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Traditional voltage control methods for distribution networks assume perfect knowledge of
the power system model. Nevertheless, the extensive scale of future distribution networks
makes it unrealistic to acquire the overall operation state monitoring. Moreover, with the
deregulation of distribution networks, partial controllable resources belong to independent
systems, such as microgrids, causing distribution system operators unable to force them
to provide voltage support directly. To cope with the previously mentioned problems, a
data-driven fast voltage control method for distribution networks with MGs is proposed in
this article. First, voltage sensitivity matrices are estimated indirectly by identifying line
parameters in a regression approach, without using measurement data of distribution
phasor measurement units (DPMUs) in distribution networks. Then, an incomplete
information game model is proposed to motivate MGs to provide ancillary services of
voltage control. To guarantee privacy, only a little key information is shared among MGs
and distribution system operators. Moreover, MGs make voltage control strategies
autonomously based on the data-driven deep reinforcement learning algorithms, while
maximizing their own profits. Finally, we test the method on the modified IEEE 33-node
networks and IEEE 123-node networks. The results demonstrate that the proposed
method can provide an accurate voltage estimation in electricity markets with non-DPMU
measurement data and increase energy and asset utilization.

Keywords: voltage control, non-DPMU distribution networks, data-driven, ancillary services, incomplete
information

INTRODUCTION

The increasing penetration of distributed energy resources (DERs) in distribution networks poses new
challenges to conventional voltage control, due to DERs’ uncertainty and volatility (Han et al., 2018a).
Traditional voltage control methods assume perfect knowledge of the distribution system model
including topology and corresponding line parameters (Yu et al., 2019; Jiang, 2021). With the
extending scale of distribution networks, however, the overall acquisition of this information is
unrealistic (Liu et al., 2021). Consequently, the distribution system operator (DSO) cannot model
voltage control problems mathematically. On the other hand, the massive inverter-based DERs have a
faster response than traditional on-load tap changers and capacitors, making them responsive in the event
of dynamic variations (Taousser et al., 2020). However, the deregulation of distribution networks causes
an increasing number of DERs invested and developed by independent system operators, making DSOs

Edited by:
Yue Zhou,

Cardiff University, United Kingdom

Reviewed by:
Yanbo Chen,

North China Electric Power University,
China

Wei Zhou,
Dalian University of Technology, China

*Correspondence:
Dong Liang

liangdong@hebut.edu.cn

Specialty section:
This article was submitted to

Smart Grids,
a section of the journal

Frontiers in Energy Research

Received: 29 January 2022
Accepted: 21 March 2022
Published: 26 April 2022

Citation:
Wang X, Rong Y, Liang D, Zhao Y, Liu Y

and Gu B (2022) Data-Driven Fast
Voltage Control in Non-DPMU

Distribution Networks With Microgrids.
Front. Energy Res. 10:865377.

doi: 10.3389/fenrg.2022.865377

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8653771

ORIGINAL RESEARCH
published: 26 April 2022

doi: 10.3389/fenrg.2022.865377

http://crossmark.crossref.org/dialog/?doi=10.3389/fenrg.2022.865377&domain=pdf&date_stamp=2022-04-26
https://www.frontiersin.org/articles/10.3389/fenrg.2022.865377/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.865377/full
https://www.frontiersin.org/articles/10.3389/fenrg.2022.865377/full
http://creativecommons.org/licenses/by/4.0/
mailto:liangdong@hebut.edu.cn
https://doi.org/10.3389/fenrg.2022.865377
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles
https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org/journals/energy-research#editorial-board
https://doi.org/10.3389/fenrg.2022.865377


unable to control these DERs directly (Wang et al., 2018a; Zhao et al.,
2021). As such, there is an urgent need for a novel voltage control
method considering multiple participants in situations where a
complete model of distribution networks is unknown.

With the development of advanced measurement systems, data-
driven methods provide possibilities to deal with the absence of an
accurate model in voltage control (Tu et al., 2017). Most data-driven
voltage control methods depend on the estimation of voltage
sensitivities, which transfers the non-linear relation between voltage
magnitude and nodal injected power into a linear relation. The data-
driven estimation methods of voltage sensitivities can be divided into
three categories: Jacobian matrix identification (Chen et al., 2016;
Wang et al., 2018b), online disturbance observation (Sansawatt et al.,
2012), and power–voltage mapping (Xu et al., 2019; Dharmawardena
and Venayagamoorthy, 2021). The Jacobian matrix can be identified
directly by using some regression algorithms such as least-squares
regression, linear total least-squares, or ensemble regression (Liu et al.,
2019; Zhang et al., 2019). The Jacobian matrix changes with the
distribution network operation states. Therefore, the Jacobian matrix
needs to be identified dynamically, which requires measurements at a
high sampling rate to quickly track changes in system operating
conditions. As to online disturbance observation, Huo et al. (2021)
proposed a model-free adaptive control strategy of flexible
interconnected devices through the real-time interaction of
measurement information with distribution networks, to effectively
adapt to state changes and improve the operational performance of
distribution networks. The aforementioned twomethods based on the
Jacobian matrix identification and online disturbance observation
require to update voltage sensitivities according to distribution
network real-time operation states, which need a high requirement
of measurement systems (Dasgupta and Soman, 20132013). To
acquire adequate online measurement data, many existing methods
require the nodal voltage angles measured by distribution phasor
measurement units (DPMUs). However, limited by investment and
communication techniques in most distribution networks, it is
unrealistic to fully equip expensive DPMUs (Pappu et al., 2018).
To tackle the problem, methods based on power–voltage mapping
obtain voltage sensitivities through a linear power flow model, the
parameters of which can be estimated by historical measurements
with a regression approach. In Xu et al. (2020), data-driven voltage
regulation for controlling DERs in balanced radial distribution
networks is proposed without knowing a complete model of the
power distribution system. It estimates the voltage sensitivities
indirectly by estimating the topology configuration and the
corresponding line parameters with much less non-DPMU data
than existing algorithms. However, it needs the given distribution
line resistance-to-reactance ratios and power factors.

Inverter-basedDERswith fast response, low operational cost, and
flexible control mode are potential voltage controllers in distribution
networks (ndustry Technic, 2018). As independent systems
integrating DERs and inner management systems, microgrids
(MGs) with high flexibility can be motivated by incentives to
provide voltage support in the ancillary service market (Wang
et al., 2018c; Liu et al., 2018). The existing applications of MGs
in distribution networks are mainly focused on economic operation
and energy management and few on ancillary voltage support
(Wang et al., 2015; Espina et al., 2020). Moreover, most of the

aforementioned applications depend on the accurate models of
distribution systems even of MG internal components to achieve
desirable performance. It is impractical for the DSO and MGs to
share all the personal information, especially in distribution
networks with increasingly numerous buses and independent
systems (Wang et al., 2020). Recently, deep reinforcement
learning (DRL) algorithms have been applied to cope with the
imperfect model problems in voltage control (Cao et al., 2021),
energy trading (Gao et al., 2021a), frequency control (Yan and Xu,
2019), and energy management (Du et al., 2021). In Liu and Wu
(2021), a decentralized control framework of Volt-VAR control
without an accurate system model is proposed, and a novel multi-
agent constrained soft actor-critic reinforcement learning algorithm
is used to train the control agents online. Gao et al. (2021b) proposed
a consensus multi-agent DRL algorithm for voltage problems, which
is formulated as a networked multi-agent Markov decision process
and solved in the maximum entropy reinforcement learning
framework. However, these methods do not consider the voltage
regulators belonging to different independent systems.

In this study, to target the aforementioned research gaps, a
data-driven fast voltage control method for distribution networks
with MGs is proposed. Without a complete model of distribution
networks, a DSO estimates voltage profiles by identifying true
network parameters based on historical non-DPMU
measurements. Subsequently, a DSO motivates MGs to
provide ancillary services of voltage control by incentives. To
guarantee the privacy of MGs, MGs exchange only key
information with each other and optimize the control
strategies to maximize their own profits based on the data-
driven DRL algorithm. To summarize, the main contributions
of this article are as follows: 1) A data-driven voltage estimation
method in distribution networks is proposed by only a few non-
DPMU measurements, including voltage magnitude and nodal
injected power. 2) A game bidding scheme in the ancillary service
market is proposed for the DSO and MGs. The MGs are utilized
to provide voltage control support, increasing energy and asset
utilization. 3) In the incomplete information bidding among the
DSO and MGs, the MG bidding strategy optimization is
formulated in a data-driven DRL model.

The remainder of this article is organized as follows: Data-
Driven Voltage Estimation Method for Non-DPMU Distribution
Networks proposes a data-driven voltage estimation method for
non-DPMU distribution networks without an accurate system
model.Game Bidding of Voltage Control Based on DRL Algorithm
introduces the game bidding model of voltage control with MGs’
DRL-based decision-making in the ancillary service market. Case
studies are presented in Case Studies, while Conclusion concludes
this study.

DATA-DRIVEN VOLTAGE ESTIMATION
METHOD FOR NON-DPMU DISTRIBUTION
NETWORKS
To cope with situations where an accurate system model is
unavailable, a data-driven voltage estimation method for radial
non-DPMU distribution networks is proposed. This method uses
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historical measurement data, including voltage magnitude and
nodal injected power, to identify line parameters of distribution
networks. Based on the power flow model, the mapping
relationship between nodal injected power and voltage
magnitude is established to realize the data-driven voltage
estimation. Instead of load flow calculation, voltage estimation
based on mapping can reduce computation and improve the
responding speed of control systems.

Data-Driven Parameter Identification of
Distribution Networks
The proposed voltage estimation method for radial distribution
networks is based on the DistFlow power flow model. The
simplified radial distribution network is shown in Figure 1,
and the DistFlow power flow model can be expressed as follows:

Pi−1,i � Pi + Pi,i+1 + ri−1,ili−1,i, (1)
Qi−1,i � Qi + Qi,i+1 + xi−1,ili−1,i, (2)

V2
i � V2

i−1 − 2(ri−1,iPi−1,i + xi−1,iQi−1,i) + (r2i−1,i + x2
i−1,i)li−1,i, (3)

li−1,iV2
i−1 � P2

i−1,i + Q2
i−1,i, (4)

where node i-1 and node i+1 represent the upstream adjacent
node and the downstream adjacent node of node i, respectively. Pi
and Qi represent the injected active and reactive power of node i,
respectively. When the node absorbs power from distribution
networks, the nodal injected power is positive. For any branch
L(i-1,i), ri-1,i and xi-1,i represent resistance and reactance of L(i-
1,i), respectively. Pi-1,i and Qi-1,i represent the active and reactive
power from node i-1 into L(i-1,i), respectively. li-1,i represents the
square of the current flowing on L(i-1,i). Vi represents the voltage
magnitude of node i. Generally, node 0 is the slack node of
distribution networks.

Neglecting network losses, the DistFlow power flowmodel can
be simplified as follows:

Pi−1,i � ∑
k∈β(i)

Pk, (5)

Qi−1,i � ∑
k∈β(i)

Qk, (6)

V2
i−1 − V2

i � 2(ri−1,iPi−1,i + xi−1,iQi−1,i), (7)
where β(i) represents the node set including node i and its
downstream nodes. Based on Eqs 5–7,

V2
0 − V2

i � 2⎛⎜⎜⎜⎝ ∑
L(j,j+1)∈Li

rj,j+1Pj,j+1 + ∑
L(j,j+1)∈Li

xj,j+1Qj,j+1⎞⎟⎟⎟⎠
� 2⎛⎜⎜⎜⎝ ∑

L(j,j+1)∈Li
rj,j+1 ∑

h∈β(j+1)
Ph + ∑

L(j,j+1)∈Li
xj,j+1 ∑

h∈β(j+1)
Qh

⎞⎟⎟⎟⎠
� 2⎛⎝∑n

j�1
Pj ∑

L(m,m+1)∈Li∩Lj
rm,m+1 +∑n

j�1
Qj ∑

L(m,m+1)∈Li∩Lj
xm,m+1⎞⎠

� 2⎛⎝∑n
j�1
RijPj +∑n

j�1
XijQj

⎞⎠,

(8)
where Li represents the set of branches on the path from node 0 to
node i. n represents the number of nodes in distribution
networks, excluding node 0. Rij and Xij represent the total
resistance and reactance of branches in set Li∩Lj. Once the
distribution network topology is fixed, R and X are constant
matrices. The matrix expression of Eq. 8 is as follows:

�V � 2[R X ][ P
Q
], (9)

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

�V � [V2
0 − V2

1,/, V2
0 − V2

n]T,
R � [Rij]n×n,
X � [Xij]n×n,
P � [P1,/, Pn]T,
Q � [Q1,/, Qn]T,

(10)

where R and X represent the voltage sensitivity matrices,
respectively. Since the voltage of the slack node in distribution
networks is always equal to 1, in this study, V0 � [1,/, 1]Tn×1.

To obtain R and X in Eq. 9, the partial least squares (PLS)
algorithm is applied to regress between I and J, based on historical
operation data of nodal injected power and voltage magnitude. I
and J are expressed as follows:

I � [P1,/,Pt

Q1,/,Qt ]T

, J � [ �V1
,/, �Vt]T , (11)

where the index t indicates that the corresponding measurement
is obtained at time instant t.

The PLS regression algorithm divides the model into the inner
model and the outer model. The outer model converts raw data to
the latent variable space and obtains mutually orthogonal score

FIGURE 1 | Simplified radial distribution network.
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vectors, while the inner model establishes a linear relationship
between the scores. The outer model is given as follows:

I � w1c
T
1 +H1,

J � u1d
T
1 + G1,

(12)

wherew1 and u1 are the first principal component score vectors of
I and J, respectively; c1 and d1 are the corresponding loads; and
H1 and G1 are the corresponding residuals. The inner model is
given as follows:

u1 � b1w1 + h1, (13)
where b1 is a regression coefficient, which is obtained by
minimizing the modeling error h1.

After extracting the first principal component, the second
principal component is extracted from residuals in the same way.
This process is repeated until all the principal components are
extracted. After that, based on the inner model and outer model,
the relationship between I and J is established. Likewise, the
voltage sensitivity matrices R and X in Eq. 9 are obtained,
meanwhile, the branch resistance and reactance in distribution
networks can be calculated.

Voltage Estimation Method Based on
Accuracy Improvement
To improve the accuracy of the proposed method, voltage
estimation is based on modified Eq. 9 through an iterative
process. To enhance the regression capability of the proposed
model, the constant term C of voltage magnitude is added to Eq.
9, as follows:

�V � 2[R X ][ P
Q
] + C. (14)

Although the voltage estimation equation does not have any
constant terms, C is added to the linearization equation to

enhance the regression capability. In power systems, values of
some independent variables may remain unchanged, and
regression parameters of these independent variables in R and
X may not be regressed. The influences of these independent
variables can be absorbed in these constant terms.

Based on the previous derivation in Data-Driven Parameter
Identification of Distribution Networks, the branch resistance and
reactance can be obtained based on Eq. 14, in the situation where
network losses are ignored. Based on the obtained line
parameters, branch losses can be calculated by Eqs 4–6. Then,
with network losses considered,

Pi−1,i � ∑
k∈β(i)

(Pk + rk−1,klk−1,k), (15)

Qi−1,i � ∑
k∈β(i)

(Qk + xk−1,klk−1,k). (16)

Substituting Eqs 5, 6 by Eqs 15, 16, the regressed voltage
sensitivity matrices R and X are more accurate than those in
Data-Driven Parameter Identification of Distribution Networks.
Consequently, with R, X, and C known in Eq. 14, voltage can be
estimated based on nodal injected power, providing theoretical
support to the subsequent voltage control in distribution
networks with MGs.

GAME BIDDING OF VOLTAGE CONTROL
BASED ON DRL ALGORITHM

In the distribution electricity market, MGs, as ancillary service
providers, often belong to different independent systems.
Therefore, in order to guarantee the fairness and privacy of
participants, a voltage control method based on the dynamic
game bidding between DSO and MGs is proposed. In the
proposed method, DSO uses rewards to motivate MGs to provide
voltage control ancillary services autonomously. With incomplete
information exchanged among DSO and MGs, MGs make decisions

FIGURE 2 | Data streams between DSO and MGs.
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based on the DRL algorithm to provide fast voltage support for
distribution networks while maximizing their own benefits.

Game Bidding Model of DSO and MGs in
Voltage Control
In the proposed voltage control method, the DSO and MGs
improve voltage profiles based on the leader–follower game
model. In this model, the leader is the DSO and the followers
are MGs. The DSO uses rewards to motivate MGs to regulate
their power injections at the points of common coupling (PCCs).
In turn, power regulation at PCCs can improve voltage profiles of
distribution networks. The DSO and MGs continuously update
their strategies through an iterative process until none of them
change their strategies.

DSO Modeling
To induce MGs to provide voltage support for distribution
networks, DSO needs to offer rewards to MGs based on their

contribution to voltage improvement. During voltage control, the
reward RDSO, provided by the DSO, only depends on voltage
profiles of distribution networks before and after voltage control,
but does not depend onMGs’ strategies. Since the DSO focuses on
nodes with voltage excursions, the set of which can be denoted by
Nexceed, RDSO is defined as follows:

RDSO � cv(V exceed,before) − cv(Vexceed,after), (17)

cv(V) � 1
m

·∑m
i�1
(1 − Vm

ΔVerr
)α

, (18)

where Vexceed, before and Vexceed, after denote the vectors of Vi

(∀i ∈ Nexceed) before and after voltage control, respectively; m is
the element number of vector V; ΔVerr is the maximum value of
allowed voltage deviation; and α is an even number as a variable
index. A reasonable α value can both encourage MGs and avoid
unnecessary expenses of DSO.

As mentioned, the reward RDSO is shared by all the MGs
according to their contributions to voltage control. Therefore, the

FIGURE 3 | Flowchart of DRL-based dynamic decision-making of MGi.

FIGURE 4 | Modified IEEE 33-node distribution network.
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DSOneeds to develop a fair and effective reward allocation system so
that the subsidy received by each MG effectively reflects its
contribution to voltage regulation. In the game theory, the

Shapley value is a solution concept to assign a unique
distribution of a total surplus generated by the coalition of all
players. Therefore, the proposed method applies the Shapley

FIGURE 5 | Errors of branch resistance and reactance.

FIGURE 6 | Voltage estimation error.
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value to distribute rewards. Let F be a set of n players, each potential
coalition Z consists of one or several players in F, and Z has 2n-1
combinations. If each Z has a characteristic function f(Z), the
Shapley value of ith player in F can be expressed as follows:

sh(i) � ∑
Z⊂F

(z − 1)!(n − z)!
n!

[f(Z) − f(−i)], (19)

where -i denotes coalition of Z without the ith player; z denotes
the number of coalition Z and 1 ≤ z ≤ n. In our proposed method,
F is the set of MGs during voltage control, and the elements of F
may change with time. f(Z) is the sum of rewards for all the MGs
in Z. The reward for any MGi can be calculated based on the
Shapley value sh(i) in Eq. 19.

During the interaction process between the DSO and MGs, DSO
makes the incentive mechanism first and estimates the voltage
improvement under MGs’ bidding strategies, based on the method
in Data-Driven Parameter Identification of Distribution Networks.
Then, it provides eachMGwith a corresponding subsidy based on the
Shapley allocation principle. Each MG updates strategies based on its
own subsidy and bidding strategies of other MGs at the last iteration
until none of it changes strategies. The DSO and MGs repeat the
previous process until theDSO gets the incentivemechanism that can
effectively motivate MGs to participate in voltage control while
avoiding unnecessary economic losses, meaning the DSO gets a
reasonable value of α in the bidding game with the MGs.

MG Modeling
As providers of voltage control auxiliary services in distribution
networks, MGs make decisions in the non-cooperative static

game model with incomplete information. More concretely, all
the MGs make decisions simultaneously without knowing other
MGs’ strategies. Moreover, given that the competition and
conflicts of interest always exist among MGs, MGs cannot
expose all their information for the purpose of privacy. For
any MGi, it provides voltage support while maximizing its
own benefits by regulating the increment of power at its PCC,
denoted by ΔSMGi = ΔPMGi + jΔQMGi. MGi defines its objective
function as follows:

TABLE 1 | Injected power of MGs and biomass generations.

Name Node P (MW) Q (Mvar)

MG1 8 −2 −0.4
MG2 26 −1.2 −0.5
MG3 28 −1.65 −0.6
Bio1 11 −0.34 0
Bio2 22 −0.7 0

TABLE 2 | Information of the final decision.

Name ΔPMGi (MW) Subsidy ($) Cost ($) Profit ($)

MG1 0.723 36.27 22.28 13.99
MG2 0.729 31.56 23.54 8.02
MG3 0.662 35.06 19.83 15.23

FIGURE 7 | Voltage profiles without and with control.

FIGURE 8 | Actions and profits of MGs in the bidding process.

FIGURE 9 | Loss value in the bidding process.
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Max profit(ΔSMGi) � SubsidyMGi (ΔSMGi) − [cgrid(ΔSMGi)
+ cmg(ΔSMGi)],

(20)
where SubsidyMGi (ΔSMGi) is the subsidy provided by DSO to
MGi, which can be calculated by Eq. 19 in Data-Driven
Parameter Identification of Distribution Networks. cgrid(ΔSMGi)
and cmg(ΔSMGi) denote the cost from the grid and inside MGi,
respectively.

In order to guarantee the privacy and fairness of MGs and
meanwhile reduce the communication burden, only a little key
information is shared among the DSO and MGs in the proposed
game model. For any MGi, information including only its own
subsidy and strategies of other MGs at the last iteraton is provided
by DSO to MGi. But the topological locations of other MGs and
voltage profiles in distribution networks are not required.
Moreover, each MG provides only power increment at its
PCC to DSO, without cost information. In this way, the
fairness of competition is satisfied and the transferred
information is reduced to fasten the response speed of voltage
control systems. Taking the kth iteration as an example, Figure 2
shows data streams between DSO andMGs. In Figure 2, ΔSMG(−i)
denotes the vector of power increments of MGs, except MGi.
ΔS(k)MG(−i) denotes ΔSMG(−i) during the kth iteration. ΔS(k)MGi
denotes ΔSMGi during the kth iteration.

DRL-Based Dynamic Decision-Making
of MGs
Each MG cannot obtain an accurate mathematical model of its
objective function only based on key information provided by
DSO (Eq. 20). With the emergence of AI techniques, the DRL
algorithm enables the formulation of the game model with
updating strategies and provides a potentially effective insight
to address the DSO–MG dynamic game model with incomplete
information. Therefore, a DRL-based decision-making method of
MGs is proposed in ancillary markets.

Different from reinforcement learning, DRL uses neural
networks to fit functions, replacing the complex iterative process
of the Bellman equation with a neural network training process. The

basic components of DRL include state, a set of states that
characterize the environment; action, a set of actions for agents;
and reward, rewards for the agent. The environment provides the
agent with its state s ∈ State, and the agent generates an action a
based on the policy π: State → Action0a � π(s). The agents in
this study refer to MGs. During the kth iteration, for any MGi, its
state is the bidding strategies of other MGs at the last iteration, and,
the state of MGi is given as follows:

si � {ΔS(k−1)MG(−i)}. (21)
The action of MGi at the kth iteration can be expressed as follows:

ai � {ΔS(k)MGi}. (22)
The reward for MGi is the profits at the kth iteration during
voltage control, denoted by ri as follows:

ri � SubsidyMGi(ΔS(k)MGi) − [cgrid(ΔS(k)MGi) + cmg(ΔS(k)MGi)].
(23)

In order to maximize ri, MGi needs to seek the optimal action ai
under state si. Since the incentive mechanism and voltage profiles
of distribution networks are unknown for MGs, each MG cannot
calculate its profit accurately using Eq. 20. Therefore, for MGi, an
action value function Qπi(si, ai) is required to approximate its
reward based on historical iteration data, reflecting the quality of
a dynamic action ai, followed by a policy πi under a given state si.
A higher Q value indicates a better action. Therefore, the aim of
MGs in the voltage control process is to find the optimal policy πi*
to maximize Qπi(si, ai), as follows:

πp
i � argmax

ai∈A
Qπi(si, ai). (24)

To maximize profits, each MG needs to make the optimal action
according to the current state. Therefore, without perfect
information, an actor-critic-based method is proposed for MG
to make decisions. The actor-critic algorithm uses two separate
networks, namely, the critic network and the actor network, to
approximate the critic function Q(·|θQi ) and actor function
π(·|θπi ), respectively.

FIGURE 10 | Errors of voltage magnitude between estimated and actual
voltage profiles.

FIGURE 11 | Voltage control effects for different α-values.
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Critic Network Training
For the critic network, the parameter θQi is updated in the
direction that minimizes the following function:

Loss(θQi ) � E((yi − Q(si, ai
∣∣∣∣θQi ))2), (25)

where yi is the Q target approximation, which means the net
profit profit(ΔSMGi) (Eq. 26) of MGi in this study; E (•) is the
expectation function.

profit(ΔSMGi) � SubsidyMGi (ΔSMGi) − [cgrid(ΔSMGi)
+ cmg(ΔSMGi)]. (26)

The gradient of Loss(θQi ) with respect to θQi is denoted as follows:

∇θQi
Loss(θQi ) � E(2(yi − Q(si, ai∣∣∣∣θQi ))∇θQi

Q(si, ai)), (27)

where ∇ denotes a gradient calculation.
The θQi is updated according to the gradient rule as follows:

θQi ← θQi − μQi
∇θQi

Loss(θQi ), (28)
where μQi

is the learning rate of the critic network.

Actor Network Training
The actor network provides ∇θQi

Q(si, ai) as the direction of action
improvement. To update the actor network, the policy gradient is
used, as follows:

∇θπi
π � ∇aiQ(si, ai

∣∣∣∣θQi )∣∣∣∣s�si,a�πi(si)∇θπi
π(si

∣∣∣∣θπi )∣∣∣∣s�si (29)
θπi is updated according to the deterministic policy gradient as
follows:

θπi ← θπi + μπi∇θπi
πi, (30)

where μπi is the learning rate of the actor network.
In the voltage control method proposed, each MG makes its

bidding strategy based on its own actor-critic algorithm, so its
parameter setting is autonomous. In order to prevent the local
optimum, the experience replay mechanism in deep Q networks is
used. By storing {si, ai, ri} of each iteration, the replay buffer D is
formed. During the training, a random sample of size M is extracted
fromD at a time, and thenetwork parameters are updated based on the
gradient rule. The random sample makes the update more accurate.
Figure 3 shows the flowchart of DRL-based dynamic decision-making
of MGi. For the actor network, the input is si � {ΔSMG(−i)} and the
output is ai � {ΔSMGi}. For the critic network, the input is si �
{ΔSMG(−i)} and ai � {ΔSMGi}, and the output is Qπi(si, ai).

CASE STUDIES

Application in a Modified IEEE 33-Node
System
To demonstrate the effectiveness of the proposed method, case studies
are carried out in a modified IEEE 33-node distribution network, as
shown in Figure 4. There are three MGs involved in voltage control,
located at nodes 8, 26, and 28, respectively. Two biomass generations
are located at node 11 andnode 22. The negative power of PCCsmeans
that the MG injects power into the grid, and vice versa. In the case
studies, the voltage constraint is (0.96, 1.04), and namely, ΔVerr = 0.04.

Data-Driven Voltage Estimation
Operation measurement data of distribution systems used in case
studies are based on Monte Carlo simulation. Parameters are

FIGURE 12 | A modified IEEE 123-node distribution network.
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regressed using the training dataset, and the accuracy of voltage
estimation is tested using the newly generated testing dataset. The
size of the training dataset is 3,000, and the size of the testing dataset
is 500. In the Monte Carlo simulation, the load consumption is
calculated from the preset load consumption multiplied by a factor
randomly drawn from a uniform distribution over the interval. The
intervals of active and reactive consumption are (0.8, 1.2) and (0.15,
0.25), respectively. The fluctuation range of load is generated by
random fluctuation.

Figure 5 shows the calculation errors for the branch resistance
and reactance in the test distribution networks. The maximum
error values of resistance and reactance are -2.294% of branch
L(4,5) and -0.77% of branch L(24,25), respectively. Based on the
newly generated testing dataset, the voltage estimation error is
shown in Figure 6. Therefore, as Figures 5, 6 show, the small
errors demonstrate the effectiveness of the proposed data-driven
voltage estimation method, satisfying the accuracy requirement
of the voltage control system in distribution networks.

Voltage Control MethodWith MGs in Ancillary Markets
The proposed voltage control method with the participation of
MGs is analyzed in this section. The large R/X ratio in

distribution networks makes the effect of active power changes
on voltages larger than that of reactive power to some degree.
Hence, this study focuses on active power variations of MGs. In
the actor-critic algorithm of MGs’ decision-making, both the
actor network and critic network have two hidden layers, and the
number of neurons in each layer is 64. Rectified non-linearity
(ReLU) is used as the activation function for all hidden layers. The
learning rate of the actor network is 0.0001, and the learning rate
of the critic network is 0.001. The size of the experience replay
buffer D is 1,000, and the experience sampling size M is 800 at
each iteration.

Taking a certain time with voltage levels exceeding the upper
limit as an example, the power of MGs and biomass generations
at that time are listed in Table 1. At this moment, the largest
nodal voltage value is V28 = 1.06562. When voltage excursion
occurs, the DSO starts the game bidding process of voltage
control. The three MGs make their final decisions after
iterations. After about 700 bidding steps, three MGs converge
to the equilibrium and control the voltage profiles within the
preset reasonable range. The whole process takes 13.30 s. After
voltage control, the voltage profile is shown in Figure 7withV28 =
1.02986, α = 8, and the specific information of the game bidding

FIGURE 13 | (A) Errors of branch resistance and reactance. (B) Voltage estimation error. (C) Actions and profits of MGs in the bidding process. (D) Voltage profiles
without and with control.
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among MGs is shown in Table 2. The actions and corresponding
rewards of MGs at every bidding step are shown in Figure 8. In
the proposed method, MGs approximate their profits using the Q
function based on incomplete information. Therefore, in order to
verify the approximation ability of the Q function, the Loss in Eq.
25 of each bidding step is shown in Figure 9. As shown, the Loss
values gradually decrease and are finally close to 0. This indicates
that the Q function can track MG profits and guide MGs to
optimize their profits based on only key information effectively.

The proposed voltage control is based on data-driven voltage
estimation. Therefore, there is a certain deviation between the
estimated voltage in the proposed method and the actual voltage.
Figure 10 shows errors of voltage magnitude between estimated
and actual voltage profiles after voltage control. As shown, the
maximum voltage magnitude error appears at node 28 and is
equal to 0.036%. Obviously, the small errors demonstrate the
effectiveness of the proposed voltage estimation method in
distribution networks.

A reasonable α value in Eq. 18, defined by the DSO, can
motivate MGs to participate in voltage control efficiently and also
avoid unnecessary expenses of DSO. In the aforementioned case,
voltage control effects under different values of α are shown in
Figure 11. Moreover, the total rewards provided by the DSO in
different α are RDSO = 38.49$ at α = 6, RDSO = 102.89$ at α = 8, and
RDSO = 276.40$ at α = 10, respectively. When α < 8, MGs do not
receive enough subsidies to motivate demand response for voltage
control. Oppositely, when α > 8, all the nodal voltages are within
limits, but DSO needs to pay more. Thus, the DSO chooses α = 8
in the previous case.

Application in a Modified IEEE 123-Node
System
The modified IEEE 123-node distribution networks, with 4 MGs
located at nodes 24, 26, 87, and 91, respectively, are shown in
Figure 12. In voltage estimation, calculation errors for resistance
and reactance are shown in Figure 13A. The maximum error
values of resistance and reactance are -3.127% of branch L(64,65)
and 1.979% of branch L(61,62), respectively. Based on the newly
generated testing dataset, the voltage estimation error is shown in
Figure 13B. Taking a certain time with voltage levels exceeding
the upper limit as an example, the largest nodal voltage value is
V84 = 1.06445. After about 800 bidding steps, voltage profiles have
been controlled into the preset reasonable range with taking
23.719 s. The voltage profiles before and after voltage control
are shown in Figure 13C. The actions and corresponding rewards
of MGs at every bidding step are shown in Figure 13D.
Obviously, this case demonstrates the effectiveness of the
proposed voltage control method in a large-scale distribution
network.

CONCLUSION

In this study, a data-driven fast voltage control method in
distribution networks with MGs is proposed. To cope with the
incomplete information, voltage profiles are estimated by

identifying the true network parameters based on historical
non-DPMU measurements. This method utilizes a linear
model that approximates the non-linear relation between the
voltage magnitude and nodal injected power. Results in case
studies show that both line parameters and voltage profiles in
distribution networks can be accurately estimated with maximum
errors −3.12 and 0.39%, respectively. The small errors indicate the
proposed voltage estimation can provide effective theoretical
support to voltage control with MGs. Subsequently, to
encourage the independent MGs to participate in voltage
control, a game bidding model is established between DSO
and MGs. In MGs’ decision-making process, only key
information is shared among DSO and MGs, which
guarantees the participants’ privacy and decreases the
communication burden simultaneously. With incomplete
information, each MG optimizes its bidding strategy based on
a data-driven DRL algorithm. Compared with conventional
methods, the proposed data-driven voltage control requires
less measurement data and calculation time. Meanwhile, under
incentives, MGs are utilized to provide voltage control support,
increasing the energy and asset utilization of distribution
networks. For future work, we can extend the proposed
voltage control method to more complex distribution networks
and combine dynamic planning and real-time control together
(Han et al., 2018b). In this way, distribution network operation
and control systems can take full advantage of various voltage
controllers with different characteristics, which will increase
energy utilization.
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