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The demand projection of power grid materials can furnish an effective support for the
management of power grid materials. Due to variations in the data distribution of individual
districts and diversity of materials, a single forecasting model is incapable of accurately
predicting the demand for all types of materials. Moreover, for the data-driven network
model, the effect of the model has a strong correlation with the quality of its input
parameters. To address these problems, this study proposes a power grid material
demand forecasting model based on feature selection and multi-model fusion. The first
step in this regard is the usage of Pearson coefficient in the selection of main characteristic
parameters from original parameters and using them as the input of the network model.
Then, stacking fusion algorithm is used to fuse multiple basic models. At last, the proposed
method mentioned in this study is tested on a real dataset. The results depict that the
proposed method can fully integrate the advantages of various basic models with higher
accuracy and generalization ability.
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INTRODUCTION

A power grid system is one of the preeminent pillars for national economic development. Any sort of
issue in power equipment might cause large-scale power outage of the power grid, thus leading to
huge negative impacts. At present, the material management of power grid has several problems
including “the material data fragmentation, material reserves mechanization, and main
responsibility ambiguity.” The accuracy, correctness, and integrity problems existing in most of
the historical demand data of electric power materials, which leads to the demand of material, cannot
be predicted (Lai et al., 2016; Oliveira et al., 2021),. thereby causing inadequate refinement of material
management. Therefore, in order to achieve higher efficiency and precision of material management,
the material demand forecasting has been researched deeply throughout the world.

According to the references (Pan et al., 2016; Wang and Gu, 2016; Zhao et al., 2017; Wang et al.,
2019; Dong et al., 2020; Ming et al., 2021), most of the prediction models for power grid materials are
presently using a single model structure having the problem of either over-fitting or under-fitting and
also have poor generalization for different scenarios. However, the data model requires a high quality
of input parameter information. As a result, the input parameter information should be screened.
According to the reference (Yang et al., 2022a), this research is a pioneer study for SCUC problems
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that proposes an expanded sequence-to-sequence (E-Seq2Seq)
based data-driven SCUC expert system for dynamic multiple-
sequence mapping samples; it can accommodate the mapping
samples of SCUC and consider the various input factors that
affect SCUC decision-making, possessing strong generality, high
solution accuracy, and efficiency over the traditional method.

Aiming at the aforementioned problems, this study proposes a
power grid material prediction model based on feature selection
and multi-model fusion. First, the Pearson coefficient will be used
to calculate the relevant characteristic parameters. After
removing the irrelevant parameters, the important
characteristic parameters related to the problem will be
extracted as the input of the subsequent network model.
Afterward, the multiple base models will be fused using
stacking fusion. The basic model will utilize gradient boosting
decision tree (GBDT), extreme gradient boosting tree (XgBoost),
and long- and short-term memory network (LSTM), portraying
excellent regression learning ability. The multi-model fusion
network is able to fulfill the advantages of each basic model,
through high prediction accuracy as well as improvement in the
generalization ability.

STATISTICAL ANALYSIS OF POWER GRID
MATERIAL FAULTS AND DEFECTS

First of all, this study presents a statistical analysis of the defect
levels of a certain bureau of China Southern Power Grid
Corporation from 2015 to 2019. The defect levels can be
categorized into four types: emergency, major, general, and
others accounting for 46, 9, 42, and 3%, respectively. Based on
various types of defects, the current material demand can be
bifurcated into three categories, namely, daily materials (defect
level is general), major defect materials, and emergency defect
materials (Gong, 2013; Ke et al., 2017; Dong, 2018; Chai, 2020;
Shen and Raksincharoensak, 2021; Yang et al., 2022b).

The main factors responsible for these defects include the
quality of the product design, the quality of construction, the
quality of operation and maintenance, the service time of
products, the overload state of equipment, and the natural
environment.

THE MODEL OF POWER GRID MATERIAL
DEMAND

Gradient Boosting Decision Tree Algorithm
The gradient boosting decision is made to superimpose M sub-
trees to achieve regression prediction:

F(x, w) � ∑M
m�0

αmhm(x, wm) � ∑M
m�0

fm(x, wm). (1)

In the formula shown previously, x represents the input
sample, wm represents the model parameter, h represents the
classification regression tree, and α signifies the weight of each
tree. The core concept of GBDT algorithm is based on the

weighted sum of multiple weak learners (Chen et al., 2015;
Son et al., 2015; Sheridan et al., 2016; Rao et al., 2019; Wu
et al., 2020; Yang et al., 2021a; Yang et al., 2021b; Shen et al.,
2021). This study initializes several weak learners in the
beginning:

F0(x) � argmin
c

∑N
i�1
L(yi, c). (2)

Then, building M trees, m � 1, 2, . . . ,M:

1) For the sample i � 1, 2, . . . , N, the negative gradient
corresponding to the number M tree is calculated by
pseudo-residual:

rm,i � −[zL(yi, F(xi))
zF(x) ]

F(x)�Fm−1(x)
. (3)

2) For the sample i � 1, 2, . . . , N, the number M regression tree
is obtained by using data (xi, rm,i), and its corresponding leaf
node region is Rm,j, and j � 1, 2, . . . , Jm.

3) For Jm leaf nodes region j � 1, 2, . . . , Jm, the best fitting value
is calculated as follows:

Cm,j � argmin
c

∑
xi∈Rm,j

L(yi, Fm−1(xi) + c). (4)

4) Renewing the learner Fm(x), we get:

Fm(x) � Fm−1(x) +∑Jm
j�1

cm,jI(x ∈ Rm,j). (5)

5) The final expression of the strong learner FM(x) is:

FM(x) � F0(x) + ∑m
m�1

∑Jm
j�1

cm,jI(x ∈ Rm,j). (6)

The model of GBDT has many parameters, such as the
number of base learners, the learning rate, the number of
subsamples, and the maximum depth of each base learner
(decision tree). Due to the limited number of defect data
samples, the maximum depth of the tree should not be
too deep.

Extreme Gradient Boosting Tree
Extreme gradient boosting algorithm is an ensemble learning
algorithm based on gradient boosting. It calculates the final
regression result by integrating multiple basic trees. It has
advantages pertaining to high efficiency and accuracy in
regression tasks. On the basis of GBDT, XgBoost
introduces the loss function of the second derivative of the
predicted results. It adds the tree model complexity into the
objective function as a regular term. This can prevent over-
fitting and improve the generalization performance of the
model. In this study, the XgBoost prediction function is
constructed as follows (Malhotra et al., 2015; Sikora and
Al-Laymoun, 2015; Xu et al., 2015):
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ŷi � ϕ(xi) � ∑K
k�1

fk(xi), fk ∈ F. (7)

Since the model is additive, the current prediction results need
to be added to calculate in each iteration.

L(t) � ∑n
i�1
l(yi, ŷ

t−1
i + ft(xi)) +Ω(ft). (8)

The overall objective function is:

Lϕ � ∑
i

l(ŷi, yi) +∑
k

Ω(fk). (9)

The Ω(f) is the regular term, which is expressed as:

Ω(f) � γT + 1
2
λ‖w‖2. (10)

.

Taylor expansion of L(t)is:

�L
t � ∑n

i�1
[gift(xi) + 1

2
hif

2
t(xi)] + γT + 1

2
λ∑T
j�1
w2

j

� ∑T
j�1
⎡⎢⎢⎢⎣⎛⎝∑

i∈Ij

gj
⎞⎠wj + 1

2
⎛⎝∑

i∈Ij

hj + λ⎞⎠w2
j
⎤⎥⎥⎥⎦ + γT.

(11)

Then, the ideal weight of leaf node j in round t should be

wp
j � −

∑
i∈Ij

gi∑
i∈Ij

hi + λ
. (12)

The quality score of the tree in round t is marked by the
following formula:

�Lt(q) � −1
2
∑T
j�1

⎛⎝ ∑
i ∈ Ij

gi
⎞⎠2

∑
i∈Ij

hi + λ
+ γT. (13)

For all leaf nodes to be split in this round, IL and IR represent
the set of assumed leaf nodes after splitting, so the loss reduction
after splitting can be measured by the following formula
illustrated as:

Lsplit � 1
2

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
( ∑

i ∈ IL

gi)2

∑
i∈IL

hi + λ
+
( ∑

i ∈ IR

gi)2

∑
i∈IR

hi + λ
−
( ∑

i ∈ I
gi)2

∑
i∈I
hi + λ

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ − γ. (14)

Compared to GBDT, XgBoost algorithm is a further
optimization design, which can reduce model variance through
row sampling. Also, it reduces over-fitting through learning rate
setting. Moreover, it controls the tree growth through early
stopping to avoid over-fitting.

Long- and Short-Term Memory Network
Figure 1 illustrates the unit structure of LSTM. At every
moment t, the weight calculated by LSTM is linked back to
itself. The input to the LSTM unit is the previous state ht−1 and
the current input xt. The function of storing and forgetting
information is realized through four fully connected neurons,
namely, ft, it, ~ct, and ot. Specifically, the forgetting gate ft

determines how much previous information is transmitted
forward; input gate it controls the input information level;
the forgetting gate ot determines the output of this time step
(Singh, 2017; Hu et al., 2018). The formula for calculation is
described as follows:

1) Input the sequence value xt at time t and the hidden layer state
ht−1 at time t-1, and determine the discarded information
through activation function. At this time, the output is as
follows:

ft � σ(Wf · ht−1 +Wf · xt + bf). (15)
In the previously stated formula, ft is the result of the

forgetting gate state, and Wf and bf are the residual weight
matrix and bias, respectively. σ is the activation function, usually
the tanh or sigmoid function.

2) The input gate state formula is illustrated as follows:

Confirm that the Data Availability statement is accurate. Note
that we have used the statement provided at Submission. If this is
not the latest version, please let us know

it � σ(Wi · ht−1 +Wi · xt + bi); (16)
~ct � tanh(Wc × ht−1 +Wc × xt + bc); (17)

ct � it+~ct + ft+ct−1. (18)
In the aforementioned formula, it is the result of the input gate

state, and ~ct is the input unit state at time t.Wi andWc are input
gate weight matrix and input unit state weight matrix, repectively,
and bi and bc are the corresponding input gate bias and input unit
state bias, respectively. tanh is activation function, and + stands
for multiplying by elements.

FIGURE 1 | Unit structure of LSTM.
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3) Output information of LSTM is determined by the output gate
and unit state as shown in the following equation:

ot � σ(Wo · ht−1 +Wo · xt + bo); (19)
ht � ot+tanh(ct). (20)

In the formula, ot is the output gate state result, andWo and bo
are the weight matrix and output bias, respectively.

Stacking Fusion Algorithm
Stacking fusion algorithm reduces the generalization error of
the whole model and improves the classification accuracy of
the model via building a two-layer learner. This makes the
second-layer model to learn the classification results of the
first-layer model. Among them, T basic classification models
are first used in the first layer. After inputting the original data,
a result with the same data size is outputted as the input of the
second-layer network. The output of each basic learner is used
as input when training the second-layer learner, and the
function of the second-layer learner is to integrate the
output of the basic learner.

Power Grid Material Prediction Based on
Pearson Feature Selection and Multi-Model
Fusion
In this study, the integrated feature scoring model is used to
evaluate, and the total score is averaged to avoid the
limitations of single feature selection and finally optimizes
the effect of feature selection. With the help of classical
Pearson correlation coefficient analysis and selecting high
linear correlation attributes, we can roughly find out the
relevant attribute categories that have a great impact on
material defects. The Pearson correlation coefficient
formula is shown in Eq. 21 and Eq. 22. Through this
formula, Pearson correlation coefficient can be obtained by
dividing the covariance by the standard deviation of two
related variables, which is used to make up for the weak
performance of the covariance value in the correlation
degree of random variables.
.

cov(x, y) � ∑i�1
n (xi − x)(yi − y)

n − 1
; (21)

Pearson � corr(x, y) � cov(x, y)
σxσy

� E[(x − μx)(y − μy)]
σxσy

.

(22)
The range of the Pearson coefficient is [−1, 1]. The larger the

absolute value is, the more linearly related the two random
variables are. Pearson � 1 means that the random variables are
completely positively correlated, Pearson � −1 means that the
random variables are completely negatively correlated, and
Pearson � 0 means that there is almost no linear correlation

between the two variables [Feng et al., 2019; Li et al., 2021a; Li et
al., 2021b].

EXAMPLES ANALYSIS

The sample dataset provided by the power supply bureau of
China Southern Power Grid Corporation was selected for training
and testing. The defect data from 2015 to 2019 were initially used
to train the model, and then the data from 2020 were tested to
verify the prediction effect of the model.

The Method of Model Evaluation
In order to comprehensively evaluate the validity and accuracy of
the proposed method in power grid material forecasting, the
following two evaluation indexes are selected:

The value of the root mean square error (RMSE) between the
real value of the test set and the predicted value of the model is
expressed as follows:

RMSE �
�����������∑T

i�1(~xi − xi)2
T

√
. (23)

The average relative error between the real value and the
predicted value, Err, is expressed as:

Err � 1
T
∑T
i�1

∣∣∣∣∣∣∣~xi − xi

xi

∣∣∣∣∣∣∣ × 100%. (24)

The Result of Examples Analysis
In this study, the prediction results of emergency defect materials
are compared and analyzed, taking overhead wire as an example.

The number of sub-trees of XgBoost is set at 300, and the
learning rate is kept at 0.04, while the penalty factors γ and λ
of tree model complexity are taken as 0.01 and 0.9,
respectively. Furthermore, the number of sub-trees of
GBDT too is set at 300 along with the learning rate at
0.04. The network layers of four kinds of LSTM networks
(LSTM-1, LSTM-2, LSTM-3, and LSTM-4) are set at 3, 3, 4,
and 4, respectively; the number of corresponding neurons is
set to 128, 128, 256, and 256, respectively, and the learning
rate is set at 0.01.

TABLE 1 | Comparison of different basic models and fusion model algorithms for
emergency defective material prediction.

Model and method RMSE Err (%)

XgBoost 11.2 41.2
GBRT 8.9 33.4
LSTM-1 13.4 29.9
LSTM-2 15.6 38.4
LSTM-3 9.7 43.1
LSTM-4 7.8 40.7
Multi-model fusion 6.6 27.5
Multi-model fusion with feature optimization 4.7 18.3
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Table 1 shows the prediction results of different base models,
multi-model fusion, and multi-model fusion with feature
optimization for emergency materials. The results of the basic
model are obtained directly from their own network without the
second layer fusion of the proposed network.

The results of the evaluation index reveal that a single model
cannot achieve the best effects. After using the multi-model
fusion algorithm, it can make full use and give full play to the
prediction advantages of each basic model in one aspect.
Moreover, it improves the overall prediction accuracy of the
algorithm. It also avoids the phenomenon of over-fitting along
with enhanced stability of prediction. On the basis of multi-model
fusion, this study also uses Pearson coefficient to optimize the
input parameters and selects the most important characteristic
parameters as the input of the network. Therefore, after the
feature optimization of the original input parameters, the main
influencing feature parameters can be selected. Following this, the
feature parameters of irrelevant factors can be eliminated, so that
the subsequent learning model can better fit the historical data.
Therefore, based on the aforementioned observations, it can be
concluded that the multi-model fusion algorithm of feature
optimization proposed in this study has high accuracy in the
prediction of power grid materials.

CONCLUSION

Focusing at the problem of material prediction in the power
system, a prediction method based on feature selection and

multi-model fusion is proposed in this study. Starting by
calculating the Pearson coefficient, the irrelevant parameters
are removed from the original parameters. The main
characteristic parameters are then selected as the input of
the subsequent network model. Furthermore, three excellent
data-driven models are identified as the basic model followed
by the application of the stacking method for fusion. The
fusion algorithm can not only make full use of the advantages
of each basic model to improve the prediction accuracy but
also improve the generalization ability of the model. Hence,
the predicted power grid material demand can provide an
effective data support for the management of power grid
materials.
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