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As the wind power penetration increases, the short-term prediction accuracy of wind
power is of great importance for the safe and cost-effective operation of the power grid in
which the wind power is integrated. Traditional wind farm power prediction uses numerical
weather prediction (NWP) information as an important input but does not consider the
correlation characteristics of NWP information from different wind farms. In this study, a
convolutional neural network–long short-term memory based short-term prediction model
for wind farm clusters is proposed. Additionally, a feature map is established for
multiposition NWP information, the spatial correlation of NWP information from different
wind farms is fully explored, and the feature map is trained using the spatiotemporal model
to obtain the short-term prediction results of wind farm clusters. Finally, as a case study,
the operational data of a wind farm cluster in China are analyzed, and the proposed model
outperforms traditional short-term prediction methods in terms of prediction accuracy.
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1 INTRODUCTION

In recent years, as its installed capacity continuously increases, the fluctuation and randomness of
wind power have made the scheduling and reliability control of power systems more difficult.
Accurate day-ahead wind-power forecasts can help to reduce the impact of wind-power integration
on power systems, as well as facilitate the scheduling department to formulate efficient, feasible daily
power generation plans and adjust the reserve capacity of systems (Wang et al., 2018a). Thus,
accurate wind-power forecasts are important for determining reasonable scheduling plans and
ensuring the safe, economic operation of power grids (Yang and Huang, 2018).

Currently, the main wind-power forecasting methods include physical, statistical, learning, and
combination methods. Physical methods forecast wind speeds using numerical weather prediction
(NWP) models based on the information (e.g., contour lines, roughness, obstacles, pressure, and
temperature) about the surroundings of wind farms (WFs). Generally, results produced by physical
methods are used as the input for other statistical models or to forecast the power of newly constructed
WFs. Statistical and learning methods generally do not consider the physical process of wind-speed
changes but instead forecast the output power of WFs by mapping it to historical statistical data. As
their forecasting accuracies decrease as the length of the forecasting period increases, these methods are
predominantly employed in short-term forecasting. Common statistical and learning methods include
the Kalman filter, artificial neural networks (Wu and Feng, 2018), wavelet decomposition (Safari et al.,
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2018), support-vector machines (SVMs) (Zendehboudi et al.,
2018), probabilistic forecasting (Xu et al., 2019), and chaotic
forecasting (Hong et al., 2019). By using the information
provided by different models and exploiting their respective
advantages, a combination method combines these models into
one forecasting model based on a suitable weighted averaging
scheme (Vluymans et al., 2019). Common combinations include
those of physical and statistical methods, those of short- and mid-
term forecasting models, and those of statistical models. Compared
to those produced by single models, wind-power forecasts
produced by combined models have fewer relatively large errors
and, as a result, higher accuracies (Zhou et al., 2019).

Yang et al. (Yang et al., 2021) proposed A day ahead wind power
prediction model based on equivalent power curve clustering is
proposed. Turbines with similar power output characteristics are
divided into several categories by using the improved FCM method,
and the power curve with representative examples is selected as the
equivalent curve of the wind farm, to capture the performance of the
wind turbine and effectively improve the prediction accuracy. The
power fluctuation between the wind farm and wind farm cluster have
been analyzed (Yang et al., 2020). In view of the changes in the status
of WFs, Daniel and Fang (Tabas et al., 2019) evaluated the operating
conditions of wind turbines using random matrix theory while
considering wind-resource data and, on this basis, constructed a
dynamic forecasting model to further improve the forecasting
accuracy. Zhang (Zhang et al., 2020) clustered wind power into
different groups based on the fluctuation process, extracted the
characteristic curves of different fluctuations, comprehensively
considered wind-power fluctuations, and, on this basis, put
forward an error correction model. Wang et al. (Wang et al.,
2018b) performed a multi-classification operation on time-series
power sample sets with similar features based on distance and
form trend using the multi- and hierarchical clustering methods
to determine the time-series features of the data, to improve the
forecasting accuracy.

Owing to the emergence of artificial intelligence (AI) and big data
technology, current research on short-termwind-power forecasting is

focused onAI-based forecasting. Fan et al. (Fan et al., 2020) proposed
a new spatiotemporal neural network composed of a convolutional
neural network (CNN) and a bidirectional gated recurrent unit
(GRU) to extract the respective spatiotemporal features of
historical data (e.g., wind speeds and directions) and NWPs. By
integrating the features, they produced wind-speed forecasts. Wu
et al. (Wu et al., 2021) put forward a CNN–LSTM-based ultra-short-
term wind-power forecasting model to analyze and model some
NWP data and historical observation data.

Castellani et al. (Castellani et al., 2016)]compared a pure ANN
power forecast with a hybrid method. A new framework for
forecasting one-day-ahead wind power generation based on
information amalgamation from multiple sources is proposed by
Vaccaro et al. (Vaccaro et al., 2011) Zhao et al. (Zhao et al., 2012)
presents the performance evaluation and accuracy improvement of a
novel day-ahead wind power forecasting system in China. Qin et al.
(Qin et al., 2011) established a hybrid optimization algorithm to
improve the accuracy of the forecast. Mana et al. (Mana et al., 2020)
discussed the different forecast configurations for predicting the future
day production of a wind farm located inmoderately complex terrain.
Miettinen et al. (Miettinen andHolttinen, 2017) studied the day-ahead
forecast errors in four Nordic countries as well as the effect of wind
farm dispersion on forecast errors in areas of different sizes. Bochenek
et al. (Bochenek et al., 2021) investigated the possibility of predicting
day-ahead wind power based on different machine learning methods
not for specific wind farms but at the national level.

For wind power day-ahead prediction, current studies have
constructed suitable models based on the current main research
methods for wind power prediction, and the prediction accuracy
is improved with the help of artificial intelligence and big data
technology.

This paper presents a short-term power forecasting method for
WF clusters (WFCs) based on a spatiotemporal neural network. First,
a feature map matrix is generated through permutation and
combination of the NWP data for all the WFs within a cluster for
each moment. Then, features are extracted using the spatiotemporal
model. Finally, a short-term power forecast is produced for theWFC.

FIGURE 1 | Traditional and new spatiotemporal correlation principles.
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Compared to a cumulative sum of the separate short-term forecasts
for all theWFswithin a cluster, the proposedmethod treats the overall
power of theWFC as the input, which, to a certain extent, reduces the
forecasting error. The method in this paper constructs a feature map
based on the NWP information of multiple moments and WFs and
builds a dynamic model based on CNN-LSTM architecture on this
basis. The method can extract spatio-temporal features and fully
consider the correlation among WFs within the WFC.

2 COMPARATIVE ANALYSIS OF
FORECASTING FOR SINGLE WIND FARMS
AND WIND FARM CLUSTERS
Conventional spatiotemporal correlation analysis decomposes
spatiotemporal correlations into spatial and temporal
correlations. Spatial correlations refer to the certain
correlations between wind-power forecasts for different
locations at the same time section. Temporal correlations refer
to the periodic or aperiodic variations of some attributes of the
wind-power forecast for the same spatial point with time.

A WFC located in a large area, consists of many wind farms.
The power of the WFC is collectively integrated into the power

system. Although the power of a WFC is the sum of the power
from all WFs in the cluster, the power fluctuations of a WFC
would be different from those of individual WFs.

For a single WF, the values of the meteorological factors (e.g.,
wind speed and direction) at different heights are relatively strongly
correlated due to the action of atmospheric motion within the
region. This means that the value of the current variable at a
certain forecasting moment is related to both its historical values
and the historical values of the factors (e.g., wind speed and
direction) at other heights. In comparison, with respect to power
forecasting for aWFC, to reduce the accumulation of the forecasting
errors for individual WFs generated during the forecasting process,
we, in this study, consider the WFC as a whole and put forward a
new spatiotemporal correlation analysis method. The information
formultipleWFs at different locations is represented by featuremaps
in the form of time sections. Multi-location, multi-factor time slices
are thus formed and subsequently arranged in chronological order.

When analyzing the spatiotemporal correlations of a single
WF, a two-dimensional (2D) model is constructed based on the
WF data and analyzed using various methods. The extracted
correlations are always on a 2D plane. As a result, the spatial
correlations of the WF cannot be expressed in their entirety. In
contrast, when it comes to the spatiotemporal correlations of a
WFC proposed in this study for forecasting, a three-dimensional
structure is constructed based on the WFC data, thereby
enhancing the spatial structure between the data. In addition,
the time-series relations are closely combined at different spatial
locations to further explain the meaning of multi-WF, multi-
location spatiotemporal correlations. Figure 1 explains the
meaning of spatiotemporal correlations for single WFs and
WFCs with graph structures.

3 DEEP CONVOLUTIONAL NEURAL
NETWORK MODELING METHOD

3.1 Convolutional Neural Networks
CNNs are a type of typical deep-learning model capable of
efficiently identifying features that have emerged in recent
years and have become a topical area of research in the image
processing field. A CNN has a convolutional deep structure.
Weight sharing can suppress overfitting. The local receptive-

FIGURE 2 | Structure of standard convolutional neural network.

FIGURE 3 | Network structure of LSTM unit.
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field design in a CNN is invariant to scaling, translation, and
other forms of deformation.

A standard CNN consists generally of an input layer,
convolutional layers, pooling layers, fully-connected layers,
and an output layer, as shown in Figure 2. A convolutional
layer may contain multiple feature maps, each of which is
correlated with a convolution kernel. A convolutional layer
performs a convolution operation on the local receptive field
of the input signal and the convolution kernel and
subsequently extracts local features through the activation
layer. The input data for a convolutional layer from its
preceding layer are a matrix, which, in this study, is
composed of the NWP data for multiple units for a period
of time. A group of convolution-kernel functions can be
defined in a convolutional layer. The feature maps of a
convolutional layer are formed by processing the result of
the convolution operation on each convolution kernel and the

input data plus the bias through the activation function. The
convolution process is described as follows:

xl
k � f⎛⎝ ∑

i∈Mk

xl−1
i pslik + blk⎞⎠ (1)

where xlk is the kth feature map of the lth layer, blk is the bias
matrix, Mk is the input feature-map set, xl−1

i is the output of the
ith neuron in the (l − 1)th layer, slik is the convolution kernel
matrix, f is the activation function, and the symbol * signifies a
convolution operation.

Generally, a large number of convolution kernels are used in
the convolutional layers to more effectively extract features. As a
result, the features obtained by the convolutional layers have a
very large number of dimensions, which increases both the
computational cost and the likelihood of overfitting. The
pooling function in a pooling layer substitutes the overall

FIGURE 4 | Time sequence characteristic diagram.

TABLE 1 | NWP parameter meaning and name for one wind farm.

Parameter meaning Parameter name Parameter meaning Parameter name

Momentum flux momf Temperature T
Pressure ps Sea-level pressure mslp
10 m wind speed ws10 10 m wind direction dir10
30 m wind speed ws30 30 m wind direction dir30
100 m wind speed ws100 100 m wind direction dir100
170 m wind speed ws170 170 m wind direction dir170
10 m wind speed (offshore) ws10s 10 m wind direction (offshore) dir10s
Latent heat flux senf Induced heat flux latf
Short wave radiation swr Longwave radiation lwr
2 m temperature T2m 2 m relative humidity RH
Total precipitation prt Large-scale precipitation prl
Convective precipitation pr Cloudiness clc
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statistical feature of the output adjacent to a certain location for
the output of the network at this location. For example, the
max-pooling function gives the maximum value within the
adjacent rectangular region. When the input slightly
translates, pooling can help to approximately keep the
representation of the input unchanged, thereby reducing the
feature dimensionality and improving the statistical efficiency
of the network.

A pooling layer is usually added after a convolutional layer.
This, in fact, is a downsampling operation. Using the overall
statistical feature of the region adjacent to a certain location as the
output of the network at this location can reduce the
dimensionality of the feature maps and the number
of parameters of the network while effectively preventing
the network from overfitting. The max-pooling equation is as
follows:

xl
k � max

(n−1)H+1≤k≤nH
(xl−1

k ) (2)

where H is the width of the convolution kernel.
A fully-connected layer classifies, regresses, and identifies

signals from which features have been extracted, as well as
linearly transforms the input through the activation function
and bias, which can be expressed as follows:

xl � f(wlxl−1 + bl) (3)
wherewl is the weight coefficient of the fully-connected layer. In a
CNN, fully-connected layers are set to transform 2D feature maps
to one-dimensional (1D) vectors.

3.2 Long Short-Term Memory Neural
Networks
LSTM is a variant of the recurrent neural network (RNN)
architecture. LSTM can effectively address the gradient
vanishing and exploding problems encountered during the
training of RNNs. As shown in Figure 3, the cell units in an
LSTM network comprise gate-control units (including input,
output, and forget gates) and memory units.

The expression of the forget-gate structure is as follows:

ft � sigmoid(Wf · [ht−1,xt] + bf) (4)

whereft is the output of the forget gate,xt is the input series,Wf is
the weight matrix, ht−1 is the final output of the cell unit at the
previous moment, [ht−1,xt] signifies that two vectors are connected
to form a long vector, and bf is the bias term. The sigmoid function
outputs a probability of [0, 1]. Similarly, the input and output gates
can be expressed by the following equations:

it � sigmoid(Wi · [ht−1, xt] + bi) (5)
~Ct � tanh(Wc · [ht−1, xt] + bc) (6)

Ct � it ⊙ Ct + ft ⊙ Ct−1 (7)
ot � sigmoid(Wo · [ht−1, xt] + bo) (8)

ht � ot · tanh(Ct) (9)
In Eqs 5–7, it is the output of the input gate, C~

t is the
candidate value for the current layer and may be added to the
state of the unit, and Ct is the current state of the memory unit.
The whole process involves the updating of the state of the
memory unit, that is, the discarding of useless information
and the addition of new information. In Eqs 8, 9, ot is the
output of the output gate and ht is the final output of the LSTM at
the current moment.

FIGURE 5 | Short term prediction flow chart of wind power cluster
output based on CNN-LSTM model.

TABLE 2 | Parameter names of wind farms.

Wind farm Parameter name Wind farm Parameter name

Wind farm 1 W1 Wind farm 11 W11
Wind farm 2 W2 Wind farm 12 W12
Wind farm 3 W3 Wind farm 13 W13
Wind farm 4 W4 Wind farm 14 W14
Wind farm 5 W5 Wind farm 15 W15
Wind farm 6 W6 Wind farm 16 W16
Wind farm 7 W7 Wind farm 17 W17
Wind farm 8 W8 Wind farm 18 W18
Wind farm 9 W9 Wind farm 19 W19
Wind farm 10 W10 Wind farm 20 W20
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4 NUMERICAL WEATHER PREDICTION
AND SHORT-TERM OUTPUT
FORECASTING MODEL FOR WIND FARMS
4.1 Construction of Feature Maps
Extensive research finds that the forecasting accuracy for wind
power can be effectively improved by considering the
spatiotemporal correlations during the forecasting process. The
CNN–LSTM architecture displays certain advantages in
processing the time-series relations of high-dimensional data
and memory. Figure 4 shows the time-series feature map
proposed in this study for the spatial and time-series relations
of WFs in a WFC.

The NWP data are from the NWP product provided by a
Meteorological Centre. The numerical data-set has been validated
by comparingthe NWP results with the measured data under the
same hub height, the agreement for the whole year is close to 90%.

A spatial feature map is generated by arranging the NWP data
for 20 WFs for each moment. Let t and n be the initial moment
and the length of the training period, respectively. A feature map

rich in spatial structure is formed for each moment. The n
number of spatial feature maps forms a time-series feature
map. Thus, the rich spatiotemporal correlation information
between the WFs is included in the time-series feature map.
The NWP data used in this study contain 24 parametric variables.
Table 1 summarizes the meaning and name of each parameter.
Table 2 summarizes the parameter names of the WFs.

4.2 Overall Framework/Strategy for
Short-Term Wind-Power Forecasting
This study presents a day-ahead power forecasting method for
WFCs based on a CNN–LSTM spatiotemporal network
model. First, the available WF data are preprocessed.
Considering the NWP information for multiple WFs,
multi-moment, multi-location NWP information is
integrated by constructing feature maps. This way, both the
spatial structure and time-series features of the data are
preserved. The CNN comprises a feature extraction stage
and a classification stage. Multiple filters are constructed to

FIGURE 6 | CNN-LSTM model structure.
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extract the effective features of the input data. The input data
are subjected to convolution and pooling operations through
the filters. Through continuous extraction and training,
output data with space-invariant features are ultimately
obtained. The LSTM network continues to preserve the
time-series features of the data with spatial features. The
CNN–LSTM model is then employed to produce a short-
term power forecast for the WFC. Figure 5 shows the short-
term WFC power forecasting architecture based on the
CNN–LSTM model.

4.3 Convolutional Neural Network–Long
Short-Term Memory Model Structure
According to Section 3.1, each feature map is a 24 × 20 order
matrix. Each feature map is input into an independent CNN unit.
Each network unit consists of two convolutional layers, two
pooling layers, and one fully-connected layer. In addition, 3 ×
3 convolution kernels are selected for the convolutional layers,
and the max-pooling strategy is adopted for the pooling layers.
The sampling-pool size is set to 2 × 2. The first layer is a
convolution layer, C1, with 50 3 × 3 convolution kernels. The
second layer is a pooling layer, C2, with 100 2 × 2 convolution
kernels. The third layer is a convolutional layer, C3, with 50 3 × 3
convolution kernels. The fourth layer is a pooling layer, C4, with
200 2 × 2 convolution kernels. The fifth layer is a fully-connected
layer, F5, which reconstructs the 2D feature map output by C4
into a 1D vector. By extracting the spatial features between the
WFs and reducing dimensionality using the CNN, the feature
maps are transformed to a 1D dataset, which is then input into the
LSTM model to extract the temporal correlations. Based on the
results obtained on multiple simulation training sets, the main
parameters of the LSTM model are set as follows: The LSTM
model is composed of three network layers with a maximum
number of iterations of 180, namely, an LSTM layer that contains
one neuron, a dropout layer that contains 17 neurons, and one
hidden layer that contains one neuron. The output data
corresponding to each moment is input into the subsequent
fully-connected layer. Figure 6 shows the CNN–LSTM model
structure.

5 CASE STUDY

5.1 Description of the Dataset and Data
Preprocessing
The data for a WFC in northeastern China were selected to
conduct a case study. The WFC consists of a total of 20 WFs.
The geographical span of this WFC is ~235 km × 330 km.
Figure 7 shows the distribution of the WFs. The data for the
first 2 months in the dataset for each season of 2018 were
selected to form a training set, while the data for the last
month were used to form a test set. The time length for each

FIGURE 7 | Geographic location map of the wind farm cluster.

TABLE 3 | The installed capacity of wind farms in the case study.

Wind farm Installed capacity
(MW)

Longitude and
latitude

Wind farm Installed capacity
(MW)

Longitude and
latitude

Wind farm 1 249.9 122.17, 44.77 Wind farm 11 30.06 123.48, 45.77
Wind farm 2 148.5 123.43, 44.30 Wind farm 12 49.5 123.13, 45.19
Wind farm 3 98.8 122.43, 45.39 Wind farm 13 57.35 123.94, 44.20
Wind farm 4 197.9 122.99, 45.79 Wind farm 14 198 123.38, 44.53
Wind farm 5 98.8 123.46, 43.87 Wind farm 15 400 125.06, 44.94
Wind farm 6 45 122.40, 45.82 Wind farm 16 99 123.72, 44.89
Wind farm 7 200.5 123.58, 45.27 Wind farm 17 198 123.63, 43.90
Wind farm 8 240 123.02, 45.97 Wind farm 18 49.5 123.74, 44.85
Wind farm 9 99 123.12, 45.83 Wind farm 19 196.5 124.42, 43.00
Wind farm 10 99 122.93, 45.75 Wind farm 20 99 123.63, 45.62
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forecast was set to 24 h. The number of times of rolling was set
to 30. The data-sampling interval was set to 15 min. All the
experiments were performed under the Keras deep-learning

framework in Python 3.7. The parameters of the CNN–LSTM
model need to be adjusted according to the WF conditions in
practice.

FIGURE 8 | Forecast effect of the 10th day of each season in 2018. (A) Spring (B) Summer (C) Fall (D) Winter.
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The NWP-derived features differ in dimension. Therefore, to
ensure that the extent of the correlation between each variable and
power is equally considered, the NWP data and power need to be

subjected to a min-max normalization operation to normalize them
to the interval of [0, 1], i.e.,

FIGURE 8 | (Continued).
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x′ � x − xmin

xmax − xmin
(10)

where x and x′ are the data values before and after
normalization, respectively, and xmax and xmin are the
maximum and minimum values of the sample data,
respectively. The installed capacity and longitude and latitude
of each wind farm as shown in Table 3. The total installed
capacity of this WFC is 2,854.31 MW.

5.2 Evaluation Indices
To accurately evaluate the effectiveness of the proposed forecasting
method, two error evaluation indices, namely, fitted mean absolute
error (MAE) and root-mean-square error (RMSE), were chosen in
this study. They can be calculated using the following equations:

MAE � 1
n
∑n
i�1
(∣∣∣∣Pmi − Ppi

∣∣∣∣
Ci

) × 100% (11)

RMSE �

���������������
1
n
∑n
i�1
(Pmi − Ppi

Ci
)2

√√
× 100% (12)

where Pmi is the actual mean power during period i, Ppi is the
forecasted power for period i, Ci is the total operating
capacity during time period i, and n is the total number of
samples.

5.3 Description of the Comparison Models
The backpropagation (BP) neural network is a common
method used to forecast wind power. This method is a
multilayered feedforward network capable of learning and
storing input-output mapping relations. The radial basis
function (RBF) method generates a training model by
constructing an RBF. Forecasts can then be produced by
inputting relevant future information into the training
model. Similarly, the SVM method is a time-series
forecasting method capable of reflecting the features of
statistical data.

5.4 Results and Analysis
Figure 8 shows the forecasts for the WFC for the 10th day obtained
on the test set of each season (i.e., the 10th day obtained on the third
month of each season), and compares the actual power of the WFC
and the power forecasted by each method. The power forecasted by
the proposed method is closer to the actual power. Wind energy
fluctuates and is random at different times and in different seasons,
making the capture of its pattern of change difficult. The BP, RBF,
and SVMmethods are unable to satisfactorily track the changes in the
wind-power output when it fluctuates significantly. The
spatiotemporal model accounts for each meteorological factor
affecting the WFC and extracts its features on the same temporal
plane, thereby preserving the spatial structure of the data as well as
ensuring their time-series features. For the periods with wind-power
fluctuations, the forecasts produced by the spatiotemporal model by
nonlinear fitting are slightly closer to the actual values than those
produced by the other methods. The proposed method yields
relatively good forecasts.

The data in Table 4 show that both the RMSE and MAE of the
forecasts produced by the spatiotemporal network model proposed
in this study for each season are lower than those of the forecasts
produced by the other forecasting models. The forecasting
accuracy of each model varies from season to season. The
forecasts produced by the spatiotemporal neural network model
for the four seasons are relatively stable, with RMSEs of 16.28,
16.17, 17.01, and 16.93% and MAEs of 11.34, 11.81, 12.56, and
12.27%, respectively. The forecasting accuracy of each of the other
models varies considerably from season to season, with a difference
of approximately 1–5% in both the RMSE and MAE between
seasons. Overall, each model exhibits a higher forecasting accuracy
for spring and summer than for fall and winter.

Persistence is a benchmark comparison method that can be used
to compare with other methods. It is commonly applied to ultra-
short-term forecasting or medium and long-term forecasting. In this
paper, for day-ahead forecasting, the wind power fluctuates more
rapidly in such a time scale, and the prediction error of the persistence
method is significant.

To adequately analyze and examine the reasonableness of the
proposed method, the overall power forecasting method for WFCs
proposed earlier is denoted by method 1, while a cumulative sum of
the individual short-term forecasts for the 20 WFs is denoted by
method 2. According to the data inTable 5, for each season, both the

TABLE 4 | Comparison of evaluation indexes of the prediction model.

Forecasting model RMSE/% MAE/%

Spring CNN-LSTM 16.28 11.34
BP 17.58 12.57
RBF 17.17 12.09
SVM 18.26 15.24

Summer CNN-LSTM 16.17 11.81
BP 17.80 13.32
RBF 17.44 12.76
SVM 18.98 14.95

Fall CNN-LSTM 17.01 12.56
BP 18.26 13.21
RBF 17.65 13.04
SVM 19.54 15.83

Winter CNN-LSTM 16.93 12.27
BP 17.62 14.06
RBF 17.47 13.55
SVM 19.21 14.73

TABLE 5 | Accuracy comparison of prediction methods.

Forecasting method RMSE/% MAE/%

Spring Method 1 16.28 11.34
Method 2 16.76 11.72

Summer Method 1 16.17 11.81
Method 2 17.43 12.09

Fall Method 1 17.01 12.56
Method 2 17.39 12.84

Winter Method 1 16.93 12.27
Method 2 17.25 12.69

Frontiers in Energy Research | www.frontiersin.org April 2022 | Volume 10 | Article 87816010

Wu et al. Short-Term Prediction of Wind Power

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


RMSE andMAEof the forecast produced bymethod 1 are lower than
those of the forecast produced by method 2. This suggests that the
forecasting accuracy of the method that treats the WFC as a whole
(i.e., method 1) is higher than that of the method that cumulatively
adds the separate forecasts for the WFs (i.e., method 2) and, further,
that method 1 effectively avoids an accumulation of errors in the
forecasting process.

6 CONCLUSION

This paper presents a short-term power foresting method for WFCs
that deeply mines the spatiotemporal features. This method
constructs feature maps based on multi-moment, multi-WF NWP
information and, on this basis, establishes a dynamic model based on
the CNN–LSTM architecture. In addition, this method is capable of
extracting spatiotemporal features and sufficiently accounts for the
correlations between the WFs within a WFC. The following
conclusions are obtained from the case study conducted based on
the actual operating data for a WFC in northeastern China:

1) Based on the overall trend of the forecasts and the evaluation
indices (i.e., RMSE andMSE), the proposed method outperforms
the classicalmethods in forecasting the power of theWFCandhas
the potential for a wider range of applications.

2) Compared to the cumulative sum of the separate forecasts for
single WFs, forecasting the power of the WFC as a whole can
effectively avoid an accumulation of forecasting errors.

With the continual increase in the dataset size, a larger
number of iterations and a longer time are needed to compute
the similarities between data. The linear increase in time
complexity poses a challenge to the processing of large
datasets.
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