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The impact of climate change on the environment and human activities is one of the biggest
concerns for the international community. Wind energy represents one of the most reliable
and promising technology to achieve the target reduction of emissions. Though more
intense and uniform resources characterize offshore areas, climate change may alter the
environmental conditions and thus Levelized Cost of Energy evaluation. In this study, we
analyze the impact of climate change on the offshore wind energy sector over the North
Sea and the Irish Sea, where the majority of the European investments are located. To this
aim, seven regional climate model simulations from the EURO-Cordex project are first
evaluated. The ERA5 reanalysis product is considered the historical reference information
after its validation against in-situ records and it is used to analyze the climate simulations by
assessing their performance to reproduce weather types. Several statistics are calculated
to assess the skill of each model in reproducing past climatology for the reference period
(1985-2004). Since no significant differences between simulations are highlighted, an
ensemble of all the seven simulations is used to characterize future changes in the offshore
climate. Weather types under the representative concentration path scenario RCP8.5 for
the future period 2081-2100 are then analyzed to describe the changes in climatological
mean and extreme events. Regional climate model simulations are bias-corrected by
applying the empirical quantile mapping technique. Then, future changes in six wind
energy climate indicators (i.e. mean and extreme wind speed, wind power density,
operation hours, gross energy yield, and capacity factor) are estimated for seven
operating offshore wind farms. Results indicate a slight decrease in wind energy
production, particularly in the northwest of the domain of study, testified by a
reduction of all the climate indicators. However, large uncertainties in the projected
changes are found at the wind farms located close to the south coast of the North
Sea. Extreme wind conditions show a modest rise in the southeastern part of the region,
related to an increase of the weather types dominated by cyclonic systems off Scotland
shores.
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INTRODUCTION

The impact of climate change on the environment and human
activities is one of the biggest concerns for the international
community and led to the institution of the Intergovernmental
Panel on Climate Change (IPCC) in 1988. IPCC Special Report
on Global Warming of 1.5°C (Masson-Delmotte et al., 2018)
highlighted the importance of containing the temperature
increase below 1.5° over the preindustrial levels to reduce the
risk of extreme events (droughts, heavy precipitations). This
objective can be reached through a drastic reduction of
emissions, among other strategies. Electricity and heat
generation sectors accounted for the largest share of global
greenhouse gas (GHG) emissions (EPA, 2019), principal
responsible for global warming (Stott et al., 2000; Meehl et al.,
2004; Stone et al., 2007), while during the third quarter of 2021
electricity and heat generation sectors accounted for the second-
largest share of GHG emissions in Europe (https://ec.europa.eu/
eurostat). Hence, a firm effort is currently aimed at harvesting
renewable energy sources. Wind plays a leading role in Europe
with 236 GW of cumulative installed capacity in 2021 covering
15% of Europe’s electricity demand in the same year. Offshore
capacity has increased its importance in recent years, as it grew
from 1% of the total installed wind power in 2008 to 19% in 2021
(Komusanac et al., 2022). The European Commission expects a
further increase in the coming decades, which will bring the
installed offshore capacity from the current 12 GWup to 300 GW
in 2050 (European Commission, 2020). An accurate description
of the environmental conditions is required to facilitate this
progressive shift to offshore areas, generally characterized by
more intense and uniform wind resources (Esteban et al., 2011).
Climate change, in turn, may indeed influence the wind resources
in terms of spatial distribution and temporal variability (Pryor
et al., 2005). Themodel proposed byHdidouan and Staffell (2017)
shows that these variations have a relevant impact on the
Levelized Cost of Energy (LCoE) evaluation. The process from
the early concept design to the decommissioning of an offshore
wind farm can last 40 years, without considering repowering
strategies that represent a valuable alternative to
decommissioning due to cost optimization and sustainability
(Hou et al., 2017). Hence it appears clear that changes in the
wind resource in the upcoming 50–70 years can impact wind
farms currently in operation (Carvalho et al., 2017).

North Sea is particularly strategic for the wind energy industry,
representing the vast majority of the total European installed
power (Ramirez et al., 2020). The effects of variations in large-
scale circulation are expected to modify the frequency of climate
extremes in North Europe (Scaife et al., 2008). Zheng et al. (2019)
and Carvalho et al. (2017) analyzed projections of future global
offshore wind energy resources using data from the Coupled
Model Intercomparison Project (CMIP) under various RCP
scenarios, finding an overall reduction in the wind power
density over the North and the Irish Sea. McInnes et al.
(2011) found an overall increase of the 99thi percentile daily
wind speed up to 5% in the North Sea, following an ensemble
approach based on CMIP3 simulations downscaled through
RCA4. Moemken et al. (2018) observed an increase in the

time in which the wind speed is below the cut-in threshold
and a consequent reduction of the operational intervals for
typical wind turbines. The distribution of projected changes
between model simluations varies considerably, both in sign
and in strength, as also found by Meier et al. (2011) and De
Winter et al. (2013). Signs discrepancies between simulations are
particularly evident in the southern North Sea region, to the point
that Sterl et al. (2015) suggest that changes found in the literature
are not statistically significant. However, these results rely on the
outcomes from Atmospheric Ocean General Circulation Models
(AO-GCMs) characterized by a coarse spatial resolution, unable
to solve meso-scale circulation features over the analyzed seas. In
order to support stakeholders during the decision-making
process, there is a need for regional climate information on
the impact that climate change may have on the offshore wind
industry (Murcia et al., 2015). Few studies so far have investigated
the climate change impact on the offshore wind energy sector at a
local scale, mainly due to the lack of information about real
turbines power curves, which are generally substituted by
idealized power curves (Weber et al., 2018; Ohba, 2019).
Doddy Clarke et al. (2022) analyzed more than 20 onshore
and offshore wind farms in Ireland, finding a decrease of up
to 2% in the wind energy potential.

This study describes an evaluation of the impact of climate
change in the offshore wind sector over the North Sea and the
Irish Sea regions (Figure 1) employing an ensemble of regional
climate model (RCM) simulations forced by CMIP5 global
models. We conduct a weather type analysis both as a basis
for assessing the skill of the RCM simulations and for providing
the geographical distribution of future changes. After evaluating

FIGURE 1 | Study area and map of the analyzed offshore wind farms.
Legend indicates the turbine models for each wind farm.
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projected changes within the marine region with a high spatial
resolution (~10 km), we calculate several indicators for seven
offshore wind farms. The model simulations considered are
affected by systematic deviations (bias) from their reference
period, and hence data need calibration to be suitable for
climate change impact study. To this aim, we apply the
empirical quantile mapping technique to the modeled wind
time series coming from RCM simulations. We employ in-situ
records to validate historical information from the ERA5
reanalysis and then use the validated ERA5 data to support
the bias correction procedure of the RCMs. We focus on long-
term climate changes, comparing a reference historical period
(1985-2004) with the future time slice 2081-2100 under the
RCP8.5 GHG emissions scenario. The RCP8.5 scenario
represents the emission trajectory associated with the most
intense radiative forcing (8.5 W/m2) and hence the highest
GHG levels among the concentration pathways individuated
by the IPCC. Although a more near time window (i.e. mid-
century) could be convenient for specific engineering applications
and policies redaction, we focus on the end of the present century,
which yields the maximum robustness for changes (Moemken
et al., 2018) and allows to tackle the climate change issue in a
broader perspective. The paper is organized as follows. In Data
Source Section, datasets used for the work are described.Methods
Section provides information about methods applied for weather
type (WT) classification, skill assessment of the RCM simulations,
bias correction, and the definitions of wind energy indicators.
Results are presented in Result and Discussion Section, and
conclusions are given in Conclusion Section.

DATA SOURCE

Offshore In-Situ Records
In-situ records provide valuable information for offshore wind
farms, although they may be affected by micro-scale processes,
such as the wake of turbines. In addition, data from these records
contain gaps and are usually short for a robust long-term climate
characterization. The records from seven currently operating
offshore wind farms are selected and used to validate the
historical information from the ERA5 reanalysis. The location
of the records is indicated in Figure 1, as well as the turbine model
employed in each offshore wind farm.

Heterogeneous conditions (e.g. distance to the coast and type
of installed turbine) affecting the energy production, are therefore
considered. Time series of wind speed and direction have been
gathered from Marine Data Exchange (www.
marinedataexchange.co.uk), FINO (www.fino1.de), and
Nordzee-wind (Brand et al., 2012) databases. Their available
time period and other characteristics are summarized in Table 1.

Table 1 data were collected mainly before park commissioning
and hence are not affected by the wakes of the wind turbines.
Egmond aan Zee and Dan Tysk parks constitute the only
exceptions in this sense, but the analysis of wind rose
distributions and probability density functions show that the
effects of wakes did not affect the quality of measurements. We
conduct additional quality control to eliminate outliers, and then
we operate an hourly average on the 10-min original values to
make them directly comparable with the ERA5 reanalysis
hourly data.

Atmospheric Reanalysis Data
The recent ERA5 reanalysis product of the European Centre for
Medium-Range Weather Forecasts (ECMWF) is adopted here as
a quasi-real historical dataset due to the unavailability of
sufficiently long and homogenous observational time series
covering a region as broad as the target of this study. The
ERA5 (Hersbach et al., 2020) HRES (high resolution)
atmospheric data are provided on a 31 km horizontal grid
with hourly time resolution. Reanalysis data have been
preprocessed in order to serve a double purpose. Firstly, the
spatial wind at 10 m height (zonal u and meridional v wind
components) and sea level pressure (slp) hourly fields are
converted into daily mean values for the period 1985-2004 in
order to be used for the classification of atmospheric circulation
patterns. Then, we employ the historical information provided by
ERA5 as reference datasets for the historical conditions provided
by regional climate simulations.

ERA5 capabilities have already been assessed in several works.
In terms of wind power modeling, ERA5 performs better than
other reanalyses such as the MERRA-2 dataset (Olauson, 2018;
Jourdier, 2020). Sharmar andMarkina (2020) concluded the same
after analyzing global wind wave hindcasts, while Rivas and
Stoffelen (2019) conducted a global comparison with ASCAT
observations which highlighted a 20% bias reduction compared to
ERA-INTERIM (Dee et al., 2011). The hourly wind speed time

TABLE 1 | List of the in-situ observations used and characteristics of the wind speed time series at the analyzed offshore wind farms.

ID Country Development Lat Lon Turbine
type

Measurement
Period

Sampling
Frequency

Measurement
Height (m)

Hub Height
(m)

BB United Kingdom Burbo Bank 53.49 −3.20 SWT-3.6-107 V164-
8.0 MW

05/13-09/14 10 min 44 84
123

GG United Kingdom Greater Gabbard 51.88 1.98 SWT-3.6-107 10/05-12/09 10 min 88 78
LA United Kingdom London Array 51.63 1.50 SWT-3.6-120 01/96-07/06 1 h 25 87
NO DE Nordsee One (FINO1) 53.98 6.81 6.2M126 01/04-05/10 10 min 33 100
EZ NE Egmond aan Zee 52.61 4.44 V90-3.0 MW 01/05-12/10 10 min 21 70
HG United Kingdom Humber Gateway 53.64 0.293 V112-3.0 MW 07/11-08/12 10 min 36 80
DT DK Dan Tysk (FINO3) 55.14 7.23 SWT-3.6-120 09/09-01/14 10 min 31 88
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series provided by ERA5 are here validated through a comparison
with the available in-situ records. To this aim, we interpolate the
wind time series at the farm height location following the power
relationship shown in Eq. 1 to scale the 10 m values (w10) up to
the measurement height (hm) specific to each park, as listed in the
last column of Table 1.

W � w10p(hm10)α

[m/s] (1)

The exponent α depends on multiple factors such as elevation,
time of day, and temperature. Under neutral conditions and with
flat terrain, α is equal to 0.14 (Schlichting 1968), which is also the
value suggested by the International Electrotechnical
Commission (IEC, 2019) for offshore locations. In conformity
with several previous studies (e.g. Hueging et al., 2013; Moemken
et al., 2018), we adopt the value α = 0.14 for the present study.

Figure 2 provides the comparison between ERA5 wind
speed data and instrumental measurements at the seven wind
farm sites. The scatter plots show the pairs of hourly data
values (colored according to their probability of occurrence)
and the percentiles of the distribution. The quality of the
ERA5 wind data is confirmed by the small values assumed by
root mean square error (RMSE), which is always lower than
2 m/s. Lowest value is shown at Dan Tysk (RMSE = 1.1886 m/
s), while the highest is found in correspondence of London
Array (RMSE = 1.7313 m/s). We observe some slight
underestimation in the farms near the United Kingdom
coast and an overestimation in the farms near the
Netherlands, Germany, and Denmark.

Climate Models
The fifth IPCC Assessment Report (AR5) is based on the results
provided by the Coupled Model Intercomparison Project Phase 5
(CMIP5). The CMIP5 consists of a multi-model approach for
assessing AO-GCM capabilities and limitations, providing a
freely available dataset designed to advance the knowledge of
climate variability and climate change (Taylor et al., 2011). The
investigation of the climate change impact through an ensemble
approach based on a multi-model analysis provides a more
skillful result and reduces the sources of uncertainty (Tebaldi
and Knutti, 2007). Assessing the skills of the climate models for a
specific region on the basis of how well they reproduce the
synoptic climatology provides a more complete evaluation
than the mere comparison of statistics against observational
sources. Clustering methods are usually applied under this
approach. (e.g. Perez et al., 2014; Belleflamme et al., 2013;
Lorenzo et al., 2011), with the advantage of reducing climate
time variability to a limited set of circulation patterns.

GCMs are the most advanced tools available for simulating
physical processes of the global climate system in response to
different greenhouse gas concentration emissions. However, they
are characterized by a coarse spatial resolution (in the order of the
hundreds of km), insufficient to satisfactory project climate
conditions at meso-to micro-scales. This problem can be
relevant in areas characterized by complex geography elements
such as the North Sea and the Irish Sea. Regional Climate Models
(RCMs) are employed to overcome this limitation, increasing
resolution over a specific region towards a horizontal grid-point
spacing of a few tens of km (Laprise, 2008). Progressive
developments in the available computer power and storage

FIGURE 2 | Comparison of ERA5 against the in-situ measured data at the seven analyzed offshore parks. Probability scatter diagrams are colored by density of
data. Black diamonds are the quantiles, from 2.5 to 99 as indicated on the top of each panel. The difference in themean and standard deviation as well as the RMSE (m/s)
are also indicated.
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capacity have allowed setting the standard resolution for regional
downscaling at 12 km. The Euro-CORDEX initiative
(Coordinated Regional Climate Downscaling Experiment)
provides higher-resolution regional climate information that is
available directly from contemporary global climate models in a
European domain (Jacob et al., 2014). Euro-CORDEX aims to
assess the performance of downscaling models, designing a set of
coherent experiments for the production of climate projections to
be used in impact and adaptation studies (Giorgi et al., 2009).

We select those Euro-CORDEX simulations that provide
continuous wind speed and atmospheric sea level pressure
data with high spatial (0.11°) and temporal resolution (6-
hourly) for the RCP8.5 scenario during the 20-years future
time slice 2081-2100 and with the availability of the same
experiment during a historical reference period (1985-2004).
The resulting simulations are listed in Table 2. CanESM2 and
MIROC5 are downscaled through COSMO-CCLM4-8-17
(Rockel et al., 2008), while CNRM-CM5, EC-EARTH,
HadGem2-ES, IPSL-CM5A and MPI-ESM-LR are downscaled
through RCA4 (Kupiainen et al., 2011). From now on, we
refer to a simulation through the name of the regionalization
scheme followed by the parent GCM model between brackets
(e.g., CCLM(CanESM2) and RCA4(CNRM-CM5)).

METHODS

The methodological approach followed can be ideally split into
two different streams of analysis. In the first one, we operate at a
meso-scale perspective to classify the synoptic patterns of the
target area and successively make use of this classification for
assessing the performance of the climate model simulations. Then
we move up to the detail study, focusing on seven operating
offshore windfarms: regional climate data are bias-corrected as
described within Bias Correction Section and successively
employed to calculate relevant wind energy indicators.

Classification of Atmospheric Circulation
Patterns
We apply a non-hierarchical clustering approach to obtain
atmospheric circulation patterns in the target region. These
patterns are then used to explain the future changes in
offshore wind energy that regional climate projections
predict by analyzing variations in their frequency of
occurrence.

The clustering method classifies the meteorological circulation
systems over the marine surface of the studied area into weather
types (WT), in such a way that each WT represents an
atmospheric circulation pattern. In this approach, a principal
component analysis (PCA) is first applied to the selected variables
to reduce the data dimensionality while conserving maximum
data variance. The result is a new set of variables (principal
components, PCs) that are linearly dependent on the original
ones and uncorrelated between each other. The classification
algorithm is applied to them, simplifying the classification
problem into an eigenvalue/eigenvector problem (Jolliffe and
Cadima, 2016). To this aim, the maximum-dissimilarity
algorithm (MDA) is employed to initiate the clustering
process following Camus et al. (2011), which guarantees a
stable classification and the most representative initial subset.
Finally, we use the K-means algorithm (KMA), which is designed
to partition two-way, two-mode data into K classes (Steinley,
2006). This algorithm allows individuating a set of centroids, each
of them representative of a group of data formed by the vectors in
the database for which the corresponding centroid is the nearest
one (Hastie et al., 2001).

The climate of a region can be classified according to several
combinations of atmospheric variables, and the choice of the
variables to consider when applying the clustering technique
depends on the purpose of the system itself (Lee, 2014; Tveito
et al., 2016). Siegert et al. (2017) and Cheng et al. (2010) consider
a set of six atmospheric variables (sea level pressure, total cloud
coverage, air temperature, dew point temperature, eastward and
northward wind components), while Camus et al. (2014) focus on
pressure data, assuming sea level pressure and squared sea level
pressure gradients as predictand for the classification. We explore
the sensitivity of the classification technique to different
combinations of atmospheric variables and spatial and
temporal resolution. As we are primarily interested in
describing the wind fields over the study domain, we combine
the commonly used sea level pressure (slp) fields with zonal and
meridional wind components (u10, v10). Land grid points are
excluded in order to focus on the marine surface.

Before PCA processing, anomalies of the selected variables
(slp, u10, v10) are calculated from the ERA5 database for the
period 1985-2004 and standardized by dividing the difference
between actual (V(x,t)) and mean (V(x)) value of the generic
variable V in the node x by the standard deviation std(V(x)).

AV � V(x, t) − V(x)
std(V(x)) (2)

TABLE 2 | List of the analyzed RCM simulations and their downscaled GCMs from CMIP5.

RCM Parent GCM Modelling center GCM country

CCLM4-8-17 CanESM2 Canadian Centre for Climate Modelling and Analysis Canada
CCLM4-8-17 MIROC5 Model for Interdisciplinary Research on Climate Japan
RCA4 CNRM-CM5 Centre National de Recherches Metereologiques France
RCA4 EC-EARTH EC-Earth consortium EU
RCA4 HadGEM2-ES Met Office Hadley Centre United Kingdom
RCA4 IPSL-CM5A-MR Institute Pierre-Simon Laplace France
RCA4 MPI-ESM-LR Max Plank Institute fur Metereology Germany
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The principal components (PCs) obtained from the PCA are
then sorted in increasing order of explained variance, and we keep
only the PCs that explain 95% of the variance to reduce the
problem dimensionality (Perez et al., 2015). In this study, the first
eight modes explain 95% of the variance, and the clustering
algorithm is hence applied to them. After a sensitivity analysis of
the number of WTs of 25, 36, 64 and 100, N = 100 WTs are
selected. The selection of 100 clusters arises from a balance
between the necessity of obtaining a classification that
identifies extreme WTs, and that all groups have sufficient
data representation (the obtained WTs comprise 77 daily data
per group on average).

The WT classification is visualized in a 10 × 10 lattice for the
slp (Figure 3) and wind speed magnitude at 10 m height w10

(Figure 4). For each identified WT, the centroid obtained
during the clustering process is substituted by the actual
synoptic situation most similar to it. Such a situation is
individuated by calculating the Euclidean distance between
the points representing all the instants from the historical
series belonging to a group and the correspondent group
centroid, considering the values assumed by the normalized
variables in the point as the point coordinates. The lower-right
and upper-left corners of Figure 3 represent situations

dominated by low-pressure systems located in the
northwestern area of the studied region. They are coupled
with intense wind speed (daily mean up to 19 m/s, rotating
counterclockwise around depressions generated by cyclonic
storms) visible in the same corners of Figure 4. Situations
characterized by less intense pressure gradients are displayed
in the central part of the lattice and present significantly lower
wind speeds.

The estimation of the frequency of occurrence of the 100
WTs is used as a benchmark for assessing the skills of RCM
simulations and for the analysis of future climate change
variations. Figure 5A shows the frequency of occurrence for
the ERA5 dataset during the period 1985–2004 calculated by
summing up the number of daily situations contained within
each of the 100 groups. A similar procedure is repeated
considering only the number of occurrences in winter (DJF)
and summer (JJA) for each of the individuated WTs (Figures
5B,C, respectively).

The most frequent pattern, represented by WT55
(Figure 6A), describes a situation characterized by a
meridional pressure gradient with low pressure located off
Far Øer islands, wind speed up to 12 m/s in the northwestern
portion of the domain and sensibly lower in the area where the

FIGURE 3 | The sea level atmospheric pressure fields associated with the weather types, derived from ERA5. Darker blue colors indicate intense low-pressure
systems, dominated by a depression generally located in the northwestern area of the studied region. Deep red colors indicate situations of high pressure systems (i.e.
anticyclones). Central panels of the lattice show weather types with less intense pressure gradients.
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analyzed wind farms are located (except for DT). In summer,
WT84 describes the most frequent situation with
southeastward pressure gradient and generally lower wind
directed towards NE, though we note that all the analyzed
offshore plants (with the exclusion of GG and LA) are invested
by wind between 6 and 10 m/s, resulting in favorable
conditions for energy extraction. The most usual situation
in winter is depicted in WT65 (Figure 6B). It is characterized
by winds above 10 m/s within the central and northern part of
the domain, resulting in good conditions for British plants,
while the continental coast of Europe is interested by
significantly lower winds. These situations, which are
predominant in terms of total occurrences, are
characterized by a dualism between high and low pressure
systems that originates a definite gradient. WTs dominated by
a depression (WT4, Figure 6C) and an anticyclone (WT53,
Figure 6D) are less frequent in the studied region. WT4
describes intense winds with daily mean speed up to 19 m/s
over the Irish Sea and the British Channel. Such a high value of
the daily mean corresponds to survival rather than operational
conditions for wind farms, considering that the cut-off speed is
around 25-30 m/s depending on the turbine installed.
Conversely, WT53 represents a situation in which most of

the analyzed wind farms are affected by winds below the cut-in
threshold.

Performance of the Climate Model
Simulations
TheWT classification obtained from the historical information of
the ERA5 data is used for assessing the performance of the RCM
simulations during the reference period (1985-2004). First,
simulations are classified by comparing the frequency of
occurrence of each WT with the one provided by ERA5 data
(shown in Figure 5A). Then, we ensemble the frequency of
occurrence of each WT from the seven simulations and
compare it with the correspondent frequency from the ERA5
data. Finally, we assess the performance of the RCM simulations
in reproducing the interannual variability of the ERA5 reference
dataset.

In order to obtain the frequency of occurrence of the 100
WTs for each RCM, the slp, u10, and v10 for each climate
simulation are translated to the PCA dimension retrieved
from the ERA5 data. Each daily situation is associated with
one of the 100 WTs previously individuated from the ERA5
dataset, and the frequency of occurrence of the WTs for each

FIGURE 4 | The offshore wind speed fields at 10 m height for the 100 weather types, derived from ERA5.
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RCM simulation is then computed for the historical period
(1985-2004), summing up the number of daily situations
contained within each of the 100 groups. The same
procedure is then repeated for the period 2081-2100,
allowing the investigation of the future variations in the
frequency of occurrence of a specific WT due to climate
change.

Statistical indexes to compare the difference in the frequency of the
WTs from each RCM historical simulation against the frequency of
the ERA5 data are estimated in order to quantify the performance of
the RCMs (Perez et al., 2014). The scatter index SI and relative entropy
RE are calculated from the knowledge of the frequency of occurrence
of each group, where pi is the frequency of occurrence of ithWT from
ERA5, pi’ refers to the frequency of occurrence of the ithWT from an
individual RCM simulation, and N is the number of WTs (100).

SI �
������������∑N

i�1(pi − p′
i)2

N

√ /∑N
i�1(pi)
N

(3)

RE � ∑N
i�1
pi

∣∣∣∣∣∣∣∣log pi

p′
i

∣∣∣∣∣∣∣∣ (4)

The RE index, in particular, gears more theWTs characterized
by low probability of occurrence (i.e. unusual synoptic
conditions).

We also analyze frequency discrepancy (FDi) between the
occurrence of the ith WT from ERA5 (pi) and the ensemble mean
of the frequencies provided by the RCM simulations (p’i-ENS)
through the following formulation.

FDi � pi − pi−ENS
′

pi
(5)

A criterion to individuate consistency is applied whenever a
calculation involves the ensemble of simulations. Following Perez
et al. (2014), we identify with black dots those WTs and grid
points in which at least 80% of the simulations agree in the sign of
the variation.

In order to measure the skill of the climate simulations in the
reproduction of interannual variability, the standard deviation of
the scatter index stdSI, is also estimated.

stdSI �
��������������������∑N

i�1(std(pi) − std(p′
i))2

N

√ /∑N
i�1(std(pi))

N
(6)

Bias Correction
The bias correction process consists of scaling climate model
outputs to reduce their systematic errors with the aim to improve
their fitting to observations (Soriano et al., 2019). Several bias
correction methods (e.g. Déqué 2007; Brands et al., 2011; Tabor
and Williams 2011) developed over recent years focused on
increasing the quality of climate projections and making them
suitable for a proper estimation of indicators in impact studies.
The correction procedure is required for the detailed impact
assessment study that we conduce at the offshore wind parks
(Ahmed et al., 2013).

The ERA5 reanalysis database has proven its good quality to
represent wind conditions over the selected offshore wind farms.

FIGURE 5 | Annual (A)winter (B) and summer (C) rate probability occurrence of the 100 weather types (Figures 3, 4 show the atmospheric circulation patterns for
each weather type).
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The validation described for the seven wind farms at the
measurement height (Figure 2) indicates modest discrepancies
with respect to in-situ records when representing the wind
distribution. Therefore, considering that the in-situ records are
short and do not cover a common period of enough length, we
choose the ERA5 database to undertake a bias correction of the
climate model simulations at the seven wind farm locations.

Figure 7 shows a comparison of the wind distribution
characterizing ERA5 and the RCM simulations at 10 m height.
We note that the RCM simulations tend to overestimate the
magnitude of the wind speed for high quantiles. The only
exception is represented by the Egmond and Zee wind farm.
Most of the analyzed RCM simulations underestimate ERA5
quantiles at this wind farm.

The method designed for bias correction is the Empirical
Quantile Mapping (EQM), which maps between simulated
and quasi-observed Cumulative Distribution Functions
(CDFs). It is implemented following Déqué (2007), thus
obtaining a correction function for each of the thirteen
selected percentiles (2.5, 5, 10, 20, 30, 40, 50, 60, 70, 80,
90, 95, 99) and linearly interpolating between two percentiles.
Outside the range between 2.5 and 99, the extrapolation is set
to constant, meaning that the correction function for the 99th
percentile is applied to all the above percentiles. ERA5

reanalysis is used to obtain quantile-specific correction
coefficients for RCM simulations by comparing climate
information at the annual scale for the period 1985-2004.
Then, we apply the so-obtained coefficients to both historical
and RCP8.5 future time series of the RCM simulations
interpolated at the wind farm locations. In this way, we
obtain corrected six-hourly time series for the calculation
of local wind energy indicators.

Wind Energy Indicators
The analysis of climate change impact on the wind energy
industry is provided through a set of relevant impact indicators.

In addition to the often analyzed climatology in the context
of climate change impact studies (e.g. mean wind speed and
power density), extreme wind speed, annual energy
production, capacity factor, and operation time indicators
are also introduced in this study. We conduct calculations
for each of the seven locations (Burbo Bank is repeated as two
different wind turbines are installed there) using bias-
corrected wind speed time series of the seven RCM
simulations, scaled at the hub height (HH) characteristic of
each wind turbine by applying power law (Eq. 1).

The climate change indicators derive from a comparison
between future and historical climate conditions, namely hist

FIGURE 6 | Sea level atmospheric pressure and surface wind speed fields of WT55 (A), WT65 (B), WT4 (C), and WT53 (D). WT55 (A) andWT65 (B) represent the
most frequent pattern at annual and winter scale, respectively. WT4 (C) and WT53 (D) show cyclonic and anticyclonic situations, respectively.
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(from 1985 to 2004) and RCP8.5 (from 2081 to 2100 under the
RCP8.5 scenario). They are calculated individually for each RCM
simulation, and then their mean value is obtained following the
ensemble approach.

Wind Power Density (WPD) represents a quantitative
measure of the wind energy flux available at any location and
can be used to compare wind resources regardless of the wind
turbine size.

WPD � 1
2
ρw3 [W

m2] (7)

w represents the mean wind speed at HH, while the air density ρ
is evaluated through the relation proposed by Hennessy to take
into account the reduction of the standard value (ρ0 = 1.225 kg/
m3) due to the height effect (Hennessey, 1977).

ρ � ρ0 − 1.194p10−4pHH [kg
m3] (8)

We investigate not only variations relevant for the energy
harvesting (mean values of wind speed and power density) as it is
commonly done (Guo et al., 2020) but also extreme wind speed
conditions represented by the 99th percentile (w99) wind speed,
which play a role in the dimensioning of the turbine support
structure.

In addition to the three climatological indicators, we analyze
other quantities related to the specific turbine installed at each
site. We define the operation time (OT) as the ratio between the
number of hours in which the wind speed lays in the interval
individuated by cut-in and cut-off (ncico) wind speed and the total
length of the time series (ntot).

OT � ncico
ntot

[%] (9)

The gross energy yield (AEPgross) is evaluated through the
relation provided by Measnet (2016) guidelines for the evaluation
of site-specific wind conditions as follows:

AEPgross � ∑
i

P(wi)pHi [kWh] (10)

P(wi) is the power output for each i-esim wind speed bin of
unitary width, extrapolated from the power curves provided by
manufacturers.Hi is the number of hours in each wind speed bin,
calculated as the product between the relative frequency of that
bin (obtained through Weibull fit) and the total number of hours
in a year ny.

Finally, the capacity factor (CF), an important indicator of the
performance of a generation plant, is calculated by dividing the
AEP for the theoretical annual production (product between
nameplate capacity Pn and ny).

CF � AEPgross

Pnpny
[%] (11)

RESULTS AND DISCUSSION

Performance of Regional Climate Model
Simulations
The frequency discrepancies (FD) between the ensemble of the
RCM simulations and the ERA5 reanalysis data are given within
Figure 8A, in which black dots individuateWTs for which at least

FIGURE 7 |Quantile-quantile plots of the comparison between the ERA5 and the seven analyzed regional climate simulations at the seven offshore wind farms. The
quantiles range from 2.5th to 99th, as indicated at the top of each panel.

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 88114610

Susini et al. Offshore Wind Energy Climate Change

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


6 simulations out of 7 agree in the sign of the discrepancy.
Figure 8B reports the ranking of the seven RCM simulations
accordingly to the values assumed by the calculated statistical
indexes (SI, RE, and stdSI) for the annual scale only. The values of
the statistical indexes for all the temporal scales (annual, winter,
and summer) are listed in Table 3. Smaller values of the indexes
indicate a higher degree of similarity with ERA5 and hence a
better performing simulation (Perez et al., 2014).

Within Figure 8A, we note that the overestimation in the
frequency of occurrence of a specific WT is offset by
underestimation found in WTs representing similar situations.
The same mechanism goes for the opposite. For example, WT36
represents a weak low-pressure system over Far Øer, associated with
a dailymean wind speed up to 15m/s. It describes 43 daily situations
of the ERA5 database, while according to the ensemble of RCMs, its
frequency of occurrence is higher (+71%, 73 days). This
overestimation is explained by a decrease in the frequency of
occurrence of similar situations (WT11 and WT79, respectively

−12% and −29%), which makes the overall number of days
representing this particular synoptic situation comparable
between the two datasets (214 days for ERA5, 203 for the
ensemble of RCM simulations). Similarly, WT98 is characterized
by a pressure gradient increasing towards NE. It represents 60 daily
situations of the ERA5 database, while only 41 occurrences (−31%)
are found for the ensemble of the RCMs. However, the frequency of
occurrence of the similar WT87 is slightly overestimated by the
ensemble of the RCMs with respect to ERA5 (116 daily situations
against 102), which makes the total number of daily situations
associated to this synoptic situation comparable between the two
datasets (162 for ERA5 and 157 for the ensemble of the RCMs). Such
a compensation mechanism is verified for various groups of WTs
representing similar situations and proves the increased ability of the
ensemble of the RCM simulations over the individual members in
reproducing the historical information from the ERA5 reanalysis.

Moving to the skill assessment of individual model
simulations, frequencies obtained from RCA4(EC-EARTH),

FIGURE 8 | Frequency discrepancies (FD) between the ensemble of the regional climate simulations and the ERA5 reference pattern (A). Black dots stand for
robustness of FD between model simulations. SI, RE, and stdSI metrics of each of the seven regional climate simulations analyzed (B).

TABLE 3 | Performance indexes (SI, RE, stdSI) calculated for each RCM simulation at winter, summer, and annual scale. Best performance in terms of SI and RE is shown by
RCA4(EC-EARTH) (annual and winter scale) and CCLM(MIROC5) (summer scale).

GCM-RCM
Chain

SI RE stdSI

winter summer annual winter summer annual winter summer annual

CCLM4-8-17(CanESM2) 0.557 0.786 0.248 0.547 0.539 0.186 0.552 0.743 0.288
CCLM4-8-17(MIROC5) 0.493 0.438 0.204 0.387 0.279 0.163 0.458 0.626 0.287
RCA4(CNRM-CM5) 0.486 0.603 0.215 0.393 0.424 0.172 0.492 0.680 0.267
RCA4(EC-EARTH) 0.436 0.493 0.186 0.359 0.287 0.144 0.509 0.618 0.270
RCA4(HadGem2-ES) 0.445 0.706 0.279 0.360 0.480 0.203 0.581 0.665 0.292
RCA4(IPSL-CM5A) 0.596 0.912 0.245 0.529 0.695 0.185 0.595 0.719 0.294
RCA4(MPI-ESM-LR) 0.550 0.487 0.216 0.435 0.344 0.166 0.579 0.573 0.317
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RCA4(MPI-ESM-LR), RCA4(CNRM-CM5), and
CCLM(MIROC5) are generally more similar to the ERA5
reference pattern compared to CCLM(CanESM2), RCA4(IPSL-
CM5A), and RCA4(HadGem2-ES). Indeed, they rank in the first
four positions of both the annual (Figure 8B) and summer (not
shown) time scale. We note the good skill of RCA4(HadGem2-ES)
in reproducing winter patterns despite its low performance at the
annual and summer scale. The best performing simulation is

RCA4(EC-EARTH), which ranks in the first position for both
annual and winter timescale, followed by RCA4(CNRM5-CM5)
and CCLM(MIROC5) which is found to be the best in
reproducing summer patterns. In this sense, no clear
preference about which of the two regionalization schemes
performs better can be expressed due to the fact that only two
regional models have been considered. The difference between
the top-four model simulations and the remaining appears
evident when considering summer patterns, with the worst-
performing simulation (RCA4(IPSL-CM5A-MR)) assuming a
SI value approximately double with respect to the best-
performing ones (Table 3, column 2).

Although RCA4(EC-EARTH) and CCLM(MIROC5) show a
better capacity to reproduce inter-annual variability (they
rank in the top three for all the time scales considered),
differences between simulations are lower for the stdSI index.
This finding oriented our choice of considering all seven
simulations for the ensemble mean, supported by the
notion that a higher number of models allows a better
characterization of the uncertainty. The validity of this
choice is ensured through the application of the IQR
method for outlier detection, a common procedure in
statistical software. We verify that all the values assumed
by the indexes lay in the interval between the first quartile
minus 1.5 times the interquartile range (IQR) and the third

quartile plus 1.5 IQR (except for RCA4(MPI-ESM-LR) in
stdSI).

Wind Climate Projections of Future
Changes
Besides providing a validation benchmark for the RCM
simulations, the WT classification allows us to explain the

FIGURE 9 | Positive (yellow) and negative (blue) frequency variations
between the future time slice 2081-2100 under RCP8.5 scenario and
historical climate from the ensemble of the regional climate simulations. Black
dots stand for change consistency.

FIGURE 10 | Projected variations in mean wind speed (A), 99th percentile wind speed (B) for the period 2081-2100 under RCP8.5 scenario. Black dots stand for
results robustness.
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future evolution of atmospheric circulation patterns. Indeed, the
variations in the frequency of occurrence of similar weather types
let us estimate the differences in the mean and extreme statistics
of the distribution of the wind speed.We calculate the variation in
the frequency of the i-esimWT (FVi) for all the RCM simulations
analyzed by comparing the historical (pi_hist) and the projected
(pi_rcp85) probability of occurrence.

FVi � pi rcp85 − pi hist

pi hist
(12)

Figure 9 shows the sign of the ensemble mean of the projected
frequency variations, where yellow and light blue squares
represent respectively frequency increases and decreases. Black
dots individuate WTs characterized by robust changes (for which
at least 6 simulations out of 7 agree on the sign of the variation).

We find that WTs representing similar synoptic situations
often show a similar pattern of change. For example, situations
characterized by intense low-pressure systems located in the NW
part of the domain (WT3, WT80, WT90, WT94, WT99, WT100,
WT93) are expected to increase in their occurrence by a 10%
factor (+31 days in 20 years). On the other hand, situations
characterized by less intense pressure gradients (WT36, WT11,
WT79, WT64, WT65, WT71) will likely reduce their occurrence
in the future.

These modifications at the synoptic scale have a direct impact
on mean and extreme climatology. Indeed, the variations in the
frequency of occurrence of similar weather types let us estimate
the differences in the mean and extreme statistics of the
distribution of the wind speed. Figure 10A shows the mean
wind speed difference between the future and historical climate. A
southeastward gradient appears, with the most intense mean
wind speed decrease (−0.6 m/s) in the NW part of the domain
and near-zero values off the Danish coasts. A maximum increase
of 0.4 m/s is found for the 99th percentile wind speed
(Figure 10B) along the continental coast of Europe and in
Skagerrak, in accordance with the expected frequency increase
ofWT3,WT80,WT90,WT93,WT94,WT99, andWT100, which
are all characterized by strong winds in those areas. A reduction
of the w99 of about 0.5 m/s over the offshore regions of Scotland
and Norway is observed. We note that while robustness is
guaranteed within the NW part of the domain for the changes
in mean wind speed, the extreme wind speed map exhibits
consistency off the coasts of Germany, Denmark, Netherlands,
and eastern France.

Wind Energy Indicators Variations
The results of the calculations described in Wind energy
indicators Section are contained within Table 4 for historical
and future climate conditions under the RCP8.5 scenario. We
evaluate the mean ensemble of the changes in the energy
indicators calculated at the hub height as the difference
between end-century (2081-2100) and reference historical
(1985-2004) period.

The analysis of mean wind speed at hub height highlights a
slight but robust decrease in the order of 0.1 m/s for all the OWFs
considered, more intense for the British plants (biggest decreaseT
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for HG). The same spatial distribution characterizes wind power
density, which is expected to decrease by a factor up to 4% atHG.
Projected variations in the 99th percentile wind speed are positive
for all the OWFs located along the English Channel and the coast
of continental Europe (with the highest value of 0.3 m/s registered
for DT), and almost null for BB and BBext plants. These findings
are consistent with the increase in the frequency of WTs
dominated by low-pressure systems in the NW part of the
domain. The reduction of the operation time (OT), which
represents the number of hours in which each turbine
operates, is greater at BBext (almost -1%), while it is almost
null for NO and DT.

Moving to the indicators more closely related to electric
performances of a power plant, from the analysis of the gross
energy yield (Figure 11A) it emerges that the BBext plant,
equipped with large 8 MW Vestas turbines, is characterized by
the biggest production. It is expected to experiment a significant
decrease by the end of the century, passing from 36.7 Gwh to 35.7
Gwh (−2.7%), similarly to HG (−2.8%). The remaining plants
show a limited decrease in the annual energy production, with
reductions between 1 and 2%. The capacity factor (Figure 11B), is
directly proportional to the gross energy yield, and consequently,
it decreases by the same percentage quantity as the AEP. Higher
values are shown in correspondence of DT plant both for
historical (70.2%) and for RCP8.5 (69.5%) period, meaning
that this plant has a better performance with respect to ones
employing larger turbines in terms of the ratio between generated
and installed power. We notice however that the confidence
intervals showed in Figure 11 indicate a large uncertainty in
the projected changes. Nevertheless, the statistical significance of
the change in the capacity factor for the BB, BBext, HG and DT
wind farms is higher than 65%.

The overall reduction observed for the energy performance
indicators is a direct consequence of the observed decrease in the
mean wind speed and operation time. The simultaneous increase

in extreme events (w99) with consequent shutoff of the generators
to avoid damages further contributes to the reduction observed in
the energy performance indicators. The increase detected in the
w99 suggests that future research may be aimed to understand the
projected changes in wind storms.

CONCLUSION

In this study, we investigate projected changes in the offshore
wind resource over the North Sea and the Irish Sea region both at
a spatial and local scale by calculating relevant indicators for the
wind energy industry. With this aim, a methodology to assess the
performance of regional climate model simulations (RCM) in
describing synoptic climatology over the target region is applied.

The Weather Type (WT) classification is developed through a
data mining approach based on ERA5 reanalysis sea level
pressure and directional wind speed fields. The skills of the
simulations in reproducing historical climatology is assessed
through the calculation of frequency-based statistical indexes
(SI, RE, stdSI). The best performing simulation is RCA4(EC-
EARTH), which is characterized by the lowest values of both SI
and RE at annual and winter scale and ranks in the top three
positions for the remaining indexes (SI and RE at summer scale,
stdSI), followed by RCA4(CNRM5) and CCLM(MIROC5), which
is the best in reproducing summer season patterns. The values of
the indexes show low variance for all the simulations analyzed,
especially as regards the interannual variability (stdSI). Indeed,
the quasi-totality of them lay in the range of the first/third quartile
minus/plus 1.5 times IQR. The only exception is represented by
RCA4(MPI-ESM-LR) for the stdSI metric. Hence, the choice of
considering the seven simulations without disregarding any of
them for the ensemble approach appears motivated. A more
structured model ensemble including members simulated with
several RCMs (we use only simulations from two regional models,

FIGURE 11 | Future (orange) and historical (blue) ensemble mean values of Annual Energy Production (A) and Capacity Factor (B) for all the offshore developments
analyzed. Black dots indicate the range individuated by the mean value ±1.5 times the standard deviation.
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i.e., RCA4 and CCLM-4-8-17) is required to analyze the sensitivity
of the downscaling scheme. Indeed, Fernández et al. (2019) found
that different RCM models driven by the same GCM provide
shifts in the projected changes for temperature and precipitation
variables for mid-term future slices. They, however, suggest that
representative concentration scenarios are the principle
uncertainty source in the long term. Accordingly, Toimil et al.
(2021) show that the uncertainties related to the description of the
future concentration pathways are the main uncertainty
contribution for distant future time slices in climate change
impact studies. In any case, the GCM-RCM chains used in
this study fulfill the institutional democracy criterion that
Leduc et al. (2016) propose as a first proxy to obtain an
independent subset of simulations.

A comparison between the ensemble of the RCM simulations
and ERA5 frequency maps for the historical period suggests a
good performance of the climate simulations. The comparison
however shows frequency discrepancies between the climate
simulation and ERA5 historical data for similar atmospheric
circulation patterns. These discrepancies are related to the
location of the high/low pressure systems, intensity of
gradients between isobars, small regions with specific wind
direction and intensity patterns, etc. The analysis of future
projections exhibits a tendency towards an increase in the
frequency of WTs dominated by low-pressure systems located
in the NW part of the domain, characterized by high wind speed
in the British Channel and off Norway and Irish coasts. This
finding agrees with the projected increase in the proportion of
westerly winds found in several authors (Ruosteenoja et al., 2019).
Mean wind speed is expected to decrease up to -0.5 m/s off the
Atlantic coast of Scotland and Ireland. As WPD has a cubic
dependence on mean wind speed, this finding is consistent with
the reduction of the mean WPD observed in Zheng et al. (2019)
for RCP scenarios 2.5 and 4.6. This evidence would suggest a
negative projected trend for the wind resource in this area,
regardless of the concentration scenario adopted as forcing for
the GCM. Furthermore, we note that in this region the considered
simulations show a good agreement, as at least 6 out of 7 agree on
the sign of the projected change. On the other hand, changes are
not significant in the central part of the domain, as the sign of the
modifications varies largely between simulations. This finding is
consistent with the conclusions of Carvalho et al. (2017), who
applied a Mann-Whitney test with a 5% significance level. A
tendency towards an increment of extreme conditions is
highlighted along the coast of continental Europe, consistently
with the findings of McInnes et al. (2011).

ERA5 dataset is locally validated against in situ observations
at seven operating offshore wind farm sites, confirming the
conclusions of previous studies (Olauson, 2018; Jourdier, 2020;
Sharmar and Markina, 2020) about its quality. We hence
employ it for the bias correction of historical and future
time series provided by the RCM simulations at the
offshore wind farm sites. The corrected time series are then

used to evaluate projected variations of impact indicators for
the wind energy industry. In accordance with the results of the
spatial analysis, a mean wind speed reduction in the order of
0.1 m/s is found for the ensemble of the seven RCMs in
correspondence of all the locations analyzed. The maximum
decrease (−2%) is shown for the Humber Gateway plant, while
smaller reductions (less than −1%) characterize the plants
located in the eastern part of the domain (Egmond and Zee,
Nordsee One and Dan Tysk). The reduction at Burbo Bank
(−1.7%) matches with the results of Doddy Clarke et al. (2022),
who found a decrease between 0.5 and 2% at this windfarm for
the same temporal horizon (2081-2100) and RCP scenario.
Projected modifications at the local scale are consistent with
the reduction trends for the western part of the domain found
in several studies (Carvalho et al., 2017; Zheng et al., 2019) and
previously discussed A similar decrease characterizes the wind
power density for all the OWFs analyzed, while extreme wind
speed is expected to increase for the eastern OWFs. We find a
reduction of the operation time up to a 1% factor, again with
reduced differences between the eastern and western part of
the domain, in agreement with the increase in the number of
hours below the cut-in threshold found by Moemken et al.
(2018). These modifications affect energy production by
causing a reduction of the electrical indicators analyzed.
The reduction in the CF at Burbo Bank (−2.9%) and at
Burbo Bank-ext (−2.7%) is comparable with the decrement
provided by Doddy Clarke et al. (2022), with small differences
imputable to the different model turbines considered. The
most significant AEPgross decrease (up to almost 3%) is found
for the plants located around the United Kingdom. The
uncertainty in the estimated projected changes of the AEP
and CF indicators is however not negligible, especially for the
wind farms closer to the southern North Sea coast. A larger
number of members would allow a more robust study of the
significance of the changes. Taking into account changes
relating the wind technology (i.e. the turbine models) and
the impact indicators (e.g. including generation losses in the
capacity factor estimate) may be considered in further studies
to investigate the economic climate change impact on the
design of offshore wind farms.
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