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In this study, we proposed an alternative method to determine the parameter of the proton
exchange membrane fuel cell (PEMFC) since there are multiple variable quantities with
diverse nonlinear characteristics included in the PEMFC design, which is specified
correctly to ensure effective modeling. The distinctive model of FCs is critical in
determining the effectiveness of the cells’ inquiry. The design of FC has a significant
influence on the simulation research of such methods, which have been used in a variety of
applications. The developed method depends on using the honey badger algorithm (HBA)
as a new identification approach for identifying the parameters of the PEMFC. In the
presented method, the minimal value of the sum square error (SSE) is applied to determine
the optimal fitness function. A set of experimental series has been conducted utilizing three
datasets entitled 250-W stack, BCS 500-W, and NedStack PS6 to justify the usage of the
HBA to determine the PEMFC’s parameters. The results of the competitive algorithms are
assessed using SSE and standard deviation metrics after numerous independent runs.
The findings revealed that the presented approach produced promising results and
outperformed the other comparison approaches.

Keywords: parameter extracting, fuel cells, optimization, proton exchange membrane fuel cell, honey badger
optimization algorithm

1 INTRODUCTION

The technology of the fuel cell (FC) is an essential energy exporter due to its extraordinary
production and reduced carbon effects. Also, in contrast to wind and photovoltaic power
origins, the production of power from the FC is autonomous of the climatologic conditions.
Thus, it can be used for perpetual power generation. Different models of the FC are revealed; their
system is carried out based on the characteristics of the electrolyte applied. Among the numerous
types of FCs are the chemical-based FC approach (CFC) (McLean et al., 2002), PEMFC (Eisman,
1989), solid-based oxide FC (SOFC) (Kawada et al., 1990), etc. One of the most well-known types of
FCs is the PEMFC. Their active start is recognized because of their economic temperature and yield
ranging between 30 and 60%. The PEMFCs are utilized in different disciplines (Messaoud et al.,
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2021). The escalating cost of human energy has a hazardous
impression on the atmosphere. Electricity requirements
contribute primarily to ecological degeneration while
consuming nonrenewable supplies (Nain et al., 2021). The
portion of renewable electricity from the universal energy
production is 26% approximately. Various varieties of power
references for providing hydrogen exist. Now, most of the
hydrogen composition is generated by solar power (37%) and
comes behind conventional fossil fuel (26%), as shown in
Figure 1 (Fathy et al., 2020b). These H2 results guide to
reasonable prices and more critical appropriate solutions via
hydrogen in the real world (Kayfeci et al., 2019).

FC-based energy production methods can meet the
anticipations of very low emanations and comparatively high
conductivity (Mo et al., 2006). FC is characterized by more
economical contamination and more extraordinary
performance than traditional power origins; however, they
have an excellent dynamic reaction, sound balance, and
moderate noise (Ramos-Paja et al., 2010). Between several
systems of FCs, because of their approximately low running
temperature, quick reaction, small volume, high popular mass,
no loss, and in case of explicit hydrogen zero emission is
generated, PEMFC can be an excellent option for energy-
producing origins in the future, particularly in the automation
applications, shared power production, and transferable
photoelectric applicability (Askarzadeh and Rezazadeh, 2011).

Despite substantial advancements in the previous few years,
the financial performance of PEMFCs is still a point of contention
among support and opposition (Alizadeh and Torabi, 2021). The
improvement of PEMFC performance is critical for the marketing
of the technology and achieving significant market adoption
(Kahraman and Orhan, 2017). Generally, the performance of
the FC is regarded as the essential aspect of end-user acceptability
(J. Wang et al., 2018). Many published articles show that
numerous structural and operational factors (parameters)
highly influence the performance of the PEMFC. The most
efficient methods that have successfully proved their ability to

extract the parameters are the optimization methods (Eid et al.,
2021; Hassan et al., 2021; Wang et al., 2021). This field still needs
further investigation to find a more efficient approach to tackle
this problem.

As presented in the relevant studies, Priya et al. (2015)
presented a unique presentation for the efficient estimation of
FC parameters. The parameters’ values of FC were determined
based on the genetic algorithm, and the obtained results proved
its ability to find better results than several other methods in this
domain. İnci and Caliskan (2020) proposed a new enhanced
energy extraction-based optimization method to tackle the FC
parameters. The presented technique is based on using an
improved cuckoo optimizer. The proposed technique achieved
better convergence acceleration than traditional techniques.
Kandidayeni et al. (2019) used several optimization techniques
to solve PEMFC. The proposed method reduced squared errors
among the included and measured voltage for two possible test
cases. The proposed SFLA method got better results in terms of
precision and repeatability than the other comparative methods.

Fathy et al. (2020a) introduced a hybrid of differential evolution
and vortex search algorithms for determining the optimum
parameters of the FC, called VSADE. The achieved results
established the superiority of the introduced VSADE method.
This study aimed to provide a new, simpler, and accurate model
of the proton electrolyte membrane FC (Seleem et al., 2021). The
suggested approach drastically lowers the number of unknown
factors in such models, resulting in a more straightforward
model. It discloses just four design factors within the model in
this regard. This model’s great effectiveness is tested both in steady-
state and dynamic operating situations. It is possible to build a
highly exact PEMFC model using the suggested approach. Menesy
et al. (2020) suggested an enhanced artificial ecosystem optimizer to
determine the problem of the FC parameters. According to the
results, it is proved that the presented optimizer has high
performance in obtaining the optimal parameters compared with
the other comparative methods.

As mentioned before, metaheuristic optimization algorithms
proved their ability to deal with various problems such as

FIGURE 1 | PEMFC arrangement (Famouri and Gemmen, 2003).

FIGURE 2 | Polarization curve of the PEMFC system (Famouri and
Gemmen, 2003) showing the regions dominated by activation loss, ohmic
loss, and concentration loss using HBA.
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bioinformatics (Issa, 2021a; Issa and Abd Elaziz, 2020; Issa and
Hassanien, 2017; Issa et al., 2018a; Issa et al., 2018b; Issa and
Helmi, 2021; Issa et al., 2022), control engineering (Issa, 2021b;
Issa et al., 2019), passive suspension system (Issa and Samn,
2022), and digital watermarking (Abualigah and Diabat, 2021;
Issa, 2018). To estimate the model parameters of the PEMFC, an
efficient method compared to the existing method is needed. This
research work proposed a new parameter extraction technique to
deal with the FC modeling optimization problem. The proposed
method is based on the honey badger algorithm (HBA), a
technique recently proposed by Hashim et al.(2021) inspired
by the creative foraging habits of the honey badger in real life. The
mathematical modeling of the HBA is produced using efficient
search operators to deal with highly complicated problems which
motivate to use it for the parameter estimation of PEMFCs. The
balancing between diversification and intensification of the
search space of the HBA is the main merit and motivation to
use it in this work. The primary fitness function that is used in the
proposed method is to minimize the integral squared errors. The
high effectiveness of the presented technique is verified using
dynamic and steady-state operating conditions. The results
illustrated that the presented method using the HBA achieved
promising results in comparison with several relevant study
parameter extraction methods used in the literature.

The main contributions and novelties of this study are
concluded as following:

1. The optimal values of the PEMFC model parameters were
adjusted based on the HBA.

2. Three PEMFC datasets (NedStack PS6, 250W, and BCS
500W) were used in the experimental tests.

3. The results of the developedmethod were compared with well-
known methods.

The remaining sections of this article are organized as follows:
Section 2 proposes the background of the used optimization
methods. Section 3 shows the procedure of the proposed FC
parameter extraction using the honey badger algorithm. In
Section 4, experiments and results are given. Finally, Section
5 presents the conclusions and future potential works.

2 BACKGROUND

In this part, the primary mathematical representation of the
PEMFC design is explained. It includes a cathode, negative
charges, charged anode, and electrolyte, as described in
Figure 1. In the PEMFC system, the hydrogen data are divided
into two main parts utilizing a catalyst: protons and electrons.
Moreover, the cathode pulls the protons, and the electrons produce
the output charge by moving along the exterior circuit. The
mathematical notations of the chemical stability produced in the
FC are presented as follows (Alizadeh and Torabi, 2021):

H2 → 2H+ + 2e−, (1)
O2 + 4e− → 2O−2, (2)

H2 + 1
2
O2 → H2O + electrical energy +Heat. (3)

In the PEMFC system, three drops normally happen during
the voltage process, called activation (Vact), ohmic (Vohm), and
concentration (Vcon). Thus, Eq. 4 is used to calculate the FC
terminal voltage.

VFC � ENernest − Vact − Vohm − Vcon, (4)
where ENernest is the double-faced open circuit charge voltage,
which is calculated as follows (Yuan et al., 2020):

ENernest � 1.229 − 8.5 × 10−4(T − 298.15)
+ 4.385 × 10−5T ln(PH2 + 0.5 ln PO2), (5)

where RPO2 presents the pressure of the O2, RPH2 presents the
pressure of H2, and T represents the cell temperature value used
in this research. The activation voltage loss value (Vact) is
calculated as follows:

Vact � −[ξ1 + ξ2T + ξ3T ln(C02) + ξ4T ln(IFC)], (6)
where IFC is the present value of the FC and ξ1, ξ2, ξ3, and ξ4
denote the coefficient values. CO2 presents the condensation value
of oxygen (mol/cm3) calculated as follows:

CO2 � PO2

5.08p106pe(−498
T ). (7)

The Vohm is calculated using Eq. 8, which is resulted from the
equivalent resistance of the FC value.

Vohm � IFC(RM + RC), (8)
where RC presents the connection resistance and RM presents the
membrane resistances calculated as follows:

RM � ρM.l
A

, (9)

FIGURE 3 | Flowchart of HBA (Hashim et al., 2022).
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ρM �
181.6[1 + 0.03(IFCA ) + 0.0062( T

303)(IFCA )2.5]
[λm − 0.634 − 3(IFCA )]exp[4.18(T−303T )] , (10)

where ρM presents the measure of the resisting power of the
membrane (Ω.cm), l presents the density value of the membrane
(cm), A presents the effective range of the cell (cm2), and λm
presents the membrane water fulfilled. The Vcon value is
calculated using Eq. 11.

Vcon � −b ln⎧⎨⎩1 − (IFCA )
Imax

⎫⎬⎭, (11)

where b presents a constant value and Imax is the present
maximum destiny value. So, the stack includes a series value
of n FCs, and the stack voltage value is calculated as follows.

Vstack � n.VFC � n.(ENernest − Vact − Vohm − Vcon). (12)

Figure 2 presents the FC polarization detour.

2.1 Honey Badger Algorithm
The HBA mimicked the locating of prey operation of the honey
badger that lives in rainforests and semideserts of Southwest Asia,
the Indian subcontinent, and Africa. For locating a prey, it
depends on its smelling skills and moving.

- Digging phase: In this phase, the honey badger depends on
its smelling sense for locating the prey and the suitable place
to catch it.

- Honey phase: In this phase, the honey badger tracks the
honey bird for locating the beehive.

The HBA starts with the initialization of the solutions within the
lower boundary (lb) and upper boundary (ub) according to Eq. (13).

xi � lbi + r1p(ubi − lbi), (13)
where (xi) represents the solution of the honey badger agent (i)
where (i = 1:N) and (r1) is a random number within (0,1). For
balancing between the exploration and exploitation of the HBA, a
density factor (α) is defined in Eq. (14).

FIGURE 4 | PEMFC model parameter estimation based on HBA.

TABLE 1 | PEMFC dataset’s electrical specifications.

Specification BCS 500-W [2] 250-W [33], [34] PS6 [33]

cellsnb 32 24 65
L(µm) 178 127 178

Am(cm2) 64 27 240

CDmax(mA
cm2) 469 860 1125

TMc(K) 333 343 343
PRH2(atm) 1 1 1
PRO2(atm) 0.2095 1 1

TABLE 2 | Two parameter ranges of PEMFC parameters.

Parameter Lower limit Upper limit

ξ1 −1.1997 −0.8532
ξ2 0.80E-3 6.00E-3
ξ3 3.60E-5 9.80E-5
ξ4 −26.00E-5 −9.54E-5
λ 13 23
Rc (Ω) 0.1E-3 0.8E-3
b (V) 0.0136 0.5000

TABLE 3 | Estimated BSC 500 W’s parameters.

HBA HGS HHO SCA GWO

ξ1 −0.952 −0.9510 −1.093 −0.947 −0.948
ξ2 3.2E-03 3.3E-03 3.3E-03 3.3E-03 3.3E-03
ξ3 7.40E-05 −9.2E-05 −1.89E-04 −7.1E-5 −8.0E-5
ξ4 −7.24E-05 −9.21E-5 −1.89E-4 −7.1E-5 −8.0E-5
λ 2.01E+01 14.00 2.00E+01 19.569 18.599
Rc 5.43E-04 1.4E-04 2.26E-04 4.1E-04 3.2E-04
b 1.60E-02 1.7E-02 1.51E-02 2.9E-02 3.01E-2
SSE 0.0118 2.113 0.0149 8.726 1.918

TABLE 4 | Estimated 250 W’s parameters.

Parameter HBA HGS HHO SCA GWO

ξ1 −0.9486 −0.945 −1.1097 −0.9487 −0.9478
ξ2 3.25E-03 3.00E-03 3.46E-03 3.23E-3 3.22E-3
ξ3 7.80E-5 7.8E-05 8.32E-05 7.69E-5 7.69E-5
ξ4 −1.73E-4 −1.0E-04 −1.52E-4 −1.8E-4 −1.8E-4
λ 1.7E+01 17.993 2.29E+1 18.395 18.231
Rc (Ω) 8.0E-04 5.8E-04 3.83E-04 2.8E-04 3.5E-04
b 1.60E-02 1.6E-02 5.42E-02 1.8E-02 1.8E-02
SSE 0.354 0.3576 6.46–01 0.546 0.3680
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a � C p exp
(− t

T)
, (14)

whereC represents a constant with a valuemore than (1),T represents
the total number of iterations, and t represents the current iteration.

In the HBA, there are two phases for updating the movements
of solutions.

- Digging phase: In this phase, the movements are updated
according to a cardioid shape [2], which is represented in Eq. (15).

xnew � xprey + Fpβplpxprey + Fpαpdipr3p|cos(2πr4)p[1
− cos(2πr5)]|, (15)

where xnew is the new updated value of xi; xprey is the best-founded
solution; (F) controls the direction of the search according to Eq.

(16); r3, r4, r5, and r6 are uniformly generated random numbers
within the range (0,1); (B) is a constant number having a value
greater than (1); and (I) is the smell intensity of the prey, which
expresses the remoteness between the prey and the honey badger.

It was estimated according to Eq. (17) and (18), where (di)
represents the remoteness between the prey and the honey badger
and (S) expresses the source strength.

F � { 1 If(r6 ≤ 0.5)
−1 Else

, (16)

Ii � r2
S

4 πd2
i

, (17)

S � (xi − xi+1)2, di � xprey − xi . (18)

- Honey Phase: This phase simulates the tracking of the honey
badger for the honey guide bird to find the beehive, and this
operation is simulated as in Eq. (19).

xnew � xprey + F p r7p α p di, (19)
where r7 is a uniform random number within the range (0,1). The
procedure of theHBA is expressed as in algorithm (1). Figure 3 shows
the flowchart of HBA. HBA’s time complexity is O (T x N x Ccost),
where T is the total number of iterations,N represents the population
size, and Ccost is the needed execution time for updating solutions.

Algorithm 1. HBA procedure

The balancing between diversification and intensification of the
search space of the HBA is the main merit and motivation to use it in
this work. The balancing is performed through threemain parameters:

1 - Intensity (I): It controls the transfer between exploration
to exploitation and the reverse through the distance
between the prey and the other solutions, which may be
increased or decreased. In addition, there is another issue
that controls the exploration/exploitation process that is
the distance between two neighbors of solutions. These
interactions increase the possibility of escaping from local
minima.

TABLE 5 | Estimated Nedstack PS6’s parameters.

HBA HGS HHO SCA GWO

ξ1 −0.952 −0.945 −0.9525 −0.948 −0/949
ξ2 3.29E-03 3.23E-03 2.91E-03 3.2E-03 3.2E-03
ξ3 7.40E-05 7.80E-05 5.18E-05 7.5E-05 7.5E-05
ξ4 −7.24E-05 −1.9E-04 −0.95E-05 −1.9E-4 −1.9E-4
λ 2.01E+1 19.273 1.26E+1 20.81 21.65
Rc 5.43E-04 1.00E-04 1.00E-04 1.3E-02 2.9E-04
b 1.60E-02 1.6E-02 1.36E-02 1.8E-02 1.6E-02
SSE 1.59E-02 4.6E-02 2.07 0.662 0.038

TABLE 6 | Statistical values for each method.

— Std Worst Best Mean

BCS 500 W HBA 0.037 0.0119 0.0117 0.0118
HGS 0.934 4.5797 1.3265 2.11380
HHO 0.490 1.824 0.0901 1.49E-02
SCA 3.338 19.31522 5.150285 8.72860
GWO 0.595 3.806807 1.357709 1.91880

250 W HBA 0.030 0.4275 0.3377 3.54E-01
HGS 0.018 0.3985 0.3377 0.34700
HHO 0.155 0.955 0.422 6.46E-01
SCA 0.155 0.955228 0.422466 0.54636
GWO 0.021 0.408939 0.341183 0.36809

NedStack PS6 HBA 0.2158 1.86 1.3196 1.59
HGS 4.75E-02 0.145 0.0118 0.04620
HHO 0.5955 3.806 1.3577 2.07E+00
SCA 0.49033211 1.824527 0.090154 0.66195
GWO 0.05954205 0.266837 0.01197 0.03821

TABLE 7 | p-value for comparison between HBA and other methods.

250 W NedStack BCS 500 W

HGS 5.32E-04 3.45E-04 2.13E-05
HHO 6.73E-07 1.15E-07 3.96E-06
SCA 2.34E-05 8.12E-05 4.87E-05
GWO 1.27E-04 9.12E-04 4.21E-06
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2 - Density factor (α): This parameter decreases with time, which
achieves the trade-off between diversification and
intensification of the search space.

3 - Flag (F): It controls the direction of the movements of the
solutions, which increase the diversity of the generated
solutions, which enhance the exploration.

3 PEMFC MODEL PARAMETER
ESTIMATIONS BASED ON HBA

The HBA was used for tuning the best parameters’ values of
PEMFCs where each agent has a total of the seven parameters (λ,
Rc, ξ1, ξ2, ξ3, ξ4, and b), and the best agent is the agent that

FIGURE 5 | Convergence curve of SSE of datasets. (A) BSC 500, (B) 250 W, and (C) Nedstack.
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produces the best fitness. The fitness function used to evaluate the
search is the sum square error (SSE) function, which represents
the integral square of the subtraction between experimental and

estimated voltages. The representation of the SSE function as
proposed in Eq. (20), where Vexp and Vest represent the
experimental and estimated voltages, respectively.

FIGURE 6 | Error % of datasets: (A) BCS 500 W, (B) 250 W module, and (C) Nedstack module.
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SSE � (Vexp − Vest)2. (20)
Figure 4 shows the flowchart of parameter estimation of

PEMFCs based on the HBA. The initial random

solutions are initialized according to satisfying
conditions and input into the HBA’s block. The output of
the HBA is the best solution found that achieves the
smallest SSE.

FIGURE 7 | I-V curves of datasets: (A) BCS 500 W, (B) 250 W, and (C) Nedstack.
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4 NUMERICAL ANALYSIS

The efficiency of the created HBA used for estimating PEMFC
model parameters is assessed in this part using three datasets:
PEMFC 250-W stack, NedStack PS6, and BCS 500-W, and their
electrical specification are listed in Table 1. In addition, Table 2
presents the parameters’ boundaries (lower bound and higher
bound) (Zhang and Liu, 2010).

The HBA is compared to other MH techniques such as grey
wolf optimization (GWO) (Ali et al., 2017; Mirjalili et al., 2014),
Hunger Games Search (HGS) (Yang et al., 2021), sine cosine
algorithm (SCA) (Mirjalili, 2016), and Harris hawk optimization
(HHO) (Heidari et al., 2019) to demonstrate its capability. The
values of each algorithm’s parameters are assigned depending on
the algorithm’s original implementation. The conventional
settings for the number of populations and iterations are 50
and 500, respectively.

Tables 3–7 and Figures 5–9 using the three datasets show the
comparison between the HBA and other approaches. Table 3
shows the estimated parameters derived by each algorithm and
their SSE values in general. The performance of the HBA in terms
of SSE is superior to other MH approaches among the datasets
studied, as can be seen from these results. HBA’s SSE value with
BCS 500-W, 250-W, and NedStack PS6 is, for example, 0.0118,
0.3378, and 1.38E+00, respectively.

Furthermore, the values of SSE over the iterations for SCA,
GWO, HGS, HHO, and HBA are presented in Figure 5 among

the three datasets for SCA, GWO, HGS, and HBA to justify the
produced HBA’s convergence rate. These charts show that the
HBA has a higher convergence rate than other approaches,
especially in the NedStack PS6 dataset. Figure 6 also displays
the voltage and measured I/V polarization percentage errors,
where the percentage error was estimated as the difference
between estimated and measured voltage relative to the
measured voltage. The percentage error of the HBA is nearly
-0.9E-3 to 4.8E-3 for BCS 500W and from -0.012 to.015 for
250W module, according to these curves. Finally, the percentage
errors for the NedStack PS6 range from -0.012 to +0.012.

The obtained results in Figure 8A,B depict the effect of the
three temperature values on the I/V and I/P polarization curves,
respectively. The pressures RP_O2 and RP_H2 were set to justify
the effect of temperature on the performance of the PEMFC stack
as shown in Figure 9A,B.

Various statistical parameters such as mean, standard
deviation, best, and worst of the SSE are calculated to further
examine the effectiveness of HBA as a PEMFCmodel, as shown in
Table 6. From these metrics, it is clear that the HBA is better at
finding optimal settings than other approaches, as evidenced by
the examined datasets. We also utilized the Wilcoxon
nonparametric test to see if there was a significant difference
between the HBA and other approaches. Table 7 shows the
Wilcoxon test p-value at a significance level of 0.05. These
results show that there is a considerable difference in overall
datasets between the HBA and other approaches.

FIGURE 8 | Curves under different temperatures for BCS 500 W using HBA. (A) I/V curves and (B) I/P curves.
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5 CONCLUSION

In this study, an alternative approach for estimating the model
parameters of a PEMFC under various operating conditions is
described. This method is based on the HBA. This algorithm has
proven its efficacy in a variety of applications, which prompted us
to use it. The main motivation for using the HBA for estimating
the PEMFC’s parameters is the advantage of balance between
exploration and exploitation of the search space, which avoids
trapping in local minima. A set of experimental series has been
conducted utilizing three datasets entitled 250-W stack, BCS 500-
W, and NedStack PS6 to justify the usage of the HBA to
determine the PEMFC’s parameters (i.e., λ, Rc, ξ1, ξ2, ξ3, ξ4,
and b). HBA’s results have also been compared to those of other
metaheuristic techniques such as HGS and SCA. In terms of
performance measures, the results showed that the HBA
outperformed other MH approaches. The findings revealed
that the presented approach produced promising results and
outperformed the other pproaches. The main limitation of
using the HBA for estimating the parameters of PEMFCs is it
was tested on three modules only. More modules are needed to be
used in the experimental tests for efficient verification of the
performance of the HBA. Apart from the findings generated by
the HBA, it may be employed in a variety of applications, such as

PV parameter estimation, mechanical engineering, and other
challenges such as cloud computing and picture segmentation.
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