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With the increasing penetration of new-type loads such as electric vehicles and hydrogen
fuel vehicles in urban power grids, the peak-to-valley load difference increases sharply,
and a multi-energy coordination model is desirable. This article proposes a day-ahead
operation model of an urban energy system considering traffic flows and peak shaving,
which can positively contribute to multi-energy complement and low-carbon emission.
The proposed model minimizes the total cost of electricity and gas by optimizing the
charging and discharging strategies of energy storage, in which the output of the wind
turbine and energy management of the energy hub are adaptively adjusted. The urban
energy system is represented by a second-order cone (SOC) energy flow model, and
hence, the optimization problem is modeled as a mixed integer SOC programming
(MISOCP). Finally, test results on an integrated urban energy network indicate that the
energy storage and multi-energy coordination can alleviate the peak load cutting and
valley filling. The relationship between urban grid operation cost and peak-valley difference
is also discussed. The maximum utilization of renewable energy sources using gasoline
vehicles has been presented in this study to illustrate cost and emission reductions for a
sustainable integrated electricity and transportation infrastructure.

Keywords: an urban energy system, peak shaving, traffic flows, multi-energy complement, low-carbon operation

1 INTRODUCTION

1.1 Motivation

In recent years, energy consumption and global environmental problems have become increasingly
serious, and the energy transition toward a low-carbon energy system is highly desirable
(Zhao et al., 2017). The energy internet provides great potential for reliable power supply and
an improved energy efficiency by integrating various energy production/conversion components,
including renewable energy sources (RESs), energy storage systems (ESSs), hydrogen fuel
vehicles (HVs), and electric vehicles (EVs) (Strasser et al., 2015; Meng and Wang, 2017; Yang and
Fang, 2017). At the same time, interactions between urban electrical, transportation, and natural
gas systems have become increasingly common due to the utilization of coupling components such
as microturbines, combined heat and power (CHP), and power to gas units (Mancarella, 2014;
Shabanpour-Haghighi and Seifi, 2015). The coupling of urban multi-energy networks positively
contributes to the improved energy utilization efficiency, multi-energy complement, and the

construction of a low-carbon sustainable energy system (Xu et al., 2020).
Traditionally, coupled energy systems have been operated and optimized independently

(Chen et al.,, 2014). The urban distribution network that is inactive generally has limited ability to
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regulate power flow, which results in the problem of a large
difference between the daily peak and valley of the net
load (Uddin et al., 2018). On the other hand, the traditional
energy storage has relatively small storage capacity with a
high investment cost, and hence, it is difficult to store energy
effectively on a large scale and for a long time (Zhao et al., 2020).
Considering the fact that the traditional urban distribution
network cannot fully meet the electricity demand of new-type
loads such as EVs and HVs, the development of day-ahead co-
optimization of multi-energy systems is of considerable interest.

Owing to the aforementioned considerations, the present
work develops a day-ahead co-optimization strategy for urban
energy networks considering traffic flows.

1.2 Literature Review

1.2.1 Research on Power-Transportation
Coordination

EVs and HVs have become a promising alternative to gasoline
vehicles (GVs) for decarbonizing the transportation sector
and combating climate change (IEA, Global EV Outlook, 2020).
An integrated demand response framework is designed to
regulate flexible resources in both networks through optimal
road tolls and electricity tariffs in Lv et al., 2021a. In Rotering
and Ilic (2011), the problem of growing peak load and grid
overloading is addressed based on a forecast of future electricity
prices, and the dynamic programming algorithm is employed
to find the economically optimal solution for the vehicle owner.
Hu et al. (2016) present an integrated optimization framework
for battery sizing, charging, and on-road power management
in plug-in hybrid EVs. The maximum utilization of RESs using
GVshasbeen presented in Saber and Venayagamoorthy (2011) to
achieve cost and emission reductions, which contributes to a low-
carbon integrated electricity and transportation infrastructure.
We note that most works consider the coupling between the
transportation system and the power grid. However, the coupling
between the power, natural gas, and the transportation system has
not been well considered.

1.2.2 Coordinated Optimization of Multi-Energy
Systems

A day-ahead optimal scheduling of the urban energy system
is proposed by Jinetal,2016, in which the flexible and
reconfigurable topology of power distribution networks is
considered. The joint and unified optimization decision of
coupled power systems and natural gas systems is analyzed
in Martinez-Mares et al. (2011). Correa-Posada and Sénchez-
Martin (2015) determine the dynamic optimal operation strategy
of the electricity-gas integrated energy system, which includes a
transient natural-gas flow model. An integrated electricity-gas
system with steady-state energy flow models considering the
uncertainty of wind power is proposed in Gao and Li (2020).
Additionally, a new Benders decomposition-based algorithm is
proposed, which improves the solution efficiency for non-convex
models (Gao and Li, 2021). A new external dependency model
based on the energy hub (EH) is introduced to consider the
possible uncertainty in customer decision through stochastic

model processing (Neyestani et al., 2015). The stochastic optimal
model is investigated with the comprehensive consideration
of renewable generation and carbon-capture-based power-to-
gas technology (Lietal., 2018). However, we note that most
existing works on coordination optimization of integrated energy
systems do not consider the existence of new-type loads such as
EVs and HVs. Moreover, in most existing studies, a common
assumption is that the driving mode of EVs is known. Arrival
rates and times as well as the number of charging requests are
specified in advance in a deterministic or stochastic manner,
which can be determined from data-driven methods or queuing
theory or modeled with probabilistic models through Markov
decision processes. This assumption is reasonable for set-level
research, such as residential parking management or a single CS
management. However, it may not be appropriate if the system-
level interdependency is under investigation, which is proposed
in this article.

1.3 Contribution of This Study

To fill the research gaps summarized above, our model makes the
following contributions:

1) We propose a mixed-UE traffic flow model based on
an urban transportation system and divide the overall
vehicular flows into five categories: GV traffic flow, EV
traffic flow, HV traffic flow, HV charging flow, and EV
charging flow. Our model, hence, accurately simulates the
distribution of EVs and HVs in the urban transportation
network.

2) We develop a day-ahead optimal dispatch of an urban
energy system considering the transportation-network
operation model, which includes the electric-gas co-
optimization and the impact of traffic flows. Our model
positively contributes to multi-energy complement and
low-carbon operation. Moreover, the optimal energy
management of EHs reduces the peak-valley difference
caused by increasing penetrations of new-type loads such
as EVsand HVs.

The remainder of this article is organized as follows: Section 2
elaborates on the mathematical model of day-ahead operation
for an urban energy system considering traffic flows. Section 3
presents the performance of the proposed optimization model.
Finally, Section 4 presents the conclusions of the work.

2 DAY-AHEAD OPERATION OF AN URBAN
ENERGY SYSTEM CONSIDERING PEAK
LOAD SHAVING

This section first presents the day-ahead electricity-gas co-
optimization for urban energy systems, which includes the
operating constraint with regard to peak load shaving. Then, the
joint optimal dispatch model considers the electricity charging
load and hydrogen charging load on the traffic side. Finally,
through the optimal control of ESS and energy management of
EH, the peak shaving and valley filling of the urban system with
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FIGURE 1| Schematic diagram of multi-energy systems.
high penetrations of wind power are realized. The multi-energy jith” = pizjt + Q?j Vi e Q"%Vij e Q" Yt e T, (5)

systems are shown in Figure 1. There are many nodes connected

to EH in the urban distribution network. EH provides hydrogen

for the hydrogen charging station on the traffic side through the

internal P2H device, meets the heat load demand through the

CHP unit, and provides power for the charging station on the

traffic side simultaneously through the converter and CHP unit.
Five key assumptions are made in our work:

1) We use a nonlinear day-ahead optimal dispatch model of
an urban energy system that considers the transportation-
network operation model.

2) We use fixed natural gas price information to coordinate the
operation of electricity and natural gas systems. Unfixed gas
pricing often leads to market inefficiencies.

3) We assume that the wind power output is deterministic,
without considering the randomness of wind power output.

4) We use time-of-use price to calculate the cost of purchasing
electricity in an urban energy system.

2.1 Branch Flow Model of the Urban

Power Distribution Network

Since AC power flow constraints are non-convex, the day-ahead
dispatch of the urban energy system is a non-convex optimization
problem, which is difficult to solve. The second-order cone (SOC)
relaxation based on the branch flow model is implemented to
improve its computational tractability. Therefore, we use the
branch flow model to replace the nonlinear power flow model of
the urban distribution network (Baran and Wu, 1989):

7 2 \s: d
U,=U,VieQ"*VteT, (1)
I, =, Vije Q"™ VteT, )
= inj
Z Pij,t - Z (Pki,t - Iki,tRki,t) =P,
jeM(i) keN(i) Ve Qnode VieT (3)
2 1] > >
Z Qij,t - Z (Qki,t _Iki,thi,t) = Qi,t
jeM(i) keN(i)
Uye = Uy, = 2Py Ry + QX ) + T (Rfj +X§)Vij € Qreyij e Qline,
vteT (4)

inj _
Pi,t -

sub DG L dis ch EH GF CHP P2H
Pi,t +Pi,t _Pi,t+Pi,t _Pi,t _Pi,t _Pi,t _Pi,t _Pi,t >

Vie Q"% vt e T, (6)

QY =Q"+ QP - QLVie Q"* vt e T. )

Eqs 1, 2 replace the voltage and current quadratic terms in
the original nonlinear power flow equation with new variables.
The DistFlow model for radial electricity networks is formulated
by 3-7, in which variables of the squared voltage magnitude
and squared branch current are employed. Eqs 3-5 represent the
active and reactive power flow balance. Eqs 6, 7 represent the
injected active and reactive power of the node.

The operation of the urban AC distribution network should

satisfy the following security constraints:

[ igigg vearmer. ©
Pl +Q, <, Vij € Q" Ve T, 9)
PI¢=PP¢ Vie QPN VteT, (10)

P¢ = PStan ¢Vi e QPN Vt € T, (11)
Uiin €Uy, < U, Vi€ Q% Ve e T (12)

Constraint (8) limits the transmission power capacity of
the root node. Constraint (9) represents the feeder capacity
constraint. Then, curtailment constraints with respect to
distributed generation are given in 10, 11. Constraint (12) limits
the operating range of the squared voltage magnitude.

ESS operation constraints include charge and discharge state
constraints, storage capacity constraints, charge and discharge

Frontiers in Energy Research | www.frontiersin.org

May 2022 | Volume 10 | Article 883598


https://www.frontiersin.org/journals/energy-research
https://www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

Peng et al.

Operation of Urban Multi-Energy System

power constraints, and daily allowable charge and discharge times
constraints (Gabash and Li, 2012), which are provided as follows:

Yy <1,Vie QM Ve T, (13)

it

0< Pfgh ;ych poVie QS vt eT, (14)

it —

{0 <P <ylp;

i,t" max

41 it ie QPSS vteT, (15)

Ef%, = Ef° + aP] - BPs
0.2EM™ < EFS < 0.9EP™

h h
Z Vit —Vit| < Aﬁasfx s
Lo . Vie Q™ VteT. (16)
d d > >
z |)’i,;5+1 —Yir| < Afnsi
t

Constraint (13) denotes the charging and discharging states
of ESS, and constraint (14) represents upper limit of charge and
discharge. Eqs 15, 16 are energy constraints of ESS and daily
allowable charge and discharge times constraints, respectively.
Then, the quadratic equality (5) is further relaxed into the
following SOC inequality (Taylor and Hover, 2012; Farivar and
Low, 2013):

<I.,+U,VieQ VijeQ™VteT, (17)

where ||.|, is the mathematical expression of the Euclid norm.

2.2 Model of the Energy Hub

The EH (Chen et al., 2019) depicted in Figure 1A represents the
coupling between electricity and gas networks. CHP represents
the key component of this EH, which generates electricity and
heat simultaneously, and the urban distribution network provides
the charging service for EVs through the EH. The energy
conversion efficiency between the input and output energy flows
of the EH is formulated in 18

VHcupe

- [ (] oo

it | — ee i, . 18

Lf-’,t 0 vicup,+(1—V) Nen Fi,tH

Eq. 19 represents the dispatch factor of the EH input gas flow
0<v<l. (19)

Then, the EH also needs to satisfy the following operating
constraints:

FEH,min < FftH < FEH,max’ (20)
Schp,min = VFfIH < Schp,max’ (21)
Syrmin S (L=VF <8 (22)

Constraint (20) gives the range of total gas purchases of EH.
Constraints (20) and (21) represent the production capacity of
CHP units and gas furnaces, respectively.

A - _ _ _ _ _ _ _ _ _ _
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pt ,
it | |
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FIGURE 2 | Components of the energy hub.

For a specific case, the nodes of the distribution network
are connected to some components of EH, for example, only
CHP units or gas furnaces, as shown in Figure 2. On the other
hand, the power distribution network converts electric power
into hydrogen through P2H devices to provide hydrogen supply
services for hydrogen-fueled vehicles on the traffic side (Korpas
and Holen, 2006; Pan et al., 2021). The structure of P2H is shown
in Figure 3.

The energy conversion efficiency between the input and output
energy flows of P2H is given in 23 and 24

Hel,t = ﬂeZhypftZHAt/Hc’ (23)

0<H,, <H™ (24)

Constraint (23) calculates the energy conversion efficiency
between the input and output energy flows of P2H. Constraint
(24) limits the hydrogen production.

Electricity| ‘ hydrogen
P2H
P2H
Ry [ e ] H

FIGURE 3 | Structure of P2H.
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2.3 Transportation System Modeling
The user equilibrium (UE) model has been widely used to
describe the urban transportation system in transportation
research. In the case of the given traffic network and
traffic demand, the UE model can output the current traffic
state, namely, the traffic flow distribution on the road. The
transportation system model in this article is based on the mixed-
UE traffic flow model (Wei et al., 2018). We divide the overall
vehicular flows into five categories: GV traffic flow, EV traffic
flow, HV traffic flow, HV charging flow, and EV charging flow.
The difference between traffic flow and charging flow lies in that
the former represents the route choice of EVs and HVs, while
the latter represents the charging choice of EVs and HVs. Traffic
link has regular link, charging link, and bypass link. The charging
links correspond to EV and HV queuing and charging events
in EVCSs and HVCSs, and bypass links denote bypass events at
EVCSs and HVCSs (Lv et al., 2021b; Teng et al., 2021).

The improved mixed-UE transportation model is a nonlinear
complementary problem (NCP) consisting of four constraint sets

Cons — Flow, Cons — Time
E - NCP 2
UE-NC { Cons — Cost, Cons — CP } (25)
where constraint sets are presented as follows:
Cons — Flow:
g
Z.f;ms,t =G, (26)
pe/\g
Zf;)e,rs,t = T[eqrs,t’ (27)
pers
h h
zfp,rs,t =T sy (28)
per;
ho ok
xﬁ,t = Z zf;g,rs,t(sipﬁ + z zf;)e,rs,t(sfz,p,rs + z Zf;:,rs,taa,p,rs’ (29)
rs pely s pery rs per;
x;,t = z Zf;:rs,t(sz,p,rs’ (30)
s per
h ho Sh
xa,t = Z pors,t o a,p,rs> (31)
rs pedy®
e+t +at =178 77" > 0. (32)
Cons — Time:
JCg 4
rg a,t
£ =10 [1+0.15<Tg) , (33)
Cq
e xe 3
the = E . e <%> ,X8, < (34)
ser,e a
h xh 3
t;ﬁ’h - E + ffil( C:; ) Xt < et (35)
ser,h C,’

Cons — Cost:

Cﬁ,rs,t = Zwtftéf,p,rs) (36)

h,
C;B),rs,t = zwtfté\iﬂfs + Z (wt;,te + /\Z,tEE) 8Z,p,rs’ (37)
a a

= Y 505 e+ Y (b + AL B S (38)
a a
Cons — Cp:
0 Sﬁag,rs,tlci,rs,t - ufx,t =0, (39)
0 Sﬁf,rs,tlc;e),rs,t - uis,t =0, (40)
O < p]/,lrs,tJ‘C:)[,rs,t - ufs,t 2 0 (41)

Constraint set Cons — Flow describes flow conservation in the
TN. Specifically, constraints (29)-(31) indicate that the traffic
flow on each link is equal to the sum of the flows on all paths
that pass through the link. Constraints (26)-(28) explain that the
traffic flow on all paths connecting each O-D pair is equal to the
corresponding traffic demand. Constraint set Cons — Time gives
link travel time and estimation of different link types, respectively.
For regular link a € T:f, constraint (33) uses the Bureau of
Public Roads (BPR) function [Bureau of Public Roads (1, 1964)]
to represent the link travel time as a function of x5. In constraint
(7), the first and second terms denote the charging time and
queuing time, respectively. Constraint set Cons — Cost describes
the travel costs of GVs, EVs, and HVs that choose path p. Note
that the cost for EVs and HVs contains both travel cost and
charging cost, respectively. Constraint set Cons — Cp represents
the complementarity condition of the Wardrop UE principle
(Shefhi, 1985), which indicates that no GV/EV/HV travelers could
decrease their travel costs by unilaterally switching their route
choices.

By changing the electricity price and hydrogen price for each
period of time, we calculate the transportation network model 24
times. Then, we can get the load curve of each charging station
and hydrogen charging station in a day according to Eqs 42, 43.
In addition, the heat load L!, can be obtained from the literature
(Soroudi, 2017)

L, =Ex]

at>

(42)

L}, =E"x),. (43)

2.4 The Day-Ahead Optimization Dispatch
Model of an Urban Energy System

With the goal of minimizing the sum of gas purchase cost
and electricity purchase cost, we established a day-ahead
optimization dispatch model of an urban energy system, and the
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FIGURE 4 | Framework of the optimization dispatch model.

optimization model is summarized below (Lu et al., 2020; Bakeer
and Hossam, 2021; Cheng et al.,, 2021; Lu et al., 2020; Bakeer and
Hossam, 2021; Cheng et al., 2021).

The objective function is provided as

min ye,tPf)’:b + g (F”H + Fl.)CtHP + FthF) . (44)

The objective function (44) is subject to Day-ahead operation
(-4

(6)-(17)

(18) — (24)

(42) - (43)

Figure 4 shows the framework of the day-ahead optimization
dispatch model of an urban energy system, which clarifies the
interactions between power and transportation networks from
the modeling perspective.

constraints:

3 CASE STUDY

The urban energy system shown in Figure 5 is composed of a
transportation network and a 33-node urban electricity network
with five EHs located at nodes 6, 16, 18, 21, and 30 and two
P2H units at nodes 8 and 10. CS1-CS8 are charging stations
which correspond to nodes 6, 16, 12, 27, 18, 25, 21, and 30
in the power network, respectively. HFS1-HFS7 are hydrogen
charging stations which correspond to nodes 6, 16, 21, 30, 18,
10, and 8 in the power network, respectively. In addition, two
0.4-MW capacity wind farms are connected at nodes 14 and 33,
while two 1.8-MW capacity ESSs are connected at nodes 11 and
29, respectively. The computational tests were conducted on a
laptop with Intel Core 1.0 GHz CPU and 16 GB memory, and the
MISOCP model was programmed in GAMS and solved with the
GUROBI solver.

3.1 Electric Vehicle Charging Load and

Hydrogen Load

Figure 6 shows the daily heat load, the charging load of EV's, and
the hydrogen load of HVs on the traffic side. As can be observed
from this figure, the charging load curve of EVs has the same
trend with the hydrogen load curve of HVs, and both have the

characteristic of double peaks. During the morning rush hour
from 8:00 to 10:00 and the evening rush hour from 17:00 to 19:00,
the electricload and hydrogen load on the traffic side are relatively
high, while the heat load is higher during the day and lower at
night (Ye et al., 2021). The trend of these three loads is consistent
with that of the total load.

3.2 The Anti-Peak-Shaving Characteristic
of Wind Power Production

Figure 7 shows the comparison of the wind power output curve,
total original load curve, and total net load curve without
considering energy storage. In this figure, load 0 represents the
total original load curve, and load 1 represents the total net load
curve without considering the energy storage. As can be observed
from the figure, wind turbines produce more output at night,
which results in a lower net load at the valley time. However, the
output of wind turbines is less in the daytime, and hence, it cannot
significantly reduce the peak load. Consequently, the daily wind
power production results in a larger peak-to-valley difference of
net load.

3.3 Coordination Between ESS and Wind

Power Production

It is noteworthy that when the ESS participates in the power
regulation of the power grid, the disadvantages brought by
the anti-peak-shaving of wind power can be well compensated.
As shown in Figure 8, load 3 represents the total net load
considering energy storage and multi-energy regulation, and load
2 represents the total net load without considering multi-energy
regulation. ESS charges at night when the power load is low and
the wind power output is large and discharges during the day
when the load is relatively high and the wind power output is
small. As a result, peak cutting and valley filling of the power load
are achieved.

3.4 Complementary Operation of
Multi-Energy Coupling

Natural gas is simultaneously converted into heat and electricity
through CHP units and only into heat through the gas furnace.
Figure 9 shows the total purchase of natural gas at each time
period, from which we can observe that the amount of gas
purchase of gas is larger at the time period when the power load
is high than that at the time period when the power load is low.
As shown in Figure 8, the difference between curve load 2 and
load 3 is mainly due to the multi-energy complement. In addition,
the EV load is relatively high at time periods from 7:00 to 17:00.
To summarize, increasing the power supply of CHP units can
effectively reduce the peak load, but this impact on valley filling
is not obvious.

3.5 Impact of ESS Strategies on Urban
Energy System Operation

As discussed above, ESS can play an important role in power
systems. Reasonable ESS scheduling decisions can alleviate the
impact of wind power on the distribution network and promote
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Coupling relationship between traffic side and power grid side

‘WT]“EH‘ ‘EH‘

peak shaving and valley filling. Figure 10 and Figure 11 show the
charge-discharge curve of ESS and the SOC state of charge of
ESS, respectively. We can note that for time periods from 0:00
to 7:00, the net load is relatively with low power consumption
and high wind power production, and ESS charges to satisfy
the load electricity demand. The SOC state of charge rises in
preparation for the next stage of the discharge process. For time
periods from 8:00 to 11:00, the electricity price is high and the net
load is relatively high. ESS reduces the load peak by discharging.
From 16:00 to 19:00, the load reaches the peak again, and ESS
continues to discharge, which reduces the power purchase cost
from the main grid. At the same time, in order to ensure the
normal operation of the next charge and discharge cycle, the ESS
charges and returns to the original state of charge at time periods
from 20:00 to 24:00.

The traffic side | CS1/HFS1|CS2/HFS2| CS3 CS4 | CSS/HFS5 CS6 CS7/HFS3| CS8/HFS4| HFS6 | HFS7
The grid side Node6 Nodel6 |Nodel2|Node27| Nodel8 | Node25 | Node2l Node30 |Nodel0 | Node8
FIGURE 5 | Topology of the urban energy system.
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FIGURE 7 | Anti-peak-shaving characteristic of wind power production.

We introduce an index 8P, to measure the average peak-valley
difference:

8Pu = ZPi,tpmk/Npeak - z Pi,tm”e),/Nvalley’ (45)

tpeak Lyalley

Table 1 lists mean peak-valley differences and the total
operation costs under different ESS capacities. As shown in this
table, the increase in ESS capacity positively reduces the average
peak-valley difference of power demands and reduces the total
operating costs. This is because a higher energy storage capacity
can provide more sufficient charging power in load valley and
discharging power in load peak, which also reduces the purchase
of power at the peak time, thus reducing the operating cost.
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time/t Meanwhile, we set the energy storage capacity to be fixed at the
FIGURE 9 | Hourly total purchase of natural gas. original value
0P, <A (46)
03r K
I ‘i —a-ESS2 A denotes the load peak-valley difference which we want
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s ” Y 1 ‘1 corresponding operating costs under different requirements of
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rid, which reduces the peak-to-valley difference and inevitabl
FIGURE 10 | Hourly charge—discharge curve of ESS. g .P Y Y
increase the total operating cost.

TABLE 1 | Average peak-valley difference under different ESS capacities.

Capacity of ESS/MW 1.8 2.2 2.6 2.8 3.2
Mean peak-valley difference/MW 1.37 1.27 1.16 1.1 1.00
Cost/$ 25145.35 25029.00 24919.91 24868.68 24778.03
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4 CONCLUSION

We have presented a day-ahead co-optimization approach of
unban energy systems considering traffic flows and peak shaving.
Based on the numerical results obtained, we can draw the
following conclusions:

e Optimal charging and discharging dispatch strategies of
energy storages can alleviate the peak-valley difference
caused by the anti-peak-shaving characteristic of wind
power production.

e In addition, multi-energy complement can significantly
reduce the peak-valley difference and contribute to the
improved energy utilization efficiency. However, increasing
the supply of natural gas can reduce the peak load, but the
effect on valley filling is not obvious.

e When the ESS capacity is fixed, the higher the peak shaving
and valley filling requirements, the greater the operating
cost.

Our work, hence, might help the operators of urban
energy systems to produce operating decisions of multi-
energy production sources and satisfy the requirement
from multi-energy demands. Our work might also help the
design of a future low-carbon energy system. Meanwhile, in
future research, we will consider the optimal dispatch model
of the transportation system into the day-ahead dispatch
model of the urban energy system to further improve social
benefits. Reasonable traffic management strategies can give
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GLOSSARY

Indices and sets

i,j Subscript indices of nodes in electricity networks
t  Subscript indices of time periods

min Superscript index of minimum value

max Superscript index of maximum value

Q"% Set of electrical nodes

Q'™ Set of branches

Q™ Set of root nodes

QS setof (energy storage system) ESS nodes
QPN Set of DG nodes

T Operational cycle.

T;g Set of regular links in a transportation network.
Tzh Set of charging links in the transportation network
Tgs Set of origin-destination (O-D) pairs

Ty Setof origin nodes

T Setof destination nodes.

l;s, Af, /\;f Set of gasoline vehicles/electric vehicles/hydrogen fuel vehicles
(GV/EV/HV) paths connecting an O-D pair r-s, where
reTpse Tgand rs € Tyg

Variables

Ui,t Voltage of electrical nodes
I

Pij,t’ Qij,t Active and reactive power flow through branch ij

it Current magnitude through branch ij

inj _inj
p" Q. Y The injected active and reactive power of node i

it > it
Pfl;b, ft;b Output active and reactive power of the root node
PftG, QﬂG Output active and reactive power of the distributed generation

PiLt’ Qth Active and reactive power load

Pl.d;, P?:s Active power charge and discharge of ESS

PlEtH Input power flow of the energy hub (EH)

GF
Pi,t

CHP
Pi,t

Input power flow of the gas furnace (GF)
Input power flow of combined heat and power (CHP)
Plpt2 H Input power flow of power to hydrogen (P2H)

ch . dis
Yie:YVig

E,Ef S Energy level of the ESS
L, L

i it

Binary variable

Dispatched electricity and heat demand

FlEtH Input gas flow of the energy hub

¥ Percentage of gas fed into combined heat and power

H,, Hydrogen production

fpg,,s)t GV flow on path p € A’ between O-D pair r-s

fs EV flow on path p € A} between O-D pair r-s

psrs,t
fl‘: st HV flow on path p € 1} between O-D pair r-s

xe

2t Aggregated traffic flow on link a € T

xﬁ ¢ Aggregated traffic flow on link a € T;g

xfl‘)t Aggregated traffic flow on link a € T"
t;i Travel time on link a € T}

taCht’e Average time that EVs spend on link a € T/ih

t;;;’h Average time that HVs spend on linka € T ff

Cf”s)t GV travel cost on path p € Aj’ between O-D pair r-s

C;,rs,t EV travel cost on path p € A between O-D pair r-s

CI;,rs,t HYV travel cost on path p € A;’ between O-D pair r-s

ufs ¢ Minimal travel cost of GVs between O-D pair r-s

uﬁs ¢ Minimal travel cost of EVs between O-D pair r-s

ufs ¢ Minimal travel cost of HV's between O-D pair r-s
pe? Pi’tvalley Peak and valley net load

Parameters

Rij,t The resistance of branch ij

X it The reactance of branch ij

tan ¢ Power factor of DG output

mex Upper limits of ESS charge and discharge power
&, B Charge and discharge efficiency coefficient of ESS
E:nax Maximum storage capacity of ESS

ngasx Maximum charging and discharging times of ESS
#,, Transformer efficiency of the energy hub

Hcup, Electrical efficiency of combined heat and power
Hcyp,y, Thermal efficiency of combined heat and power
Ngh Gas furnace efficiency

Noony Electrical efficiency of P2H

H_ The higher heating value of hydrogen

nd, n’ " Ratio of GV/EV/HV traffic demand

&S,p,rs If path p € A’ passes link a € T, 8%« = 1; otherwise, 5§)p,,5 =0.

A> Yapyrs
Z)P)rs If path p € A passes link a € T' zh, 8 p.rs = 1; otherwise, &7 . = 0.
Z)P)rs If path p € A} passes link a € T, és,p,rs = 1; otherwise, 62,;,,,5 =0.
tg Free flow travel time on link a € T;g
I
Cag Traffic flow capacity of link a € T'Y
che chh . . . : ch
Ca 5Cy Maximum allowable vehicular flow of charging link a € T}

Piere> Pser,n  Average service rate at charging stations

E°, E* Charging demand of unit traffic flow.

max max

ache’ Yachh Maximum waiting time at charging stations

q,s; Trip rate (traffic demand) between O-D pair r-s
@ Monetary cost of travel time.

X;)t, hg,t Charging price at charging stations
#,, Time of use price

Hot Unit price of natural gas

N eak> N

p Number of peak and valley periods

valley
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