster (Shen et al., 2009), SteinerNet
(Tuncbag et al., 2012), Paintomics (Hernández-de-Diego et al.,
2018); for transcriptomics and metabolomics data include
Paintomics (Hernández-de-Diego et al., 2018), PRIMe
(Akiyama et al., 2008), MEtaboAnalyst 5.0 (Pang et al., 2021)
and for multi-omics data include IntegrOmics (Lê Cao et al.,
2009), 3Omics (Kuo et al., 2013), Qiagen Ingenuity Pathway
Analysis (Krämer et al., 2014). Multi-omics approaches have been
applied in several research areas, from bio-based fuel production
to biopharmaceutical development to studies of diseases. This
section will highlight some multi-omics-aided studies for
lignocellulose valorization.

High-Throughput Genome Sequencing
The massive development in next-generation sequencing (NGS)
technologies has led to extensive publicly available genomics
databases. However, genome mining is dependent solely on
computational methods and bioinformatics tools to
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interconnect the complex biological networks within a single
species and across microbial species. The recent development in
genome mining tools such as antiSMASH, ClustScan, BAGEL,
SMURF, NP.searcher, and PRISM has untapped the metabolic
potential of microorganisms for biomass degradation (Lee N.
et al., 2020). These tools can be used to scan the genomes of
multiple organisms simultaneously to predict homologous genes
based on highly conserved sequences. In their review, Ren et al.
have covered the progress of genome-mining tools for predicting
natural products of pharmaceutical importance (Ren et al., 2020).
The majority of them are used for pathway prediction by
identifying essential genes involved in metabolite synthesis and
utilizing Basic Local Alignment Search Tool (BLAST) or hidden
Markovmodels (HMMs) for genomemining (Ren et al., 2020). In
one metagenomic study, stable isotope probing (SIP) was used to
identify and characterize the microbiome in different soil layers
for lignocellulose degradation (Wilhelm et al., 2019). The
identification and genomic content of bacterial consortia were
assessed using 16S rRNA gene amplicon and shotgun
metagenomics. In another study, the comparative genomic
analysis of C. subvermispora and P. chrysosporium revealed the
presence of more than seven genes encoding laccases in C.
subvermispora. In contrast, there was no gene encoding for
laccase for lignin degradation in P. chrysosporium. The same
study identified that the C. subvermispora genome contains as
many as three times more genes for MnP than P. chrysosporium
(Fernandez-Fueyo et al., 2012).

From Protein Chemistry to Proteomics
Proteomic analysis is used to identify enzymes present and to
quantify the expression of enzymes and has proved helpful for
identifying the CAZymes in microbes involved in biomass
deconstruction. LC-MS/MS-based secretome profiling from
several microorganisms grown on different substrates revealed the
presence of laccases, auxiliary proteins, and hydrolases (Sethupathy
et al., 2021). Proteomic analysis of the ligninolytic bacterium
Arthrobacter phenanthrenivorans Sphe3 on a medium containing
three different carbon sources identified several enzymes involved in
catalysis of aromatic degradation, including phenanthrene (Vandera
et al., 2015). The study also identified genes involved in catabolite
repression in the presence of glucose. When exposed to three
xenobiotics, a similar study performed in Sphingobium
chungbukense DJ77 identified major proteins to map catabolic
pathways for naphthalene, phenanthrene, and biphenyl (Lee
et al., 2016). The proteomic analysis of the secretomes and
enzymes from different microorganisms can be used to begin to
understand the full complement of enzymes involved in lignin
depolymerization and facilitate increasing the ligninolytic activity
of commercially used enzyme cocktails.

Multi-Omics and Genome Engineering
Tools–Game-Changers for Systems Biology
Synthetic biology involves engineering new biological systems for
the practical purposes of providing them with new and/or
improved metabolic abilities. Synthetic biology exploits both
traditional metabolic engineering tools (such as plasmid-

mediated) and more sophisticated modern genome
engineering tools (such as CRISPR/Cas9 and CRAGE) for
combinatorial strain development for the industrial production
of compounds (Wang et al., 2019; Gauttam et al., 2021). Then, the
genome editing era and multi-omics technology led to new
synthetic biology, metabolic engineering, and systems biology
tools for metabolic pathway analysis and engineering. These tools
contributed to the discovery of novel native metabolic pathways
to degrade lignin and assimilate its aromatic products (Brown
and Chang, 2014). For example, the combinatorial genomic and
proteomic analysis of Pandoraea sp. ISTKB grown in the presence
of vanillic acid and kraft lignin has revealed a unique aerobic
pathway for lignin degradation (Kumar and Kim, 2018). This
“-CoA” mediated degradation pathway for phenylacetate and
benzoate has been reported in merely 4–5% of sequenced
bacterial genomes. The comparative analysis also revealed the
presence of ligninolytic enzymes such as peroxidases, oxidases,
oxidoreductases, laccases, oxygenases, and etherizes in Pandoraea
sp (Kumar and Kim, 2018). The information accumulated
through multi-omics approaches can be integrated to rebuild
models for novel lignin-degrading pathways in novel
microorganisms with ligninolytic potential.

Besides revealing novel ligninolytic microbes and enzymes,
several studies have been performed using synthetic biology to
produce high-value end products from lignin using engineered
microorganisms. Most microorganisms utilize glucose; however,
deconstructed lignocellulosics also consist of alternative sugars
such as xylose and arabinose that are also economically attractive
sources of fermentable and upgradable sugars. For example, an
Escherichia coli MS04 strain was engineered to assimilate xylose
anaerobically and tolerate high acetate concentrations
(Fernández-Sandoval et al., 2012). This strain was used to
produce ethanol from corn stover hydrolysate (Parra-Ramírez
et al., 2018). Among eukaryotes, oleaginous yeasts such as
Rhodosporidium toruloides, Cutaneotrichosporon oleaginosus,
and Lipomyces starkeyi can readily metabolize many
substrates, including xylose and aromatics, and show excellent
tolerance against a wide range of potentially toxic intermediates
(Yaegashi et al., 2017; Valdés et al., 2020). Naturally, very few
microbes can decompose lignin into vanillin; nevertheless, there
are reports for microbial production of vanillin from lignin
(Nguyen et al., 2021). For example, the deletion of the vdh
gene resulted in the conversion of ferulic acid to vanillin in
Pycnoporus cinnabarinus (Tilay et al., 2010), Amycolatopsis sp.
(Fleige et al., 2013), and Pseudomonas fluorescens (Di Gioia et al.,
2011). Similarly, vdh deletion in R. jostii RHA1 resulted in 96 mg/
L vanillin from wheat straw lignocellulose (Sainsbury et al., 2013).
On the other hand, Pseudomonas putida KT2440 strain is well
known for its tolerance against xenobiotics compounds, aromatic
metabolism (e.g., p-coumarate and ferrulate), and the availability
of a wide range of advanced genetic factors tools for pathway
engineering (Martínez-García and de Lorenzo, 2019; Lee S. et al.,
2020). P. putida KT2440 was engineered to enhance the conversion
of non-preferred substrates such as p-coumarate and ferrulate in the
presence of preferred substrate glucose (Johnson et al., 2017).
Through metabolic modeling and genome editing, Pseudomonas
not only can grow in harsh environments but can also co-utilize
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multiple substrates, which suggests the potential of this organism to
convert most of the carbon present in lignocellulosic biomass into
advanced bioproducts.

The compounds cis, cis-muconic acid (cis, cis-MA) recently
drew significant attention because they are an intermediate for
adipic acid production, a captive feedstock in the production of
nylon fibers and plastics. Recently, Crc regulation of metabolic
pathways for the production of muconate in the engineered strain
P. putidaKT2440-CJ102 was predicted and confirmed using mass
spectrometry (MS)-based proteomics and gene editing (Johnson
et al., 2017a). It was demonstrated that deletion of the gene
encoding Crc enhances metabolism of both 4-HBA and vanillate,
leading to enhanced muconate production from p-coumarate or
ferulate when either glucose or acetate are supplied as a source of
carbon and energy. In similar work, an engineered Sphingobium
sp. SYK6 strain produced muconic acid in the absence of glucose
from lignin extracts of Japanese cedar and birch (Sonoki et al.,
2018). The deletion of muconate cycloisomerase, combined with
further engineering, improved muconic acid production in
Amycolatopsis sp., Corynebacterium glutamicum, and P. putida
(Barton et al., 2018; Becker et al., 2018; Kohlstedt et al., 2018).
Notably, NExT-EMA used a tool that channels elementary flux
modes (EFMs) into network-embedded thermodynamic (NET)
analysis to analyze E. coli and Saccharomyces cerevisiaemetabolic
networks. Stoichiometric analysis of 32–99% on glucose and/or
palmitate can contribute to the maximum theoretical product
carbon yield in routes to adipic acid production. This work
highlights the importance of pathway and organism choice to
maximize the potential of a biobased process, leading the
metabolic engineering community toward highly efficient
biotechnical production of adipic acid (Averesch et al., 2018).

Developing synthetic microbial constructs for bioconversion of
lignocellulose-based products into industrial chemicals often requires
extensive pathway engineering involving designing artificial pathways
and optimizing rate-limiting enzymes. While integrating multi-omics
data and genome editing tools has opened newmetabolic engineering
avenues to speed up the combinatorial strain development for
lignocellulosic biomass conversion using microbes, engineering a
host organism to produce new products still has long development
times due to the need for a detailed understanding of the host
organism’s metabolic pathways. Recently, researchers have begun
to apply machine learning and probabilistic modeling algorithms
to predict how cells respond to changes in their DNA and
biochemistry and to make recommendations for the next
engineering cycle without the need for a detailed understanding of
the host organism’smetabolism (Radivojević et al., 2020; Lawson et al.,
2021). The development and application of machine learning
approaches to systems biology and metabolic engineering promises
to greatly reduce development times.

CONCLUDING REMARKS

Computational tools and methods are becoming essential to
optimizing the various processes involved in converting
lignocellulosic biomass to valuable fuels and chemicals, from
data-driven optimization of deconstruction to molecular-level

understanding and rational engineering of enzymes to discovery
and building metabolic pathways for synthesis of final products.
The tremendous amount of complex chemical and biological data
available for analysis and generated by computational biology and
chemistry highlights the considerable power and usefulness of
computational sciences to develop lignocellulosic biofuels and
products. This review highlights and emphasizes the power of
synergistic computational and experimental studies aimed at the
full-scale optimization of the conversion of lignocellulosic
biomass into valuable products. Through valid approximations
to the physical laws, modern algorithms, and supercomputers,
computational biology and chemistry tools can simulate systems
containing hundreds of millions of atoms, required to study the
interactions of solvent systems with biomass components and
simulate the interactions of solvent systems and engineer
enzymes. Recent developments in machine learning and big
data analytics have enabled the discovery of new enzyme
systems, microbes for biomass conversion, and the engineering
of metabolic pathways to produce desired fuels and chemicals.
Continued development and growth in applications of
computational approaches to optimize pretreatment of
lignocellulosic biomass, rational design of enzymes, and next-
generation paradigms of predictive approaches in synthetic and
system biology are essential for the fundamental science required
for development and optimization of viable lignocellulosic
biomass conversion processes.
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