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The distributed power flow controller (DPFC) has a positive effect of UC problem on the
network side based on its ability to manage capacity of power flow. This study presents a
novel two-stage robust model to optimize the status of the generator and
location–allocation of the DPFC, while simultaneously considering wind and load
uncertainties. The column-and-constraint generation (CCG) method is utilized to solve
the two-stage problem into the master problem and the subproblem iteratively. The
optimal status of the generator and location of the DPFC can be easily obtained with the
master problem, and the dispatch solution and compensation level of the DPFC are solved
in the subproblem. We conduct the IEEE 24 bus system to verify the performance of the
proposed procedure. There are effects on wind spillage/load shedding and generator
dispatch scheduling planning once the DPFC is injected. Detailed simulation results
illustrate the effect of the proposed approach.

Keywords: column-and-constraint generation (CCG) algorithm, optimal FACTS planning, distributed power flow
controller, relaxed AC-SOCP2, robust optimization

1 INTRODUCTION

Over the last decade, the penetration of wind power is gradually increasing as the load diversity
changes (Yang et al., 2021a). However, the inherent fluctuation of wind power and load also
constrains the operating economy and safety of the unit commitment problem (UC) with the long-
distance power transmission (Milligan et al., 2009). On the other hand, the flexible AC transmission
system (FACTS) device can enhance the flexibility of the network side, which also affects the
operating conditions (Yuan et al., 2010). The DPFC is derived from the UPFC, which will be the most
powerful tools in the FACTS. It has the same external characteristics as that of the UPFC and has
advantage over the transmission corridors, investment, and replaceability (Khanchi and Garg, 2013;
Dai et al., 2019; Tang et al., 2020).

Generally, the flexible operating principle of the major UC problem is divided into three
categories: source side, demand side, and network side. In the source and demand sides, various
research methods have been studied in the UC problem to enhance the operating flexibility by
tackling uncertain parameters such as stochastic optimization (SO), robust optimization (RO), and
information gap decision theory (IGDT). All these methods focus on tackling the uncertainty
parameters such as wind or load uncertainties. The SO optimizes the dispatch problem with various
scenarios considering uncertainty samples, which can enforce the dispatch scheduling feasibility.
Wang et al. (2012) and Nandi et al. (2022a) present a stochastic UC model considering the
uncertainty of demand response (DR) to improve the overall social welfare, where the uncertainty of
DR is functioned as the chance constrained form. Zhao et al. (2014); Nandi and Kamboj (2021);
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Nandi et al. (2022b); and Kamboj et al. (2022) evaluate the wind
utilization in the UC problems, where the wind uncertainty is also
solved by the stochastic chance constraint. Wu et al. (2019)
formulated a two-stage dispatch model considering network
congestion with the chance-constrained forms of wind and DR
uncertainties. Dvorkin et al. (2014) presented a stochastic rolling
UC model to evaluate the operating cost, considering wind
spillage and load not served, where the wind is constrained by
the chance-constrained form and the load is depicted as its
stochastic interval form. Obviously, there are two drawbacks:
the computational efficiency decreases rapidly as the scenarios
increase, and the probability distribution function (PDF) is hard
to obtain accurately (Shen and Raksincharoensak, 2021a; Shen
and Raksincharoensak, 2021b; Shen et al., 2021; Shen et al., 2022).
There is no need to obtain the exact PDF of uncertain parameters
in the ROmethod, and only its uncertainty boundary is offered to
describe the fluctuation of the uncertain parameters. An and Zeng
(2014) explore the wind uncertainty by formulating a
“min–max–min” robust model to research the dispatch
problem, and the result verifies the effectiveness of optimal
scheduling to incorporate the wind. In the work carried out by
Gangammanavar et al. (2015), the worst scenarios of uncertain
wind is well-distinguished with the deterministic load. In the
study by Zhang et al. (2017), the authors researched the
coordination of DG and elastic-price DR scheduling with
uncertainty in the microgrid, which is solved by the CCG
algorithm. Wang et al. (2016) propose an adjustable robust
model of the building energy system to optimize the social
welfare, where the PV output and load demands are uncertain.
Zhao et al. (2013) assumed that the connection between elastic
electricity price and load demand fluctuates within a certain
range, derived the uncertainty set for demand response, and
then proposed a two-stage robust model with interval sets to
depict the uncertain parameters. Zhang et al. (2016) developed a
robust model coordinating the energy storage system and direct-
load control (DLC) considering uncertainties, which the
generation/wind/PV/ESS and DLC scheduling planning satisfy
for any realization of uncertainty. Based on the aforementioned
research, the two-stage model for the RO method to deal with the
uncertainty is mainly important in two directions. On the one
hand, the reserve capacity in the first stage is optimized to adapt
to the fluctuation of the uncertain parameters in the second stage,
and on the other hand, the uncertain parameters are directly
optimized in the second stage to ensure power balance. The
conservation of the RO method challenges the operating cost of
the system dispatch, where the extreme worst scenario hardly
appears (Yang et al., 2021a; Yang et al., 2021b; Li et al., 2021; Yang
et al., 2022a; Yang et al., 2022b). The IGDTmethod aims to search
for the adjustable bound of uncertain parameters based on its
stochastic model and robust model, which satisfy the objective
function in the predefined interval. The IGDT overcomes the
difficulties of acquiring distribution function in the SO problem
and reduces the conservation of the RO problem. Thus, the
computational time of IGDT is much lower than that of the
RO and SO methods, and the conservation is also improved
obviously. This approach is widely used in dealing with the
uncertainty of renewable energy (Nikoobakht and Aghaei,

2017; Ahmadi et al., 2018), energy system (Ahmadi et al.,
2019; Khajehvand et al., 2021), electrical vehicles (Rabiee et al.,
2014), and other loads (Ahrabi et al., 2021). Nikoobakht and
Aghaei (2017 present a robust model to solve the SCUC problem
considering wind uncertainty; the wind absorption is optimized
with flexible resources. Ahmadi et al. (2019) formulate the UC
problems with the ESS uncertainty to improve the optimal
capacity of ESS. A linear model by Rabiee et al. (2014); Ahrabi
et al. (2021) is established to evaluate the effect of load uncertainty
to the dispatch scheduling based on its stochastic model.

Although the FACTS has an advantage over the flexibility of
the network side, few studies have been proposed to investigate its
impacts on operating performance. Ziaee et al. (2017) optimized
the TCSC device to improve the absorption of wind based on the
stochastic method, evaluating the positive effect of wind spillage
and considering optimal location and allocation of TCSC
simultaneously. Nasri et al. (2014) formulate a two-stage
model to minimize wind spillage and load shedding
considering optimal TCSC with a fixed scenario. All these
research studies focus on a single-time phase sample, which
only indicates the aspects of improving operating safety
considering the optimization of the FACTS. There are several
studies which focus on the areas of the UC problem, where the
FACTS location is predefined. Li et al. (2018) investigate the effect
of the UPFC to the operating cost with a fixed wind scenario. Sang
et al. (2017) reduced the wind spillage by optimizing the
location–allocation of TCSC considering various wind
scenarios. Considering the past research studies, there is no
evidence of evaluating the inter-connection between the
generator status and optimal FACTS. At the same time, there
is no research study on the robust UC problem considering the
optimal FACTS, which may be the best way to locate the FACTS
successfully.

This study develops a two-stage robust model with optimal
DPFC based on its PIM model considering wind and load
uncertainties, which can not only hold the internal
characteristics of multiple DPFCs but also enforce the feasible
horizon with the uncertain parameters. We solve the status of
generators and location of the DPFC in the master problem and
obtain the dispatch solution and compensation level of the DPFC
in the subproblem. The main contribution in this study can be
summarized as follows:

1) The DPFC scheduling planning maintains the consistence,
which is easy to adopt for the uncertain environments based
on the proposed model.

2) A robust UCmodel with a flexible FACTS on the network side
is presented, which is solved by the CCG algorithm.

3) A detailed experiment with different numbers of DPFCs has
been presented to evaluate the impacts of the DPFC to the
generator scheduling, wind absorption, and load supplies.

We demonstrate the effectiveness of the proposed two-stage
robust dispatch problem in the IEEE 24 bus system and provide
insight into the influence on the performance of the DPFC. This
article is organized as follows: Section 2 introduces the power
injection model of the DPFC and a relaxed AC-SOCP power flow
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model. Section 3 presents the two-stage robust model of the
optimal location–allocation problem. Section 4 describes the
procedure of the CC&G method. Section 5 shows the results
and discussion, while the conclusion is represented in Section 6.

2 POWER INJECTION MODEL OF
DISTRIBUTED POWER FLOW
CONTROLLER

2.1 Distributed Power Flow Controller
Configuration and Principle
The general structure of theDPFC device includes the series side and
shunt side. In the series side, there are many distributed converters
cascaded to offer its control capabilities tomanage the power flow on
the network side. There are huge capacity shunt converters injected
in the bus. There is power flow exchange by the fundamental wave
and third harmonic wave through the series/shunt converters. The
structure and operating principle is shown in Figure 1.

There is high similarity in the external characteristics between
the UPFC and DPFC. However, the DPFC involves only active
power transferable from the shunt side to the series side, which can
reduce the power loss. Thus, a power injectionmodel (PIM), which
is introduced by the UPFC, can bemodified as depicted in Figure 2

Pp
ij � Pij − PDPFC

ij ,

Pp
ij,rev � Pij,rev + PDPFC

ij ,

QDPFC
ij,sh � 0; QDPFC

ij,se � 0;
(1)

where Pij, Pij,rev is the line power or reverse line power and PDPFC
ij

is the DPFC compensation level.

2.2 Relaxed AC-SOCP Model
The traditional line flow (Le et al., 2021; Toyoda and Wu*,
2021; Wu et al., 2021) is modeled as shown in Eq. 2. Obviously,
the nonlinear model is nonconvex.

Pij(θ, V) � V2
i gij − ViVj(gij cos(θi − θj) + bij sin(θi − θj)).

Qij(θ, V) � −V2
i bij − VmVn(gij sin(θi − θj) − bij cos(θi − θj)).

(2)
To tackle the nonconvex and nonlinear difficulties of the

traditional model, we introduce several relax variables to the
convex model, which are shown in Eqs 3–5

Ui � V2
i ; Uj � V2

j . (3)
Rij � UiUjcos(θi − θj);Rij ≥ 0. (4)

Tij � UiUjsin(θi − θj). (5)
Hence, the traditional model can be rewritten as shown in Eq.

6, which is a linear model and easily solved.

Pij � gijUi − gijRij − bijTij

Qij � −bijUi − gijTij + bijRij

Pij,rev � gijUj − glRij + bijTij

Qij,rev � −bijUj + gijTij + bijR.ij

(6)

However, there are connections between Rij and Tij in the
original model, which can represented as

R2
ij + T2

ij � V2
i V

2
j � UiUj. (7)

There are bilinear variable terms in the aforementioned
equation, which is still nonlinear. By relaxing the tight equality
constraint into an inequality one, we can transform the
representation into an SOCP form.�����������

2Rij

2Tij

Ui − Uj

�����������
2

≤Ui + Uj. (8)

An SOCP power flow model can be easily constructed by
Eqs 6, 8, which can be easily solved by CPLEX due to its
convexity.

FIGURE 1 | Configuration and principle of the DPFC

FIGURE 2 | PIM model of the DPFC.
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3 ROBUST MODEL WITH THE OPTIMAL
DISTRIBUTED POWER FLOW
CONTROLLER
The power system planners aim to determine the
location–allocation of the DPFC considering wind and load
uncertainties, which can enhance the management efficiency
of power flow and decrease the investment of the DPFC.
However, the operators desire to minimize the operation
cost of injected DPFCs and improve the operating level of the
system. Therefore, optimal location–allocation of the DPFC
in the power system must consider the operational cost,
investment of installing the DPFC, curtailment of wind
spillage, and load shedding. The optimal model is represented
by Eqs 9–23

min ∑
t

∑
i∈Gi

[SUi + SDi + cg,iP
G
i,t] +∑

t

∑
ij∈Gij

πDPFCPDPFC
ij

+∑
t

∑
i∈Gw

MCurtPW,curt
i,t +∑

t

∑
i∈Gnb

MshedPD,shed
i,t

(9)

{ SUi ≥Csu
i ui,t

SDi ≥Csd
i vi,t

(10)

{ ui,t − vi,t � Ii,t − Ii,t−1
ui,t + vi,t ≤ 1

(11)

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

∑Ton
i +h−1

h�0
Ii,t ≥Ton

i (Ii,t − Ii,t−1)
∑T

off
i +h−1

h�0
Ii,t ≥Toff

i (Ii,t−1 − Ii,t)
(12)

Ii,tP
G,min
i,t ≤PG

i,t ≤ Ii,tP
G,max
i,t

Ii,tQ
G,min
i,t ≤QG

i,t ≤ Ii,tQ
G,max
i,t

(13)
PG
i,t − PG

i,t−1 ≤ (2 − Ii,t − Ii,t−1)Ii,tPG,min
i,t + (1 + Ii,t−1 − Ii,t)RUi

PG
i,t−1 − PG

i,t ≤ (2 − Ii,t − Ii,t−1)Ii,tPG,min
i,t + (1 − Ii,t−1 + Ii,t)RDi

(14)
PG
i,t − ∑

j∈ψ(i)
Pij − ∑

j∈ϕ(i)
Pij,rev + ∑

l∈ψ(i)
PDPFC
ij − ∑

l∈ϕ(i)
PDPFC
ij − PW,shed

i,t

+PD,curt
i,t � PD

i,t + PD,u
i,t − PW

i,t QG
i,t − ∑

j∈ψ(i)
Qij − ∑

j∈ϕ(i)
Qij,rev − QW,curt

i,t

+QD,curt
i,t � QD

i,t + QD,u
i,t − QW

i,t (15)
0≤PD,shed

i,t ≤PD
i,t + PD,u

i,t

0≤QD,shed
i,t ≤QD

i,t + QD,u
i,t

(16)

0≤PW,curt
i,t ≤PW

i,t

0≤QW,curt
i,t ≤ 0.95 pPW

i,t (17)

0≤PDPFC
ij,t ≤ δij,tPmax

DPFC∑
ij

δij,t ≤ αL (18)
��������Pij − PDPFC

ij

Qij

��������2≤ Sij (19)

��������Pij,rev + PDPFC
ij

Qij,rev

��������2≤ Sij (20)
Tij ≈ θi − θj⎧⎪⎪⎪⎨⎪⎪⎪⎩

Pij � gijUi − gijRij − bijTij

Qij � −bijUi − gijTij + bijRij

Pij,rev � gijUj − glRij + bijTij

Qij,rev � −bijUj + gijTij + bijRij�����������
2Rij

2Tij

Ui − Uj

�����������
2

≤Ui + Uj

(21)

θmin
i ≤ θi ≤ θmax

i (22)

(Vmin
i )2 ≤Ui ≤ (Vmax

i )2. (23)
The objective function is to minimize the generation cost,

investment cost of the DPFC, and curtailment of wind spillage
and load shedding as shown in Eq. 9. Eq. 10 constrains the start-
up and shut down cost of the thermal unit; Eq. 11 distinguishes
the operating state from the start-up and shut down state of
generators. The minimum ON/OFF time limits are shown in Eq.
12, the active and reactive output of generators is limited in Eqs
13, 14 and shows the ramp-up and ramp-down limitation of
thermal units. The active and reactive power balance is depicted
in Eq. 15. Eqs 16–18 constrain wind spillage, load shedding, and
location–allocation of the DPFC. The transmission network
security constraint is formulated in Eqs 19–20 with line

FIGURE 3 | Flowchart of CCG procedure.
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forward and reverse power flow. The relaxed AC-SOCP power
flow model is introduced in Eqs 21–23.

The formulated MISOCP problem aims to improve the
operating level with optimal location and ratings of the DPFC.
However, there are uncertainties of wind and load, as shown in
Eqs 24–25.

PDR
i,t � {PDR

i,t

∣∣∣∣PDR
i,t ∈ [PDR,F

i,t − μDR
i,t △PDR

i,t , P
DR,F
i,t

+ μDR
i,t △PDR

i,t ], μDR
i,t ∈ {0, 1}}. (24)

PW
i,t � {PW

i,t

∣∣∣∣PW
i,t ∈ [PW,F

i,t − μWi,t△PW
i,t , P

W,F
i,t

+ μWi,t△PW
i,t ], μWi,t ∈ {0, 1}}. (25)

Once the DPFC is injected into the grid, the device should
offer its functions considering the uncertainty circumstance of

wind-load with fixed locations. We developed a two-stage robust
approach to obtain the robust dispatch solutions with the PIM
model of the DPFC, which can easily adapt to the uncertain
environment. The robust model is shown as

min ∑
t

∑
i∈Gi

[SUi,t + SDi,t] +maxmin[∑
t

∑
i∈Gi

cg,iP
G
i,t +∑

t

∑
i∈Gi

πDPFCPDPFC
ij .

+∑
t

∑
i∈Gi

MCurtPW,curt
i,t +∑

t

∑
i∈Gi

MshedPD,shed
i,t ].

s.t.{ (10) − (23)
(24) − (25) (26)

4 TWO-STAGE ROBUST UNIT
COMMITMENT AND
COLUMN-AND-CONSTRAINT
GENERATION METHOD

The column-and-constraint generation method is introduced to
solve the proposed two-stage robust problem (Zeng and Zhao,
2013). For simplicity, the robust problem can be reformulated in
the following compact matrix form:

min
x

cTx +max
λ

min
y

dTy + eTλ.

s.t. Ax≤ b, x ∈ {0, 1}.

Y �
⎧⎪⎪⎪⎨⎪⎪⎪⎩y

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

Cy≤f
Gx +Dy≤g
Ey � λ����Qiy + qi

����2≤ hiy + di, i � 1, ..., n

⎫⎪⎪⎪⎬⎪⎪⎪⎭.

(27)

The objective described in (27) corresponds to constraint
(26), which is modeled in a “min–max–min” optimization
form. The outer “min” is to minimize the start-up and shut
down costs of generators considering the optimal locations of
the DPFC; the decision variable {x} is a binary variable, which

FIGURE 4 | Comparison of apparent power.

FIGURE 5 | Comparison of voltage.

FIGURE 6 | Comparison of generator output.
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represents the state variables including the thermal generator
operating state and optimal locations of the DPFC. The
“max” is to find the worst uncertainty scenario under the
uncertainty circumstance; the decision variable {λ} refers the
wind and load operating level, which is shown in Eqs 24–25.
The inner “min” is to obtain the solutions under the worst
uncertainty case; the decision variable {y} represents the
continuous variables in the second stage, which is
described in Eqs 13–23. It can be observed that the
decision variable {λ} is optimized in the second stage by
maximizing the minimal second stage costs, which can
easily improve the robustness.

The details of the CC&G method are shown as follows:

Master Problem

min
x

cTx + η.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Ax≤ b
η≥ dTyp

l + eTλpl .
Cyp

l ≤f
Dyp

l ≤g − Gxp

Eyp
l � λpl����Qiy

p
l + qi

����2≤ hiy + di, i � 1, ..., n
l ∈ {1, ..., m}

(28)

The master problem is optimized to obtain the first-stage
decision under various worst-case scenarios, which is duplicated
from the subproblem. Obviously, the master problem provides
the lower bound of the original problem.

For a given first-stage decision variable {x}, the subproblem
can be formulated as follows. The SP is aimed to obtain the
optimal dispatch solutions with uncertainty. This can provide an
upper bound of the original problem.

Subproblem

max
λ

min
y

dTy + eTλ.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Cy≤f (γ1)
Gx +Dy≤g (γ2)
Ey � λ (γ3)����Qiy + qi

����2≤ hiy + di, i � 1, ..., n (γ4, γ5)
.

(29)

The aforementioned “max–min” problem can be transformed
by the dualization method, which can be easily solved. The
convert procedure is shown in Eq. 30.

FIGURE 7 | Derivation performance.

FIGURE 8 | Thermal generator state with different numbers of the DPFC.
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max fTγ1 + (gT − GTxp)γ2 + λTγ3 −∑n
i�1
(qTi γ4 + dT

i γ5).
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

CTγ1 +DTγ2 + ETγ3 +∑n
i�1
(QT

i γ4 + hTi γ5) � d����γ4����2≤ γ5
γ1 ≤ 0; γ2 ≤ 0; γ4 ≤ 0; γ3: free; γ5 ≥ 0;

λ ∈ { di,t

gi,t

∣∣∣∣∣∣∣∣ d
min
i,t ≤ di,t ≤ dmax

i,t

gmin
i,t ≤gi,t ≤gmax

i,t
}

.
(30)

It is clearly observed that there is a bilinear term {λTγ3} in the
subproblem, which is hard to solve. According to Li et al. (2018),
all the optimal solutions with uncertainties can be obtained at its
extreme points. This reminds us to convert the bilinear term to
linear ones by introducing the Big-Mmethod.We can introduce a
binary variable, which can easily convert the uncertainty interval
optimization into boundary point optimization.

The extreme points of uncertainty can be formulated as
follows:

λTγ3 � λmin
i,t γ3 + (λmax

i,t − λmin
i,t )μi,tγ3. (31)

We introduce a dummy variable {ωi,t � μi,tγ3} and based on
the Big-Mmethod, we can obtain the following linear constraints:

(λmax
i,t − λmin

i,t )ωi,t � (λmax
i,t − λmin

i,t )μi,tγ3.−Mμi,t ≤ωi,t ≤Mμi,t
−M(1 − μi,t) + γ3 ≤ωi,t ≤ γ3 +M(1 − μi,t).

(32)

Combining Eqs 30–32, a linear single-stage model is
successfully reformulated to obtain its maximum solution,
which is easily solved by commercial software such as CPLEX.

The flowchart of two-stage robust optimization is depicted in
Figure 3.

For a given gap ε , the complete procedure of CCG can be
described as

Step 1: Let Φdown � −∞, Φup � +∞, iter = 0;
Step 2: Solve the MP which is modeled in Eq. 28,

Obtain the status of generators Ii,t and location of the DPFC
δij,t with the uncertainty λp,

Update the lower bound Φdown;

Step 3: Fix the location of the DPFC and status of thermal units.
Solve the SP considering wind-load uncertainties.

Obtain decision variable solution
PG
i,t/Q

G
i,t/P

W,curt
i,t /PD,shed

i,t /PDPFC
ij,s and uncertainty parameters

αL, αWunder each scenario.
Update the upper bound Φup;

Step 4: If |Φup−Φdown|
|Φdown| ≤ ε, return the optimal solutions and stop.

Otherwise, duplicate the cuts into the master problem,
update the uncertainty parameters, and go to step.

5 CASE STUDY

5.1 Verification of the Relaxed AC-SOCP
Model
In this section, three cases are presented to check the
characteristics of the power flow to illustrate the effectiveness
of the proposed model. All cases are conducted on the IEEE-118
bus system.

Case 1: DC power flow
Case 2: the nonlinear power flow model
Case 3: the proposed model in Eq. 27

To evaluate the performance of the three power flow models,
we conducted the simulation on apparent power of lines,
generator outputs, and voltage magnitude, as is shown in
Figures 4, 5, 6. We can easily find that the apparent power of
lines has little difference in case 2 and case 3; only four lines have a
little fluctuation. Similarly, voltage magnitude also conforms to
the trend. In the aspect of generator output, there is an obvious

TABLE 1 | Dispatch performance with different numbers of the DPFC.

Case no. Objective value SD/SU cost($)

A 563,219 15889
B NL5 535,301 7,931
C NL5 527,238 8,243

NL15
D NL5 527,176 8,243

NL15
NL26

FIGURE 9 | Objective difference with different numbers of the DPFC.
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difference between case 1 and case 2/3 on the G3/G7/G19, which
is due to the absence of reactive power. Comparing the output of
generators in case 2 and case 3, the dispatch solutions show highly
consistent characteristics (Figures 4, 5, 6, 7).

To quantify the exactness of the relaxed AC-SOCP model, a
deviation index stated in (39) is introduced to describe the gap
difference between case 2 and case 3, as shown in Figure 7. It is
clearly shown that the gap difference is almost zero for the system.

DI � UiUj − R2
ij − T2

ij. (39)

5.2 Effects of the Optimal Distributed Power
Flow Controller With High Penetration of
Wind Power
To verify the proposed method, we conducted case studies on the
modified IEEE-24 bus system. The wind power is located at bus 6/
8. The rating of wind power is 4 MW. There are three loads with
uncertainties, which are located at bus 4/5/6. The interval of wind
and load is 0.2 and 0.1, respectively. The proposed method is
solved by GAMS/CPLEX. The threshold values of the stop
criterion are set to be 1e-4.

In order to evaluate the impacts of optimal DPFC planning,
four cases have been set up to quantify the specific control effects
of the DPFC to the scheduling of the thermal generator.

Case (a): the proposed robust model with no DPFC.
Case (b): the proposed robust model with one optimal DPFC.
Case (c): the proposed robust model with two optimal DPFC.
Case (d): the proposed robust model with three optimal DPFC.

A. Comparison of Unit States With Different
Optimal Distributed Power Flow Controller
Solutions
As shown in Figure 8, there is a huge difference in the start–stop
scheduling planning of the units. Compared to the generator
statuses of case (a), there are huge differences of scheduling

planning with four units; the SD/SU costs have decreased
from 15,889$ to 7,931$, which is shown in Table 1. Once 2/3
DPFC devices are injected into the system, the unit state is exactly
the same, which illustrates that the control capacity of the DPFC
has reached its extreme effects on the scheduling state of the
system. Furthermore, the status of G7 and G11 show a different
planning solution between case (b) and case (c)/(d); the SD/SU
costs have a little increment from 7,931$ to 8,243$. Hence, there is
a positive trend of dispatch state scheduling considering the
optimal DPFC injected.

Table 1 shows the objective performance with different
numbers of the DPFC; the value keeps decreasing as the
number of DPFCs increase. Comparing the performance
between case (c) and case (d) , the objective values change
very little, which indicates that the management of power flow
is approaching its limit.

In order to more clearly depict the performance difference
between the robust model and deterministic model considering
the optimal DPFC, we introduce an index ΔC, which denotes the
objective difference.

ΔC � CRO − CDM,3

CDM,3
, (40)

where CRO is the objective value of the robust model and CDM,3 is
the objective value for the deterministic model with three DPFCs
injected. The differences of objective values for the IEEE 24 bus
system under different wind and load intervals are shown in
Figure 9.

As shown in Table 2 and Figure 9, it is easily observed that the
robust model has a high property improvement, which is due to
the robust conversation of dispatch solution. The system
operators only sacrifice the economy effects to tackle with the
uncertainties of wind/load. Furthermore, the difference ΔC shows
the downward directions as the numbers of DPFC increased.
There is a similar trend with Figure 9. The objective difference
ΔC is almost the same when comparing the 2 and 3
DPFCs injected, which indicates that optimal location and
allocations of 2 DPFC has reached its limitation for the IEEE
24 bus system.

B. Comparison of the Last Worst Wind-Load
Scenario with Different Optimal Distributed
Power Flow Controller Solutions
With the uncertainties of wind and load, the optimal solution is
obtained at the extreme points of uncertain parameters. However,
there is an inconsistent trend while the uncertain parameters
reach its extreme values with different numbers in the last worst
case scenario, as shown in Figure 10. Obviously, there is only one
difference of wind extreme values at a single time phase (t = 23).
However, it can be easily found that the load reaches its upper
values once 1/2/3 DPFC is injected, which indicates that optimal
DPFC planning can enforce the resistance level of power supply
considering the uncertainty.

To evaluate the effects of wind spillage and load shedding
with the optimal DPFC in the last worst-case scenario,

TABLE 2 | Objective values under different intervals considering the optimal
DPFC.

DPFC no. Objective value

?L?W 0 0.05 0.1 0.15

0 0 399,105 405,222 411,648 418,525
0.1 471,743 478,216 484,835 492,136
0.2 547,254 555,226 563,219 570,626

1 0 377,613 383,188 388,956 395,432
0.1 448,383 454,950 461,332 467,730
0.2 521,626 528,422 535,301 542,181

2 0 372,290 377,742 383,399 389,663
0.1 441,059 447,551 453,916 460,283
0.2 513,641 520,407 527,238 534,085

3 0 372,290 377,742 383,350 389,562
0.1 440,885 447,332 453,854 460,210
0.2 513,600 520,356 527,176 534,012

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 8770428

Zhu et al. Robust UC With Optimal DPFC

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


considering its extreme value inconsistence with wind/load
uncertainties, we conducted the simulation of wind
absorption and actual load supplies, which is shown in
Figure 11. For the wind aspect, the overall trend of wind
absorption is positive, and the amount outputs of wind
absorption are 94.06/96.24/96.32/96.32 MW as the numbers
of DPFC are 0/1/2/3, respectively. For the actual load aspect,
there is a drop difference at time phase (t = 23 h) considering
different numbers of the DPFC optimized. However, the

amounts of actual load supplies are 43.89/44.20/45.13/
45.13 MW from case (a) to case (d). Hence, the dispatch
effects with the DPFC optimized the wind spillage and load
shedding move in a positive direction.

For the consistence of DPFC optimal scheduling planning,
Table 3 shows advantages of the location and allocation of the
optimized DPFC simultaneously. Once the DPFC is injected,
the unit cost has a great positive effect, and the wind spillage
and load shedding also conform to the positive trend with the

FIGURE 10 | Wind/load upper/lower bound and its worst-case scenario with different numbers of the DPFC.
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increased numbers of the DPFC. In cases (c) and (d), the
amounts of load shedding are 0, and the wind spillage also has
no changes, which indicates that the robust planning of the
DPFC has reached its extreme repeatedly.

6 CONCLUSION

This work presents a two-stage robust dispatch method with
optimal location–allocations of the DPFC considering wind-
load uncertainties. In the model, we mainly optimize the
scheduling state of thermal units and location–allocation of
the DPFC to tackle the uncertainties. Case studies are
performed to demonstrate the effectiveness of the
proposed method. The conclusions are summarized as
follows:

1) The relaxed AC-SOCP model can easily simulate the
nonlinear AC power flow and has an advantage of solving
speed and difficulties.

2) The robust dispatch with the optimal DPFC has an economic
advantage and load supplies, which also reduce the wind
spillage and load shedding.

3) The proposed model can be easily solved by the CCGmethod,
which efficiently checks the worst-case scenario, optimizes the
dispatch solution, and DPFC consistent scheduling planning
with uncertainties.

However, the robust dispatch with the optimal DPFCmay face
a conservative challenge because of the overall intervals of
uncertainties. Some studies have developed a distributed robust
optimization to overcome the conservation, which combine the
priorities between stochastic and robust optimization. In addition,
the DPFC has shown great advantages over the management on
the network side. We will conduct more research studies on the
control capabilities of theDPFC in the future. Such advantagesmay
be effective in dispatching and operating the principle of integrated
energy system (IES) due to the electric characteristics; we can
relieve the couple conjunction in the gas turbine (GT) and CCHP
with the energy storage system (ESS) by optimal coordination of

FIGURE 11 | Wind upper/lower bound and its worst-case scenario with different numbers of the DPFC.

TABLE 3 | Optimal dispatch performance with the optimal DPFC under the worst-case scenario.

Case no. Generation cost DPFC investment Wind spillage (MW) Load shedding(MW)

A 249,949 --- 31.15 1.75
b NL5 240,857 2,921 28.97 0.03
c NL5 241,424 6,426 27.76 0

NL15
d NL5 241,185 6,603 27.76 0

NL15
NL26
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the control capabilities of the DPFC. Another coordinate research
on the TEP and DPFC has been in process to tackle the high wind-
load conditions to improve robustness and flexibilities in the
network side, which render more capability of available transfer
power. Obviously, there is an advantage of the DPFC to be adopted
in N-k contingency analysis, whichmay be the best performance in
the application areas of the DPFC.
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GLOSSARY

Indices

i/j Indices of busesIndices of lines

ij Indices of busesIndices of lines

Sets

Gi Sets of generators

Gw Sets of wind generator

Gij Sets of lines

Gnb Sets of buses

Constants

gij/bij Line parameters

Csu
i /C

sd
i Coefficients of start-up/shut down cost of generator i

cg,i Cost coefficient of generator

πDPFC Cost coefficients of DPFC investment

Ton
i /Toff

i
Minimum up-time and down time of generator

PG,min
i /PG,max

i Lower and upper bound of generator active output

QG,min
i /QG,max

i Lower and upper bound of generator reactive output

RUi/RDi Ramp-up and ramp-down values of generator

SUi/SDi Start-up/shut down cost of generator i

Sij Apparent power limitation of line ij

θmin
i /θmax

i Lower and upper bound of voltage angle

Vmin
i /Vmax

i Lower and upper bound of voltage magnitude

MCurt Curtailment coefficient of wind spillage

Mshed Curtailment coefficient of load shedding

Variables

Pij/Qij Active/reactive power flow of line ij

Pij,rev/Qij,rev Reverse active/reactive power flow of line ij

Vi Voltage magnitude

θi Voltage angle

Rij/Tij Slack variables

PG
i,t/Q

G
i,t Active/reactive power of generator

PDPFC
ij Compensation level of the DPFC on line ij

δij,t Binary variables indicating the location of the DPFC

α Scalar indicating the amount of DPFC numbers

PW,curt
i,t Wind spillage value

PD,shed
i,t Load shedding value

ui,t/vi,t/Ii,t Binary variable indicating start-up/shut down/operating state.

PW,curt
i,t /QW,curt

i,t Active/reactive power spillage of wind

PD,shed
i,t /QD,shed

i,t Active/reactive load shedding

PD,u
i,t /QD,u

i,t Active/reactive power of load considering uncertainty.
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