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How to save the energy of unmanned aerial vehicles (UAVs) and then enable long-distance
transport is a very real and difficult task. However, for UAVs, the classic object detection
algorithm, such as the deep convolutional neural network–based object detection
algorithm and the classic flight control algorithm, such as the PID-based position
control algorithm, require significant energy, which limits the application scenarios of
the UAV system. In view of this problem, this paper proposes a lightweight object detection
network and a linear active disturbance rejection controller (LADRC) for the quadrotor with
the cable-suspended payload (QCSP) system to improve energy efficiency. The system
uses a YOLOV3 network and embeds it into the Jesson NX mobile platform to accurately
detect the target position. Furthermore, a nonlinear velocity controller with a cable-
suspended structure to control the velocity of the payload, a LADRC algorithm is
adopted to achieve fast and accurate control of the payload position. Simulations and
real flight experiments show that the proposed object detection algorithm and the LADRC
control strategy can save the energy of drone effectively.

Keywords: cable-suspended payload, quadrotor UAV, energy efficiency, object detection, linear active disturbance
rejection controller, model compression

1 INTRODUCTION

With the development of unmanned aerial vehicle (UAV) technology (Wu et al., 2018), drone
transport has become an important branch of UAV applications. The quadrotor with the cable-
suspended payload (QCSP) (Lv et al., 2020; Lv et al., 2021) equipped with a camera and an embedded
platform, is of great relevance to the realization of rescue and transport tasks. The QCSP actively
adjusts the UAV’s own attitude to quickly reduce the oscillation of the suspended load and then runs
the vision algorithm through the embedded platform to process the images from the camera to
obtain an accurate target position for the drone. Based on the target position information, the QCSP
needs to reach the target position quickly and stably. However, in the transportation process, in
addition to the energy required for drone flight, the object detection algorithm and the QCSP flight
control strategy also consume great energy. Therefore, by considering the limited battery capacity of
the drone, it is important to improve the energy efficiency of the QCSP systems.

Recent decades witness great progress in object detection with the development of convolutional
neural networks (CNNs). To obtain a powerful network, numerous efforts are made to build large
and complex architecture with high computation and energy consumption, which restricts its
application on embedding devices such as a drone. To get the light network, Z. Liu et al. (Liu et al.,
2017) utilize scaling factors to value the significance of connections and remove these under a
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threshold. This efficient method works well for classification
networks. However, it lacks effectiveness for detection
networks. To make the network compression method suitable
to detection network, Z. Xie et al. (Xie et al., 2020) introduce
location-aware loss for network compression, which helps in
preserving the comprehensive ability of the detection network.
These methods are not optimal for saving energy because they do
not adopt an energy-aware function during compressing.

To realize the path following for the QCSP, Qian, et al. (Qian
and Liu, 2019) propose a controller based on uncertainty and an
interference estimator. Hao, et al. (Hao et al., 2021) propose a
nonlinear, robust, fault-tolerant, position-tracking, control law
for a tilt tri-rotor UAV, thus avoiding rear servo’s stuck fault
together with parametric uncertainties and unknown external
disturbances. To enable a multirotor UAV to achieve static
hovering, Mochida, et al. (Mochida et al., 2021) propose a
geometric method that reveals the relationship between the
position of the center of mass (CoM) and the rotor placement
of a multirotor UAV with upward-oriented rotors. These
methods can effectively help UAVs accomplish their tasks, but
they do not take into account the energy limitation of UAVs; the
algorithm is complex and not applicable to the QCSP.

Although many researchers have done meaningful work and
achieved results, there are still some challenges in vision
processing and position control in the energy-efficiency-
oriented QCSP, mainly as follows: 1) Object detection
technique–based CNNs can obtain accurate target information
for a UAV, but the improved detection performance of deep
neural networks also brings huge energy consumption, which is
not friendly to the QCSP. 2) The QCSP needs to control the load
stably and reach the target position quickly, whereas the
traditional PID controller usually needs a long adjustment
time for the UAV to reach the target position, which is also
not conducive to the QCSP system to save energy for long-
distance transportation.

To improve the energy efficiency of the QCSP systems, we
propose a lightweight object detection algorithm and an LADRC
payload position control strategy for the QCSP. Specifically, the
object detection model is compressed by network scaling factors
and an energy-aware penalty, which enables the YOLOV3
network to run on the Jetson NX embedded platform of the
QCSP with low energy consumption. In addition, an efficient
control strategy in the form of a string stage is used to overcome
the under-actuated characteristics of the QCSP, which includes
attitude, swing angle, load velocity, and load position
subcontrollers. The contributions of this paper to the energy
saving of QCSP mainly include 1) a new QCSP experimental
platform with embedded vision detection is constructed, and a
lightweight object detection network is used to obtain position
information; 2) an LADRC algorithm is used to control the
payload position quickly and efficiently.

The remainder of this paper is structured as follows: Section 2
introduces the dynamic model and object detection algorithm of the
QCSP in detail; controller design, including the LADRC position
control algorithm for the QCSP is introduced in Section 3; in Section
4, the effectiveness of the proposed QCSP system is verified through
experiments. Conclusions are drawn in Section 5.

2 DYNAMIC MODEL AND OBJECT
DETECTION ALGORITHM OF THE QCSP

There are three reference frames to describe the QCSP (Lv
et al., 2020) system (see left of Figure 1): the inertial frame
I {Xi, Yi, Zi}, the quadrotor body frame B{Xb, Yb, Zb}, and the
payload body frame Bp{Xp, Yp, Zp}. What needs to be
mentioned is that the inertial frame follows the North-
East-Down (NED) notation. For the quadrotor body frame,
Zb points down, the Xb toward the front direction, and the Yb

toward the right direction. Based on the reference frames,
some variables are defined. The generalized coordinates
q � [ξ⊤ η⊤ σ⊤]⊤ ∈ R8, where ξ � [x y z]⊤ ∈ R3 denotes the
coordinate of the quadrotor’s CoG under the inertial frame
I ; η � [ϕ θ ψ]⊤ ∈ R3 denotes the attitude angle of the
quadrotor in the Euler coordinate system, and ϕ means the
roll angle, θ means pitch angle, and ψ means yaw angle; σ �
[α β]⊤ ∈ R2 denotes the swing angle of the payload, where α
and β are the roll and pitch angles of the cable, respectively.
The boundaries of the quadrotor attitude and the swing angle
are limited as

ϕ, θ, α, β ∈ −π/2, π/2( ). (1)
The coordinate δ � [xp yp zp]⊤ of the payload’s CoG in

inertial frame I can be given by ξ and σ:

xp � x + lcαsβ, yp � y − lsα, zp � z + lcαcβ, (2)
and the velocity of the payload is expressed by _δ � [ _xp _yp _zp]⊤.
In addition, In and 0m×n represent the n-dimensional identity
matrix and m × n dimensional null matrix, respectively. c· and s·
are used to represent cos · and sin ·, respectively.

Following previous work (Lv et al., 2020), the dynamic model
of the QCSP system is described by the following equations:

€δ � RGFl −mq
€ξ +mqg + Dξ + Dδ( )/mp + g , (3a)

€η � J−1q τη + A − _Jq _η + Dη( ), (3b)
€σ � −M−1

1 M2
€ξ + Vdσ − C − Dσ( ), (3c)

where Ft � RGFl −mq
€ξ +mqg + Dξ is the tensile force of the

cable on the payload.
For dynamic model described by Eq. 3a, mq is the mass of the

quadrotor, mp is the mass of the payload, g is the gravity
acceleration, Dξ and Dδ are the air drag forces that act on the
quadrotor and the payload, respectively. RG is the projection
vector in the inertial frame I of the unit vector on the axis Zb.

For the dynamic submodel described by Eq. (3b), Dη denotes
the aerodynamic drag torque on the quadrotor. What needs to be
mentioned is that A � [Aϕ Aθ 0]⊤ is given in Eq. 12a of (Lv et al.,
2020), and the inertial matrix Jq is given in Eq. 4 of (Lv et al.,
2020).

For the dynamic model described by Eq. 3c, the drag torque
Dσ on the payload is given by

Dσ � I2×3 l × Rbp
i Dσ( ), (4)
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where I2×3 � 1 0 0
0 1 0

[ ], l = [0 0 l]⊤, l is the length of cable. M1 =

mpl
2 diag (1, c2α), M2 � −mpl

sαsβ cα sαcβ
−cαcβ 0 cαsβ

[ ],
Vdσ � [mpglsαcβ mpglcαsβ]⊤, C � [Cα Cβ]⊤, with
Cα � −mpl2sαcα _β

2
, Cβ � 2mpl2sαcα _α _β. To facilitate the

controller design, the dynamic model (see Eq. 3)is rewritten as

€δ � Ft + Dσ( )/mp + g, (5a)
€η � J−1q τη + τηe( ), (5b)

€σ � Mσ
€ξ + Fσe +M−1

1 Dσ , (5c)
where a = 1/mp, τηe � A − _Jq _η + Dη,

Fσe � M−1 C − Vdσ( ) �
−sαcα _β2 − sαsβg/l

2sα/cα _α _β − sαsβg/l

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

Mσ � −M−1
1 M2 � sαsβ cα sαcβ

−cβ/cα 0 sβ/cα[ ]/l.

It can be found that Mσ, Fδe, and Fσe do not contain a.
Apart from dynamic model controlling the basic attitude of

the quadrotor, the motion of the quadrotor depends on the guide
of the object detection network (ODN). Currently, because of
accuracy and effectiveness, YOLOV3 (Redmon and Farhadi,
2018) is adopted in a growing number of real-world situations.
However, this ODNmethod is computationally expensive; hence,
it creates huge energy consumption, which is not friendly to the
QCSP system. Therefore, compressing the ODN to obtain a
lightweight ODN is essential for deploying YOLOV3 on the
quadrotor. As mentioned, preserving computational
performance and saving energy cost simultaneously are
challenging issues. For preserving performance of the network,
we utilize the sparsity-induced penalty to retrain a sparsity
network indicated by scaling factors. Then, these low-
significance connections distinguished by scaling factors are
removed to achieve network compression. Considering the
energy consumption, we add an energy-aware penalty to
supervise the compression process. Specifically, the retrain
objective is given by

L � ∑
X,Y

l f X,W( ),Y( ) + λ∑
γ∈Γ

‖γ‖1 + α∑
i∈N

E i( )
comp + E i( )

data( ), (6)

where l (·) denotes the supervised training loss; for YOLOV3, l (·)
is the detection loss proposed in (Redmon and Farhadi, 2018). (X,
Y) denote the retrain input and label, W denotes the learnable
weights, ‖ ·‖1 denotes the L1-norm function, γ is a scaling factor
and Γ is the scaling factors set, ‖γ‖1 is used as a sparsity-induced
penalty. In practice, the learnable γ in batch normalization (Ioffe
and Szegedy, 2015) is widely adopted as a scaling factor. E(i)

comp
denotes the energy consumption for computation of the ith layer,
whereas E(i)

data denotes the energy consumption for data access of
the ith layer, N means the whole network consisting of N layers.
E(i)
comp + E(i)

data is utilized as the energy-aware penalty. λ and α
balance three items. Following the principles of (Yang et al.,
2018), the E(i)

comp of the normal convolutional layer is given by

E i( )
comp � eMAC · h′ · w′ · ‖W i( )‖0

h′ � ⌊ h + 2p − r( )/s⌋ + 1
w′ � ⌊ w + 2p − r( )/s⌋ + 1

⎧⎪⎨⎪⎩ , (7)

where eMAC denotes the energy consumption of one systolic array
MAC (Kung, 1982) (a kind of hardware widely used in GPU or
TPU) operation, whereas h andw denote the height and weight of
the convolutional layer input, ‖ ·‖0 denotes the L0-norm function,
p, r, s denote the convolutional arguments, i.e., padding, kernel
size, and stride. Data access energy E(i)

data depends on the
hardware architecture, i.e., systolic array, which is complex
and not helpful for understanding our method. We just
describe it as a function of X(i), h, w, p, r, s: E(i)

data �
E(i)
data(X(i), h, w, p, r, s), where X(i) denotes the input of the ith

convolutional layer. The other omitted items depend on the
specific architecture of the hardware, e.g., bus bandwidth.

Obviously, Eq. 6 gives a meaningful objective. However, it is
hard to optimize because of E(i)

data and E(i)
comp are not functions of

scaling factors γ. To make the energy-aware penalty influence γ,
we redescribe Eq. 6 as

L′ � ∑
X,Y

l f X,W( ),Y( ) + λ∑
i∈N

E i( )
comp + E i( )

data( ) · ‖γ i( )‖1,

where γ(i) is a scaling factor vector of the ith layer. Then, we
optimize the above equation to obtain a sparsity distribution of

FIGURE 1 | The schematic diagram and the control block diagram of the QCSP.
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scaling factors and remove these low-significance connections.
After that, the compact network is fine-tuned for several
iterations to resume.

Finally, a network deployed on a computation and energy-
limited platform could be accessed. We utilize this compact
network to provide location and category information of the
target object to the quadrotor as a basis for flight adjustment.

3 CONTROLLER DESIGN

Because of the underactuated character of the QCSP, the
proposed controller mainly consists of two parts: the cascade
controller for attitude self-stabilization and the active disturbance
rejection controller for position control (see the right subfigure of
Figure 1). Referring to (Lv et al., 2020), the design process of the
cascade controller mainly consists of three parts: inner-loop
attitude, middle-loop swing angle, and outer-loop velocity
subcontrollers.

3.1 Tracking Errors
Errors associated with the dynamics of the QCSP are given as
follows:

eη,pη � eη
⊤ epη

⊤[ ]⊤, (8)
eη � ηd − η, epη � _ηd − _η + Kηeη, (9)

eσ,pσ � eσ
⊤ epσ

⊤[ ]⊤, (10)
eσ � σd − σ, epσ � _σd − _σ + Kσeσ , (11)

e _δ � _δd − _δ, _e _δ � €δd − €δ, (12)
where _δd � [ _xpd _ypd _zpd]⊤, σd � [αd βd]⊤, and ηd �
[ϕd θd ψd]⊤ with the desired attitude ηd, and the desired
position δd, which can be determined by the object detection
algorithm proposed in the above section. The positive definite
diagonal matrixesKσ = diag (kα, kβ) andKη = diag (kϕ, kθ, kψ). The
attitude η in (9) and the velocity _ξ in (12) of the quadrotor are
measured by the IMU integrated in the flight control system. The
payload’s velocity _δ in (12) can be calculated by η and _ξ. From Eq.
9, the attitude error dynamic of the quadrotor is obtained as

_eη � epη − Kηeη, _epη � €ηd − €η + Kη epη − Kηeη( ). (13)
The swing angle error dynamics of the payload are deduced

from Eq. 11:

_eσ � epσ − Kσeσ , _epσ � €σd − €σ + Kσ epσ − Kσeσ( ). (14)

3.2 Load Velocity Controller
3.2.1 Inner-Loop Attitude Controller
Considering the subsystem (see Eq. 5b), the inner-loop
subcontroller (see the right of Figure 1) is used to control the
attitude η of the quadrotor, which is measured by the inertial
measurement unit (IMU) integrated in the flight control system
of the quadrotor. The control torque τη ∈ R3 of the inner-loop
controller is given by

τη � Jq I3 − Kη
2( )eη+ Kη + Kpη( )epη[ ] − τηe, (15)

where Kpη � diag(kpϕ, kpθ, kpψ) denotes a constant positive
definite matrix.

3.2.2 Middle-Loop Swing Angle Controller
Referring to Eq. 16 in (Lv et al., 2020), the adaptive swing angle
controller is applied to make σ follow the desired σd. Noting Eq.
5c, Mσ

€ξ is taken as the visual control input. The desired visual
control input is designed as

Mσ
€ξd � I2 − Kσ

2( )eσ + Kσ + Kpσ( )epσ − Fσe −M−1
1 Dσ , (16)

where Kpσ = diag (kpα, kpβ) is constant positive definite.

3.3.3 Decoupler
For the desired acceleration Mσ

€ξd in Eq. 16 generated by the
aforementioned adaptive swing angle controller, the quadrotor’s
lift force Fl and the desired attitude ϕd can be decoupled byMσ

€ξd
and Ftd. Considering the constraint given in (1) and the
mechanisms of the quadrotor maneuvers, we have Flzd > 0, θd,
ϕd ∈ ( − π/2, π/2). The decoupling result is given by

θd � arctan Flxdcψ + Flydsψ( )/Flzd( ), (17a)
ϕd � −arctan −Flxdsψ + Flydcψ( )cθd/Flzd( ), (17b)

Fl � Flzd/ cϕdcθd( ). (17c)

3.3.4 Outer-Loop Velocity Controller
As illustrated in the outer-loop part of the right subfigure in
Figure 1, the outer-loop velocity controller is utilized to track the
desired velocity _δd for the translational dynamic (see Eq. 5a) of
the payload. The desired tensile force Ftd � [Ftxd, Ftyd Ftzd]⊤ is
designed as

Ftd � K _δe _δ − Fδe −mpg , (18)
with a constant positive definite diagonal matrix
K _δ � diag(k _xp, k _yp

, k _zp). Considering the constraints in (1) and
that the cable is always taut and there is tensile force on the cable,
Ftzd > 0, αd, βd ∈ ( − π/2, π/2). Referring to Eq. 26 in (Lv et al.,
2020), the desired magnitude Ftd of tensile force and the desired
swing angles αd and βd are given by

Ftd � Ftzd/ cαdcβd( ), (19a)
βd � arctan Ftxd/Ftzd( ), (19b)

αd � −arctan Ftydcβd/Ftzd( ). (19c)

3.3 LADRC Based Position Controller
LADRC is utilized for the position control of quadrotors. There
are two parts in the LADRC, including the linear extended state
observer (LESO) and PD controller. The LESO estimates the
internal and external disturbances of the system through an
extended state, which is called total disturbance, and
compensates the control variables. Therefore, the integrator
used in traditional PID to eliminate static error under
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constant disturbance is no longer necessary. The system can be
stabilized by PD controller.

Referring to the controller built by Gao in (Han, 2009) and
taking δd as the expected input of the controller and δ as feedback,
the designed LADRC block diagram is as follows:

3.3.1 LESO
Compared with ESO (Han, 2009), LESO introduces the frequency
domain method. It connects the parameters with the observer
bandwidth, making the parameter tuning more convenient.

The LESO for the position control of the QSCP is designed as

_z � A − LC[ ]z − B, L[ ]uc, (20a)
yc � z, (20b)

where uc = [u δ]⊤ is the input of LESO, and yc is the output.

Besides this, A �
0 1 0
0 0 1
0 0 0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, B �
0
b0
0

⎡⎢⎢⎢⎢⎢⎣ ⎤⎥⎥⎥⎥⎥⎦, C � [1 0 0],

L � [3ω0 3ω2
0 ω3

0]⊤. Here, b0 can be adjusted according to the
step response of the system. ω0 is the observer bandwidth.

3.3.2 PD Controller
Under the action of LESO, the linear PD controller can stabilize
the system. Besides this, the proportional coefficient and
differential time constant are related to the controller
bandwidth, which simplifies the tuning of the controller.

The PD controller is designed as

u0 � kp δd − z1( ) − kdz2 (21)
where δd is the expected input of the controller. z1 and z2 are
observer states from LESO. kp and kd are the parameters of the
controller gain matrix K � [kd kp]⊤ to be designed. We choose
kp � ω2

c , kd � 2ωc with the controller bandwidth ωc.
Finally, the control quantity u0 with the total disturbance z3

has to be compensated, and the control quantity u is u � u0−z3
b ,

where b is the gain factor.
For the position control, it is necessary to obtain the position

coordinates of the target point, but the camera feeds back the
pixel coordinates, which should be compensated by attitude angle
and height information. Besides this, due to the relative
displacement between the quadcopter and the load, the
coordinates of the target point collected by the camera relative
to the quadcopter should be transformed into the coordinates
relative to the load.

4 EXPERIMENT

To verify the effectiveness of the proposed algorithm, a QCSP
experimental platform was created. The payload is connected to
the bottom of the F450 quadcopter by a Cadan joint, and the
Jetson NX board is fixed to the bottom plate with the camera as
shown in Figure 3A.

Before the flight test, we simulated the designed LADRC control
strategy and compared it with the conventional PID algorithm as
shown in Figure 2. The parameters of LADRC and PID are obtained

by many experiments according to overshoot and response time.
Among them, “desired” is the target position curve after
transformation, “fpid” is the position curve of the payload under
PID control. “fladrc” is the position curve of the payload under
LADRC control. It can be seen that, at 20 s, given a target
position of 80 cm, the payload achieved steady state in 7 s without
overshoot under the LADRC control, while the state of the system
oscillated and took more than three times as long to stabilize under
the PID controller.When a sin disturbance signal is added in 80 s, the
LADRC can obviously suppress the disturbance. As a result, it can be
deduced that the LADRC controller is effective in saving QCSP
energy.

The QCSP vision deployment hardware is Jetson NX, which
runs aarch64Ubuntu 18.04 as the operating system. PyTorch (Paszke
et al., 2019) is used as the retraining, fine-tuning, and inference deep
learning software. For efficient inference, popular object detection
model YOLOV3(Redmon and Farhadi, 2018) is adopted, whose
backbone is replaced by MobileNet (Howard et al., 2017) from
DarkNet. The image size requires 416 × 416. The original
network is retrained on a PASCAL VOC data set (Everingham
et al., 2010) for 50,000 iterations and removes the connections whose
scaling factors are lower than the threshold 0.01. Then, the compact
network is fine-tuned for 12,000 iterations. The retraining and fine-
tuning, which cost a large amount of computing power, are carried
out on NVIDIA RTX 2080Ti, and only inference is done on the
embedding Jetson NX platform. The target pattern is the helicopter
landing area-“H”, and the recognition effect is shown in part (b) of
Figure 3, where four objects are detected with confidence 0.89, 0.95,
0.98, and 0.97.

Compression results are reported in Table 1. Through our
method, we saved about 52% energy of the whole network with
only 0.7 mean average precision (mAP) dropping. In addition, we
also demonstrate the necessary of using sparsity-induced and
energy-aware penalties simultaneously. In the case of only the
sparsity-induced penalty used, the energy saved is not satisfactory
(43% saved), but performance drops a lot (1.4) when only the
energy-aware penalty is used.

FIGURE 2 | The comparison results of PID and the LADRC position
controller.
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During the actual flight experiment, the quadcopter flew along the
positive direction of theX axis at the speed of 20 cm/s.When the target
point is identified by Jetson NX, it turn into position control mode as
shown inFigure 3C. From the experiment, it can be seen that theQCSP
system can control the payload stably, and when the target position is
detected, it can reach the destination quickly and remain stable.

5 CONCLUSION

Energy-efficiency plays a crucial role in the development of
UAVs. In this paper, a lightweight YOLOV3 object detection

network with a LADRC-based position controller is proposed
to reduce the energy consumption of the QCSP system. The
experimental results show that the compressed network can
save more than 50% of energy compared with the original
network with little accuracy loss, and the LADRC controller
has three times faster stabilization time and no overshoot
compared with the classic PID controller and has a
suppression effect on disturbing signals. Therefore, the
work done in this paper can effectively save the energy of
the QCSP and improve its range, anti-interference
performance, and robustness.

FIGURE 3 | Experimental platform of QCSP object detection and position control flight test.

TABLE 1 | Object detection performance on PASCAL VOC. “Penalty” denotes the penalty item that we added for training loss. “Energy” denotes the energy cost for
detecting one image. “Energy ↓” denotes the energy saved comparing to original network whose backbone is MobileNet; “mAP” is a common indicator evaluating the
performance of detection network.

Backbone Penalty Energy (J) Energy ↓ mAP

DarkNet Redmon and Farhadi (2018) — 6.61 — 76.1
MobileNet Howard et al. (2017) — 0.21 — 76.8
MobileNet Howard et al. (2017) saprsity-induced Liu et al. (2017) 0.12 43% 75.9
MobileNet Howard et al. (2017) energy-aware Yang et al. (2018) 0.10 52% 75.4
MobileNet Howard et al. (2017) Ours 0.10 52% 76.1
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