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The development of new wake models is currently one of the key approaches envisioned
to further improve the levelized cost of energy of wind power. While the wind energy
literature abounds with operational wake models capable of predicting in fast-time the
behavior of a wind turbine wake based on the measurements available (e.g., SCADA),
only few account for dynamic wake effects. The present work capitalizes on the success
gathered by the DynamicWakeMeandering formulation and introduces a new operational
dynamic wake modeling framework aimed at capturing the wake dynamic signature at
a low computational cost while relying only on information gathered at the wind turbine
location. In order to do so, the framework brings together flow sensing and Lagrangian
flow modeling into a unified framework. The features of the inflow are first inferred from
the turbine loads and operating settings: a Kalman filter coupled to a Blade Element
Momentum theory solver is used to determine the rotor-normal flow velocity while a Multi-
Layer Perceptron trained on high-fidelity numerical data estimates of the transverse wind
velocity component. The information recovered is in turn fed to a Lagrangian flow model
as a source condition and is propagated in a physics-informed fashion across the domain.
The ensuing framework is presented and then deployed within a numerical wind farm
where its performances are assessed. The computational affordability of the proposed
model is first confirmed: 7 × 10−4 wall-clock seconds per simulation second are required
to simulate a small 12 turbines wind farm. Large Eddy Simulations of wind farm using
advanced actuator disks are then used as a baseline and a strong focus is laid on the
study of the wake meandering features. Comparison against the Large Eddy Simulation
baseline reveals that the proposed model achieves good estimates of the flow state
in both low and high Turbulence Intensity configurations. The model distinctly provides
additional insight into the wake physics when compared to the traditional steady state
approach: the wake recovery is consistently accounted for and the wake meandering
signature is captured as far as 12D downstream with a correlation score ranging from
0.50 to 0.85.

Keywords: wake model, wake meandering, flow sensing, Lagrangian flow model, multi-layer perceptron (MLP),
particle
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1 INTRODUCTION

Wind turbine wakes are notoriously hard to study owing the
inherent complexity of the interactions between wind turbines
and the Atmospheric Boundary Layer (ABL) physics. Yet,
enhancing our understanding and modeling capabilities of wind
turbine wakes is paramount to improving the performances of
existing wind power plants controllers. Indeed, wakes induce
strong delayed interactions between neighboring turbines which
degrade the performances of the wind farm taken as a whole.
Designing new global wind power plant control schemes
accounting for wake effects is thus expected to have a strong
impact on the overall power production and life time expectancy
of wind farms and hence on the levelized cost of energy of wind
energy globally.

To this end, a large number of control schemes has been
proposed in the literature.They fall within two categories: model-
free or model-based controllers. Model-based control (e.g.,
Doekemeijer et al., 2019) aims at selecting the optimal control
action based on the information provided by an underlying
simplified model of the wind farm dynamics which predicts
the turbines-wakes interactions. Model-free control (e.g., Park
and Law, 2016), on the other hand, alleviates the need for wake
understanding: the flow is essentially considered as a black
box and the wind turbines select their control policy based on
their observed states. However, this approach struggles with the
extended convective time scales observed in wind farms which
induce large delays between a control input change and its impact
on downstreamwind turbines (Doekemeijer et al., 2019).Model-
based control schemes have thus been gaining a significant
amount of traction recently.

Developing such a control scheme is however not
straightforward. It requires an adequate level of understanding
of the flow field at the scale of the wind farm as the accuracy
of the underlying surrogate wake model always bounds the
performances of the synthesized control scheme. Some key
criteria should therefore be matched by the surrogate wake
model in order to make it suitable for the control-based
approach: it should be fast enough to be usable online and yet
guarantee a sufficient degree of fidelity to reality. This latter
criterion, along with the unsteady nature of wind wakes and
their high sensitivity to the local wind characteristics, makes the
development of accurate surrogate models one of the remaining
pivotal challenges faced by the model-based strategy.

While significant insight into wind farm wake flows has
been gained thanks to modern computer technology and high-
fidelity numerical simulation techniques such as Large Eddy
Simulation (LES), the porting of these approaches to real time
control has been hindered by their prohibitive computational
cost along with the uncertainty of real time conditions. In
order to overcome this limitation, a number of medium- to
low-fidelity wake models have been successively introduced
in the literature. Low-fidelity wake models typically rely on a
simplified description of the flow derived from the mass and/or
momentum conservation equations. They most often provide
a steady-state analytical description of the mean flow field
and are thus computationally affordable. To this day, the wake

model introduced by Jensen (1983) remains one of the most
popular low-fidelity model examples. Other examples include
the analytical Gaussian model proposed by Bastankhah and
Porté-Agel (2014) based on momentum conservation as well as
its variants including near wake correction (Blondel et al., 2020;
Schreiber et al., 2020). These models offer a great robustness at
the cost of a low degree of accuracy. Furthermore, owing to
their steady-state assumption, they are unable to capture some
of the key features of wakes such as their meandering. They
essentially consider the wake as static and wide and assimilate
wake meandering to the wake expansion (Thøgersen et al., 2017;
Braunbehrens and Segalini, 2019). This approximation works
relatively well for slowwind farm control but leads to inconsistent
results if finer time scales are considered. It further fails
to correctly account for meandering-induced fatigue loads
(Reinwardt et al., 2020). Medium-fidelity wake models aim to
bridge the gap between the two ends of the model spectrum: they
provide a dynamic reasonably-faithful description of the flow
while remaining computationally tractable. The most common
medium-fidelity wake model is the Dynamic Wake Model
(DWM) introduced by Larsen et al. (2007) and its FAST-Farm
implementation by Jonkman and Shaler (2021) though other
models such as the dynamic control-oriented version of Floris
proposed (Becker et al., 2022) also fall within that category.

The framework presented here aims at developing an online
physics-based medium-fidelity model able to capture the main
dynamic features of the wake. As this model is intended for
operational use (i.e., real time control of wind farm), it should
only rely on information that is available to the turbine: the
features of the incoming flow field can not be determined a
priori but should be inferred from the measurements available.
This implies that both the incoming turbulent flow field and the
wake shed by the wind turbine should be reconstructed from the
information gathered at the wind turbine location. Furthermore,
the flow reconstruction procedure should run in fast time in order
to be deployable in the context of model-based control.

This work extends some previous works toward the
formulation of an online operational wake model (Lejeune
et al., 2020). It brings flow sensing and Lagrangian flow modeling
together into a unified framework where information gathered
at the wind turbine location is propagated across the wind farm
thereby reconstructing an estimated snapshot of the flow state at
a low computational cost. Consistent with the turbine as a sensor
approach (Bottasso et al., 2018; Bertelè and Bottasso, 2020), we
first deploy a flow sensing module that estimates the inflow
features from the wind measurements. The estimation of
the rotor-normal component is handled through a Kalman
filter coupled with a Blade Element Momentum (BEM) code
(Bottasso et al., 2018) while the transverse velocity component is
computed using an Artificial Neural Network (ANN) regressor
trained on high-fidelity LES data. Based on the inflow features
acquired through the flow sensing module, the Lagrangian flow
model then reconstructs the farm flow field in terms of two
coupled fields: a freestream velocity field and awake velocity deficit
one. Both fields are modeled as series of information-carrying
particles propagated across the wind farm in a physics-informed
fashion thereby capturing the dynamic wake signature at a
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low computational cost. The resulting framework captures the
relevant dynamic features of the wake (i.e., wake meandering
and wake convection) as well as from the freestream field
(i.e., inflow heterogeneities). The implemented information
propagation procedure, in a fashion akin to a Particle Filter
(Notter et al., 2020; Le Provost and Eldredge, 2021), enables the
prediction of the main flow features at a downstream turbine
at a time horizon set by the turbine separation. This should, in
turn, allow to select the optimal control policy for the impinged
rotor. Furthermore, as discrepancies between the estimated
flow state and its real counterpart are inevitable, strong focus
is laid on providing a concise description of the flow based
on few tuning parameters in order to make the model usable
within a state-correction framework (Doekemeijer et al., 2019;
Dong et al., 2021).

We leverage LESs of wind farms to support the development,
tuning and testing of this operational model. Specifically, the
LES flow solver (Section 2.1) is used to aggregate a database of
high-fidelity results that includes several wind farm layouts and
inflow conditions. These data sets then serve as reference for
1) the calibration of the flow model (Section 2.2), 2) training
the neural network based flow sensing module (Section 2.2.1)
and 3) assessing the performances of the whole operational
model (Section 3). The wake behind isolated wind turbines
is first investigated (Section 3.2.1): the LES are compared
to the Lagrangian flow model prediction in terms of their
meandering signature and speed deficit characteristics. These
results are finally confirmed by the analysis of a small wind farm
(Section 3.2.2) consisting of 12 turbines operating under strong
wake effects.

2 MATERIALS AND METHODS

2.1 Reference High-Fidelity Simulation
As mentioned above, the present work will rely exclusively on
numerical simulations to develop the wake model. This section
succinctly highlights the main features of the LES simulation
framework.

The flow solver is an in-house fourth-order finite difference
LES solver coupled with an advanced actuator disk featuring
improved tip-loss correction (Moens et al., 2018). The wind
turbine model is the NREL 5MW (Jonkman et al., 2009),
implemented with its torque and collective blade pitch
controllers. Accordingly, the rotor diameter, D, is set to
D = 126 m. The wind turbine operating settings are directly
extracted from the simulation data while the blade loads are
obtained by projecting the total disk loads over virtual wind
turbine blades (Moens et al., 2022).

The wind turbines are arranged in farm configurations within
the numerical simulation domain whose physical dimensions
are 32D× 8D× 16D for the streamwise ( ̂ex,WT), vertical ( ̂ey,WT)
and transverse ( ̂ez,WT) directions respectively. For this work,
the resolution is set to 16 points per rotor diameter in the
horizontal directions. This results from a compromise between
efficiency and accuracy in the representation of the wind turbine
behavior and wake phenomena. The mesh is refined in the

y-direction, from the ground to a height slightly above the
highest point of the disk, in order to have a few points between
the lowest disk position and the height where the velocity
is sampled for the wall modelling procedure. The final mesh
is a Nx ×Ny ×Nz = 512× 128× 256 grid that is uniform in the
wall-parallel directions (Δx = Δz = 7.875 m) and that is partially
stretched in the vertical direction. This stretching leads to a
uniform vertical grid below 200 m, with Δymin = 3.975 m. Above
that, Δy increases, to reach Δymax ≃ 10 m at the top of the domain.

A rough wall law is enforced on the bottom boundary along
with a no-through condition on the top boundary.The transverse
direction is considered periodic while a inflow-outflow condition
is applied in the streamwise direction: a convective boundary
condition is used at the outflow and a concurrent precursor
simulation with no wind turbine provides the inflow condition.

The parameters of this precursor simulation, namely its
roughness length, y0 and forcing pressure gradient, 1

ρ
∂p
∂x ,

determine the features of the inflow. The parameters of the
different simulation precursors are summed up in Table 1. Each
set of parameters is selected in order to obtain the desired mean
wind velocity, UABL, and turbulence intensity, TIABL, at the hub
location.

Finally, the wake centroid position is computed using a wake
tracking algorithm developed by Coudou (2021). This algorithm
evaluates the position of the wake centroid by finding the
minimum of a convolution product between a masking function
and the available flow power density retrieved from the LES
velocity field. In this context, a 3D Gaussian masking function
allowing a smooth wake centerline tracking, fG, is applied:

fG (x,y,z) = −exp(−(
x2

2σ2
x
+

y2

2σ2
y
+ z2

2σ2
z
)) (1)

with σx = σy = σz = D/2, values that consistent with the scales
targeted by the wake model. Though this broad mask
parametrization partially filters out the influence of the low speed
external eddies on the wake centerline computation, it sometimes
also leads to an unrealistic smoothing of the latter. A narrower
mask, i.e., σx = σy = D/4 and σz = D/2, is therefore also used to
provide a sensitivity information in the form of a wake centerline
position envelope. A representative numerical setup is illustrated
in Figure 1 by means of an instantaneous velocity field together
with the extracted wake centerlines.

2.2 Flow Sensing
Thefirst step toward developing an onlinewakemodel deployable
in the context of wind farm control is to accurately estimate
the inflow features from the wind turbine measurements.
However, as typical hub-mounted sensors (e.g., wind vane or

TABLE 1 | ABL configuration used.

UABL [ms−1] TIABL [%] y0 [m] 𝟏
ρ
∂p
∂x [ms−2]

8 6 9.63 × 10–4 7.84 × 10–4

8 10 9.36 × 10–2 2.18 × 10–3

15 10 9.36 × 10–2 7.65 × 10–3
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FIGURE 1 | Streamwise velocity field at hub height extracted from the
reference LES for for UABL = 8 ms−1; position of the wake center as
computed by the wake tracking algorithm (continuous black line).

anemometers) suffer from a number of disturbances ranging
from the presence of the nacelle or blades to the wake-induced
flow deformations, their measurements are often considered
unreliable (Bertelè and Bottasso, 2020). The turbine as a sensors
approach is thus chosen in order to provide robust estimates
of the inflow velocity field, ̂uWT = [ûWT, ̂wWT]. The remainder
of this section presents these rotor-normal (Section 2.2.1) and
transverse (Section 2.2.2) velocity estimators that infer the wind
characteristics from the specific turbine responses they trigger.

2.2.1 Rotor-Normal Velocity Component
Following Bottasso et al. (2018), a Kalman filter coupled with a
BEM code is first implemented in order to estimate the inflow
features. This method essentially considers the wind turbine
blades as moving sensors whose out-of-plane bending loads,
mf, are strictly connected to the local wind speed at the blade
position.

In order to retrieve an accurate local snapshot of the flow
azimuthal features, the rotor is divided into NS sectors over
which the local sector effective rotor-normal velocities, us(t), are
evaluated (Bottasso et al., 2018):

us (t) =
1

θs,1 − θs,0 ∫
θs,1

θs,0

u (θ, t)dθ (2)

where θ denotes the azimuthal coordinate and θs,0 and θs,1 are the
sector s upper and lower bounds, respectively.

At every blade sweep, a Kalman filter computes the new sector
effective wind speed estimation, ̂us, from the measured bending
loads averaged over the crossing time window.The resulting local
wind speed estimations are, in turn, combined into ̂uWT = Σûs/NS,
the estimated rotor effective rotor-normal wind speed.

Finally, an estimation of the wind turbine thrust coefficient,
̂CT ,WT, and flow turbulence intensity, ̂TIWT are recovered based on

the estimated sectors effective rotor-normal velocities. The latter
are eventually fed as inputs to the flow model and read:

̂CT ,WT (t) =
8 T (t)

ρπD2 û2
WT (t)

(3a)

̂TIWT (t) = √
∑(us (t) − ûWT (t))

2

NS − 1
1
̂uWT (t)

(3b)

with ρ the air density. The ϕ operator applied to a flow quantity ϕ
indicates its averaging over a prescribed time window.

2.2.2 Transverse Velocity Component
Extending the model presented in the previous paragraph to
account for the effect of the transverse velocity component
on the rotor dynamic is not trivial as it falls beyond the
classical BEM theory assumptions. Bertelè and Bottasso (2020)
propose a similar wind turbine state estimator based on the
loads harmonics. Even though their estimator leads to accurate
instantaneous flow shear angles and rotor-averaged streamwise
velocity, it is not able to capture the instantaneous fluctuations
of the yaw angle. This difference in sensitivity between the
streamwise and transverse velocity components is largely due to
the difference in rotor aerodynamic response as demonstrated by
Bertelè et al. (2017) who analysed the airflow around a simplified
wind turbine airfoil section. In light of this, we elect to base our
transverse velocity regressor not upon a physics-based model
(i.e., an underlying flow-rotor model), but rather upon an ANN
trained on a high-fidelity data set.

The training of the transverse velocity regressor is thus
formulated as a supervised-learning problem. Learning is
performed by iteratively feeding the ANN labeled data of the
operation settings of the turbine as well as with the transverse
velocity directly retrieved from the LES thereby providing the
algorithm with corrective information (Brunton et al., 2020).
Once the ANN has been trained, it is tested against never-seen
data for which it has no knowledge of the expected output.
This section first explains the labeled data formatting step
(Section 2.2.2.1) before moving on to the presentation of the
structure of the ANN used and subsequent learning procedure
(Section 2.2.2.2).

2.2.2.1 Data Preparation
Theneural network is suppliedwith data extracted from the high-
fidelity LESwhich allows it to predict the rotor effective transverse
velocity, wWT(t). The corresponding ANN input consists of the
instantaneous rotation speed of the wind turbine, Ω(t) as well
as its projected yaw, γ(t), and global pitch angles, β(t). Finally,
following Bertelè and Bottasso (2020), the reconstructed blade
loads harmonics are also appended to this input state vector:

[

[

m (t)
mc (t)
ms (t)
]

]
=
[[[[

[

1
3

1
3

1
32

3cos (⁡θ (t))
2
3cos(θ (t) −

2π
3 )

2
3cos(θ (t) +

2π
3 )

2
3 sin (⁡θ (t))

2
3 sin(θ (t) −

2π
3 )

2
3 sin(θ (t) +

2π
3 )

]]]]

]

×[

[

m1 (t)
m2 (t)
m3 (t)
]

]
(4)

with θ(t), the instantaneous azimuthal position of blade 1. In this
expression, a Multi-Blade Coordinate (MBC) transform derived
by Coleman and Feingold (1958) is applied in order to map the
edgewise,me,b and flapwise bending moments,mf,b of the blades,
b = 1,2,3 to their 1-P harmonics.
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The resulting state vector fed to the neural network thus
comprises 11 different fields:

it = [Ω (t) , γc/s (t) , βc/s (t), me/f ,0 (t) , me/f ,c (t) , me/f ,s (t) ] (5)

where t is the temporal index and ϕc/s denotes the projected
cos(ϕ) and sin(ϕ) components, respectively. Data is sampled
at a frequency fann and the input and output state vectors are
eventually concatenated into a single data base entry:

St = [i
f
t ; w

f
t ] (6)

where (⋅)f denotes that an ExponentialMovingAverage filter with
time constant τann has been applied (here both to the input and
output data).

We finally introduce some information about the past history
by concatenating several input filtered states into a single data
base entry:

Sht = [i
f
t−Tann
, …, ift−1, i

f
t ; w

f
t ] . (7)

Tann determines the number of successive time indices
considered: the larger Tann, the longer the neural network
memory. We should however note that, in this configuration,
each data base entry is considered as an independent data sample,
this may very rapidly increase the complexity of the input data.

The different date base entries are then collected inside one
large data base whose different fields, ϕ, are normalized using a
minmax scaler:

ϕnorm =
ϕ−min (ϕ)

max (ϕ) −min (ϕ)
(8)

which casts all the database values into the interval [0,1] thereby
facilitating the neural network convergence.

This data formatting procedure is then applied in order to
aggregate a LES data base.The latter is splitted into three subsets:
a training, a validation and a testing set. The training set provides
never-seen data against which the performances of the trained
neural network can be validated. The testing set on the other
hand constitutes the bulk of the data base and is used for training

purposes. Finally, the validation set provides a metric to avoid
overfitting: the optimization procedure should be stopped when
the loss metric evaluated on the validation set has reached its
minimum. This procedure ensures that the calibrated neural
network generalizes well to other data sets.

Different LES are performed in order to assemble the
LES database. Their results are uniformly sampled at a
fann = 0.25 Hz and then appended to the data base. The
description of the simulation setup used for each data base
subset (i.e., validation, training and testing sets) is presented
hereunder.

• The wind farm layout from which the training and validation
data set are extracted consists of 19 turbines with a random
spacing ranging from 4D to 10D thereby accounting for both
waked and unwaked conditions. 6,250 s long simulations are
carried for each of the ABL precursors resulting in a total
89,000 data base entries. 20% of this data is used for validation
purposes while the remaining 80% are fed to the ANN as part
of its learning. Within both subsets, the data is shuffled so that
the neural network does not overfit the last wind turbine of the
data set. Indeed, if no shuffling was applied, the ANN would
converge toward an optimum representative of the last wind
turbine encountered as part of its training which may not be
corresponding to the global optimum.
• The test set, on the other hand, is obtained by simulating a

farm of 12 evenly spaced (7D) turbines during 1,250 s. Once
again, three simulations are carried: one for each ABL settings.
The test set thus comprise a total of roughly 11,000 data base
entries.

2.2.2.2 Neural Network Structure and Training
A Multi-Layer Perceptron (MLP) is used to learn the mapping
between the input state vector consisting of the 11 original inputs,
ift , and the target effective transverse velocity output, wf

WT,t . As
illustrated on Figure 2, MLPs are a class of ANNs consisting of
at least three fully-connected layers of nodes: an input, a hidden
and an output layers. Both the hidden and outputs layers use non-
linear activation functions thereby allowing this class of neural
networks to capture non-linear behaviors.

FIGURE 2 | Transverse velocity sensing: data preparation and Neural Network structure.
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The different layers are connected through weight matrices
whose values are updated as part of the training procedure until
convergence is reached. Learning is performed through the back-
propagation of the reference loss function through the network
during the training step. The complete training data set is first
split into mini-batches each consisting of Nann,b randomly picked
data base samples. At each iteration, a new mini-batch is fed to
theMLP and the network weights are updated using the standard
Adam optimizer algorithm with learning rate lrann in order to
minimize the target loss function, LMSE:

LMSE =∑
t
( ̂wWT,t −w

f
WT ,t)

2
(9)

which corresponds to the Mean Square Error (MSE) with ̂wWT,t

and wf
WT,t the estimated and reference rotor effective transverse

velocities, respectively.
The MLP used here comprises Nann,L hidden layers of

Nann,N neurons. The latter use Rectified Linear Unit (ReLU)
activation functions preceded by a Normalization Layer in
order to reduce the training time (Ba et al., 2016). Finally, the
Adam optimization algorithm is used to update the layers
weight matrices during the training procedure. The resulting
neural network architecture is implemented and trained using
PyTorch, an open source machine learning framework for deep
neural networks (Paszke et al., 2019). A heuristic approach was
adopted in order to compute the hyperparameters. Different
configurations were tested and only the set of hyperparameters
achieving the lowest MSE on the validation set was conserved.
We should therefore note that amore exhaustive hyperparameters
searchmay lead to improved performances of theANN.However,
it would inevitably inflate the computational cost. The neural
network training and subsequent hyperparameters tuning are
not discussed in more details here. The optimized network
hyperparameters are: Nann,L = 3, Nann,N = 64, Tann = 1, τann = 8s,
lrann = 3.5× 10−5 and Nann,b = 64.

2.3 Lagrangian flow Model
Information is gathered where it is available, at the wind turbine,
and then propagated in a physics-informed fashion across the
domain. The estimated inflow velocity field, ̂uWT = [ûWT, ̂wWT],
and its associated states, ̂CT ,WT and ̂TIWT, are fed to the
Lagrangian flow model which, in turn, uses them to infer flow
quantities at arbitrary locations throughout the wind farm.

The two-dimensional wake model introduced in this section
follows the standard DWM hypothesis. Consistent with Taylor’s
frozen turbulence hypothesis, the wake is discretized as a series
of wake particles behaving as passive tracers advected by the
background flow (Larsen et al., 2007; Jonkman and Shaler, 2021).
As illustrated in Figure 3, one of the key features of this model
is that this background flow is also modeled using a particle-
based discretization which makes it similar to (and actually
compatible with) Particle Filter approaches for the estimation of
flow information, see e.g., Notter et al. (2020) or Le Provost and
Eldredge (2021) for very similar applications in an operational
context.

The Lagrangian flowmodel is thus decomposed into twomain
coupled fields: the freestream velocity field, uf(x, t), and the speed

deficit one, Δu(x, t):

u (x, t) = uf (x, t) −Δu (x, t) . (10)

The freestream velocity field is understood as the velocity field
that would be observed without any wake effect: it corresponds
to the LES precursor velocity field. The speed deficit field on the
other hand is obtained by superposing the speed deficit shed by
all the turbines of the wind farm.

A source condition for both fields is provided by the wind
turbine measurements through flow sensing. This information
is then propagated downstream at its own characteristic velocity
and contributes incrementally to the estimation of the flow field
throughout the wind farm.

This section presents how both fields are modeled and how
they interact together. The freestream particle discretization is
first discussed (Section 2.3.1) after which a description of the
wake parametrization is provided (Section 2.3.2).

2.3.1 Freestream Module
The wake features are directly dictated by the wind turbine
geometry, operating settings and the characteristic of the
ambient flow, uf(x, t). The first step necessary to estimate the
complete farm flow is therefore to reconstruct the background,
unperturbed flow. Classically, this field would be retrieved
from a Mann turbulence box or a precursor simulation
(Larsen et al., 2007; Jonkman and Shaler, 2021). The resulting
background velocity field would then be advected across the
wind farm simulation domain at its own characteristic advection
speed assuming frozen turbulence. However, focus is here laid
on developing a model that can be used in the context of online
control where the incoming turbulent flow field is obviously not
available. Advection is thus handled in a Lagrangian fashion
where the freestreammeasurements, ûWT(t), gathered at thewind
turbine locations, xWT, are propagated downstream along the
mean flow streaklines

∂ûWT

∂t
(x, t) + ũf (x, t) ⋅

∂ ̂uWT

∂x
(x, t) = 0 (11)

with ũf (x, t), the effective freestream advection velocity. This
equation derives from the frozen turbulence hypothesis: it
neglects the contribution of both the molecular and effective
turbulent viscosities. The validity of this assumption should
consequently remain limited to eddies whose characteristic
timescale is larger than the convective timescale.

2.3.1.1 Freestream Particle Discretization
The freestream flow field is represented by a series of freestream
particles, Fi, shed at successive timesteps ti, and described by a
position, xFi(t) and a characteristic velocity, uFi(t). The source
state of a given particle is provided by the measurements of the
wind turbine it emanates from:

xFi (ti) = xWT (12a)

uFi (ti) = αw uFi−1 (ti) + (1− αw) ûWT (ti) (12b)

where αw is the Exponential Moving Average parameter
computed from its filtering timescale, τw.
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FIGURE 3 | Flow model: discretization strategy.

2.3.1.2 Spatio-Temporal Interpolation
The discrete information conveyed by the freestream particles is
interpolated using a radial basis function based spatio-temporal
interpolation scheme similar to Rott et al. (2020):

uf (x, t) =
∑iuFipFi (x, t)
∑ipFi (x, t)

(13)

where the interpolation weights, pFi , are computed as follows:

pFi (x, t) = exp(−(
r (x, t)2

2 σ2
r
+
ξ (x, t)2

2 σ2
ξ

))exp(−
(t − ti)

2

2 σ2
t
).

(14)

ξ(x, t) and r(x, t) are the local streamwise and radial curvilinear
coordinates of the point considered in the particle frame of
reference. The weight relative to a particle thus fades out as the
particle gets further away from the point of evaluation for the
fielduf(x, t). Furthermore, the information contained by a particle
is considered less relevant as the particle progressively gets older,
i.e., t≫ ti.This temporal decay is tuned by σt, the scaling constant
of the temporal distance. The σr and σξ parameters, on the other
hand, govern how localized the information should be in the
streamwise and radial directions: a low value means the particles
have a small trust zone. Far away from the particles sources,
the weights collapse and the mean average flow features are
recovered.

We note that this framework allows different values of the
spatio-temporal scheme weighting parameters to be selected
depending on the nature of the phenomenon studied. Indeed,
frozen turbulence demands the freestream velocity field to
be advected as smoothly as possible whereas the coherence
with the self-induced velocity of the wake requires a narrower
interpolation kernel. A distinction is thus made for the
interpolation of the advection velocities for the large-scale
freestream field, uf, and the local wake, u′f ; those are evaluated
using the weighting parameters [σr, σξ,σt] and [σr, σ′ξ ,σt],
respectively, with σ′ξ < σξ .

2.3.1.3 Freestream Field Advection
Following Eq. 11, particle positions are transported by an
effective freestream convection velocity ũf :

xFi (t +Δt) = xFi (t) + ũf (xFi , t)Δt (15)

while their characteristic velocity, uFi , is assumed to remain
unchanged. The effective freestream convection velocity is
obtained by subtracting the speed deficit from the freestream
velocity field itself:

ũf (xFi , t) = uf (xFi , t) −
Cf

πR2
W

∫S
Δu (x, t) ds (16)

where Cf is a tuning constant and S denotes the circular area of
radius RW = 2

D
2
centered at xFi and normal to the time-averaged

flow streaklines defined by Eq. 15.

2.3.2 Wake Model Module
Once the estimated freestream flow has been reconstructed, the
wake model integration can be performed in order to retrieve
the global speed deficit field, Δu(x, t). The wake is subsequently
discretized as a series of information-carrying particles advected
by the reconstructed freestream velocity field.

2.3.2.1 Wake Particle Discretization
A wake particle, Wi, shed at time ti, is described by a position,
xWi
(t), an orientation, nWi

(t), a curvilinear coordinate along the
wake centerline, ξWi

(t) and finally a thrust coefficient, CT ,Wi
(t),

and a rotor-effective turbulence intensity, TIWi
(t).

The position of the particle, xWi
= xWi

êx,WT + zWi
̂ez,WT, is

measured in the wind farm inertial frame and initially coincides
with that of the wind turbine hub. Its remaining states are directly
retrieved from the wind turbine state at shedding time. The
subsequent source state of the wake particle is therefore similar
to equation and reads:

ξWi
(ti) = 0 (17a)

xWi
(ti) = xWT (17b)

nWi
(ti) = [ cos(γ (ti)) ,−sin(γ (ti)) ] (17c)
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TIWi
(ti) = αw TIWi−1

(ti) + (1− αw) ̂TIWT (ti) (17d)

CT ,Wi
(ti) = αw CT ,Wi−1

(ti) + (1− αw) ̂CT ,WT (ti) (17e)

where the orientation of the wake particle is computed based on
the turbine yaw angle at shedding time, γ(ti).

2.3.2.2 Speed Deficit Parametrization
Each wake particle, Wi, is associated to a relative speed deficit
field: ΔuWi

(t, rWi
(x))where rWi

(x) and t denote the radial position
of x relative to the wake particle and the time considered,
respectively. The orientation of the particle, nWi

, is introduced
in order to allow the computation of the radial position of an
arbitrary point, x, in the wake particle frame:

rWi
(x) = ‖(x− xWi

) − ((x− xWi
) ⋅nWi
)nWi
‖ . (18)

The speed deficit field relative to the wake particle is assumed
quasi-steady and then paramatrized based on the analytical
expression proposed by Bastankhah and Porté-Agel (2014)
unlike most DWM implementations (Larsen et al., 2007;
Jonkman and Shaler, 2021) that rather rely on the tuning-
intensive Ainslie viscosities wake model. Indeed, even though
both models were shown to predict accurately the far-wake
speed deficit (Zhan et al., 2020), the former overall demonstrates
improved computational time and facilitated tuning due to its
limited set of parameters.

The Bastankhah (Bastankhah and Porté-Agel, 2014) wake
model is derived through the momentum conservation equation
assuming a negligible pressure term. Consistent with the thin
shear layer assumption, the speed deficit is then parametrized as
a Gaussian whose characteristics are expressed as functions of the
thrust coefficient and turbulent intensities:

ΔuWi
(x, t) = ûWT (ti)(1−√1−

CT ,Wi

8(σWi
(t)/D)2

)

× exp(− 1
2(σWi
(t)/D)2

(
rWi
(x)
D
)

2

). (19)

The width of the Gaussian, σWi
(t), grows linearly with the

material coordinate ξWi
(t) through a growth rate k that is itself

assumed to be a linear function of the turbulent intensity, TIWi
(Doekemeijer et al., 2019; Duc et al., 2019):

σWi
(t) = k(TIWi

)ξWi
(t) + εWi

D = (ak + bk TIWi
)ξWi
(t) + εWiD

(20)

with ak and bk tuning constants. The initial value of the width
is σWi,0 = 𝜀WiD and determines the characteristic diameter of the
streamtube at the outlet of the near-wake region:

εWi = ε
1
2

1+√1−CT ,Wi

√1−CT ,Wi

(21)

with 𝜀 = 0.2 (Bastankhah and Porté-Agel, 2014). The value of
these constants has been extensively studied in the literature

(e.g., Niayifar and Porté-Agel, 2015). Most of these studies have
however targeted the development of time-averaged models
where k captures the time-averaged effects of both wake
expansion and wake meandering. The value used here should
therefore be lower than the traditional values of the expansion
constant as wake meandering is already accounted for through
our Lagrangian framework.

The speed deficit estimated by Eq. 19 is however not valid in
the near wake region. Other analytical field models introducing
various near-field wake correction strategies such as the ones
proposed by Blondel et al. (2020) or Keane (2021) were thus
investigated.Theywere eventually dismissed as, in the near-wake,
only the effective convective velocity scale is important.The exact
shape of the speed deficit is not pertinent as no wind turbine is
generally located within this wake region. Following Bastankhah
and Porté-Agel (2016), the characteristic speed deficit within
the near wake is thus recovered using the potential core theory.
This theory is consistent with the present framework because it
provides coherent estimates of the wake velocity while requiring
minimal tuning even though it largely overlooks the near-wake
physics. The wake potential core is described as a region of
uniform wake speed deficit, ΔuNW

Wi
(t, rWi
(x)), whose inlet is

located at the wind turbine location. Due to its interactions with
the ambient flow, it gradually gets smaller until ξWi,0 = ξWi

(t)
where the Gaussian self similarity solution is recovered:

ΔuNW
Wi
(x, t) = ûWT (ti)(1−√1−CT ,Wi

)

for
2rWi
(x)

D
< 1−

ξWi
(t)

ξWi,0
. (22)

2.3.2.3 Wake Interpolation
For isolated wakes, the global speed deficit field, Δu(x, t), is
obtained by projecting the local speed deficit, ΔuWj

, along the
wake particle orientation, nWj

(Jonkman and Shaler, 2021):

Δu (x, t) = ΔuWj
(t, rWj
(x)) nWj

. (23)

Wj is the particle whose plane is the closest to x. In the
context of multiple superposing wakes, an altered version of
the standard root-sum-square weighting superposition strategy
(Gebraad and van Wingerden, 2014; Duc et al., 2019; Jonkman
and Shaler, 2021) is applied:

Δu (x, t) = ∑
k∈[x,z]
(R(∑

j∈ S
(Δu2

Wj
(t, rWj
(x))

× (nWj,k |nWj,k|) ) ̂ek,WT ). (24)

R(ϕ) = sign(ϕ)√|ϕ| is the sign preserving square root
operator and S denotes the set of the closest wake particles for
each superposing wake. This procedure allows for an efficient
merging of both streamwise and transverse components of the
speed deficit.
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TABLE 2 | Lagrangian flow model parameters used for the wind farm simulations.

Wake expansion Particle advection Filter size

ak [−] bk [−] Cf [−] Cw [−] τw [s] σr [m] σξ [m] σ′ξ [m] σt [s]
0.018 0.10 0.7 0.45 8.0 63.0 63.0 512.0 126.0

2.3.2.4 Wake Advection
The interpolated wake field can then be used to update the wake
particles states using a Lagrangian advection scheme as in Eq. 15:

xWi
(t +Δt) = xWi

(t) + ũw (xWi
, t)Δt. (25)

The wake curvilinear coordinate, ξWi
, is updated accordingly:

ξWi
(t +Δt) = ξWi

(t) + ‖ũw (xWi
, t)‖Δt. (26)

Consistent with Hill’s vortex theory and experimental
investigations (Machefaux et al., 2014; Larsen et al., 2020), the
wake advection velocity is assumed to be directly related to the
maximum speed deficit observed. Following Eq. 24, the effective
wake convection velocity, ̃uWi

(t), is thus readily computed from
the superposition of the local reconstructed freestream field and
local speed deficit:

̃uw (t) = u′f (xWi
, t) −Cw Δu(xWi

, t) (27)

where Cw is a tuning constant.
The remaining particle states used to compute the local speed

deficit, TIWi
and CT ,Wi

, are conserved as the particle moves
downstream.

2.3.3 Calibration
The present operational wake model involves on a total of 9
parameters: ak, bk, Cf/w, τw, σr/ξ/t and finally σ

′
ξ . ak and bk describe

the wake expansion while Cw and Cf govern the wake deficit
and freestream velocity transports, respectively. τw is the time-
filtering constant used to compute the rotor quantities and σr, σξ,
σ′ξ and σt parametrize the spatio-temporal interpolation of the
freestream velocity field. These parameters are fitted manually
and tabulated in Table 2. A fine calibration was not deemed

necessary, as this framework is intended toward an operational
context where a runtime calibration of the parameters is
performed through data assimilation (e.g., Doekemeijer et al.,
 2018b).

2.3.3.1 Freestream Advection
The identified constant for the wake convective velocity, Cw, is in
line with the values reported in the literature. Larsen et al. (2020)
found Cw = 0.4 by exploiting the wake/ring-vortex analogy along
Hill’s vortex theory to approximate the wake self-induction. This
theory is investigated in more details by Machefaux et al. (2014)
who report slightly higher values (0.63 and 0.51) based on LES
and experimental data. Keck et al. (2014), on the other hand, did
not directly account for wake-induced velocity and adopted the
wake transport velocity at 80% of free-stream velocity.

2.3.3.2 Speed Deficit Parametrization
An initial guess for the wake expansion constants is retrieved
from the high-fidelity data. The value of the precursor velocity
field is first subtracted from the wind farm one thereby
isolating the speed deficit from the ambient flow. The wake
centerline is then extracted from the wind farm LES through
the algorithm introduced by Coudou (2021). This allows to
translate the speed deficit, initialy in the inertial LES frame,
to the meandering frame of reference. A Gaussian speed
deficit is finally fitted on the profiles obtained for various
time windows and ambient conditions. Even so, the wake
expansion constant obtained (𝜀 = 0.2, ak = 0.022 and bk = 0.14)
still overestimated wake recovery due to the inaccuracies
introduced by the wake tracking algorithm and by the flow
asymmetry. As expected, the calibrated constants are lower than
the ones presented in the literature (Niayifar and Porté-Agel,
 2015).

FIGURE 4 | Lagrangian flow model calibration: evolution of the mean convection velocity scale (blue), Uf, of the rotor-effective transverse velocity component as a
function of the normalized downstream distance; each dot indicates an individual Uf value obtained using the cross-correlation maximization approach.
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2.3.3.3 Wake Advection
Following the frozen turbulence hypothesis, the freestream
convective constant, Cf, is traditionally set to zero: this is
equivalent to postulating a one-way coupling between the
freestream velocity field and the wake. While a uniform
convective velocity was indeed observed for freestream flow, the
analysis of the reference LES rotor-averaged quantities indicates
a reduction of the effective freestream convection speed for
waked conditions (Figure 4). The cross-correlation between
the histories of the rotor-scale flow quantities and the rotor
measurements is evaluated at several downstream locations,
ξf. The time offset, Tf, which achieves the maximum cross-
correlation, and ξf are then combined to define the velocity
scale, Uf =

ξf
Tf
. This analysis is repeated for different wind farm

configurations and demonstrates a drop in Uf in the near wake
while the freestream convection speed is progressively recovered
as one considers positions further downstream.

3 RESULTS

3.1 Flow Sensing
The performances of the proposed Lagrangian flow model
are highly contingent on those of the embedded flow sensing
module (Section 2.2); we therefore first assess the performances
of this module in isolation. To that end, we compare the
flow characteristics inferred by the flow sensing module with
those retrieved directly from the LES, see Figure 5. Several

FIGURE 5 | Flow sensing: comparison of the temporal evolutions of the rotor-effective inferred flow quantities (blue) against the LES data (black) for WT0 (left) and
WT3 (right); (A) UABL = 8 ms−1 and TIABL = 6%; (B) UABL = 8 ms−1 and TIABL = 10%; (C) UABL = 15 ms−1 and TIABL = 10%.
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freestream ABL configurations have been studied for an eight
turbines farm visible in Figure 6; all its turbines operate in
essentially non-waked conditions (wakes impacting the third row
are quite dissipated). The LES velocities are sampled and then
averaged over fictitious rotors located 2D upstream of the actual
wind turbines and time shifted accordingly. For an estimator
̂ϕWT , different performance metrics are evaluated, namely the

correlation score, ρ ̂ϕWT
, mean relative error, e ̂ϕWT

, and mean
relative bias, b ̂ϕWT

. Themean error and bias of the streamwise and
TI estimators are made dimensionless using the time-averaged
value of ϕWT while metrics associated with the transverse velocity
use the Root Mean Square of ϕWT.We hereunder discuss the
performances of each estimator: rotor-normal velocity, transverse
velocity and TI.

The BEM-based rotor-normal velocity estimator provides
accurate estimates which translate into high correlations (ρûWT

=
0.88 on average) and low relative error (eûWT

= 2.4% on average)
irrespective of the ABL configuration studied. Its estimations are
further characterized by a negligible bias (bûWT

= −0.071% on
average). The Kalman filtering process however induces a slight
smoothing and time offset of the output signal.

The transverse velocity estimator does not achieve such high
levels of accuracy (e ̂wWT

= 61% on average). This large error
nonetheless does not fully characterizes the performances of
this estimator. Indeed, it is able to predict the main features
of the transverse velocity signal for low values of UABL as
indicated by the good correlation score achieved for wind
turbine below rated conditions (i.e., ρ ̂wWT

= 0.71 on average
for UABL = 8ms−1). The agreement deteriorates for turbines
above rated conditions thereby leading to low correlations
values: ρ ̂wWT

= 0.29 on average for UABL = 15ms−1. Above rated
conditions, a collective pitch is applied to the blades. This
pitch varies according to the incoming wind fluctuations, which

presumably makes the mapping between the blade loads and the
transverse velocities more complex (e.g., through the dynamics
of the collective pitch controller). A mean bias, b ̂wWT

= −7.2%,
is observed across all three ABL configurations: the ANN
systematically underestimates the transverse velocity component.
As no notable asymmetry is observed in the training data set,
the estimator bias likely arises from the neural network training
itself. In addition, the selected MLP hyperparameters only allow
to consider the current wind turbine state (Tann = 1): the network
has no knowledge of the past wind turbine state. However, no
significant improvement of the neural network performances
was observed when providing the neural network with more
temporal data (Tann > 1). This may arise from the structure of
the neural network itself which considers each temporal state
as an individual input. More temporal information then just
leads to a more complex ANN, which hinders its training and
its handling of the present time-varying phenomenon. Other
network architectures accounting explicitly for time (e.g., Long
Short TermMemoryRecursiveNeuralNetwork) should therefore
be considered as part of future investigations. One could also
envision to employ different ANNs depending on the wind speed
or pitch angle and thenmerge their predictions in order to obtain
a more robust transverse velocity estimate better accounting for
blade pitching. Finally, enriching the data base with more data
extracted from above rated condition may also contribute to
improving the overall performances of the neural network.

The last plot depicts the temporal evolution of the turbulence
intensity. After the initial settling period, similar performances
are obtained across all three simulations with correlations of
around ρ ̂TIWT

= 0.61. The flow sensing module captures most of
the turbulence intensity signal patterns but underestimates the
predictions by about b ̂TIWT

= −17% with ensuing error of e ̂TIWT
=

25%.This is to be expected as ̂TIWT is computed from the sector

FIGURE 6 | Isolated wind turbines: instantaneous streamwise velocity field (t = 1,000 s) predicted by the flow model (left) and retrieved from the LES (right); (A) UABL

= 8 ms−1 and TIABL = 6%; (B) UABL = 8 ms−1 and TIABL = 10%.
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effective streamwise velocities which by definition neglects the
influence of the small-scale velocity fluctuations.

3.2 Lagrangian flow Model
Let us now assess the Lagrangian flow model through a
comparison against data retrieved from the reference LES. The
case of isolated wind turbines (Section 3.2.1) is first considered
and the performances of the model in the context of a small wind
farm are then investigated (Section 3.2.2).

3.2.1 Isolated Wind Turbines
Weuse the samewind farm layout as in Section 3.1.The loads and
operating settings recovered from the high-fidelity simulation are
first processed by the flow sensing module and then fed to the
Lagrangian flow model. The model runs much faster than real
time: a 2,500 s wind farm simulation runs in around 12 s on
a single laptop core (5× 10−4 wall-clock second per simulation
second). The freestream and wake particles update and shedding
frequencies are, respectively, 4

TC
and 1

TC
with TC, the convective

time scale defined as TC = D/UABL. The particle discretization
strategy is illustrated in Figure 7 for wind turbine 1 (WT1).
50 wake particles and 25 freestream ones suffice to capture the
development of one wind turbine wake across the full domain
(28D downstream of WT0). For the wind farm layout studied,
fewer freestream particles are required to capture the freestream
field. Indeed, as freestream particles shed by WT0 reach WT5
their interpolation weight have collapsed due to their age and the
info they convey is thus largely disregarded. It is therefore not
pertinent for the freestream particles to span more than 20D in
the current configuration.The samewould not be true if the wind
was not aligned with the wind turbines.

Figure 6 compares the full flow fields of the model and
the LES in terms of the hub-height velocity field. Both low-
TI (TIABL = 6%) and high-TI (TIABL = 10%) configurations are
studied at UABL = 8ms−1. This comparison confirms the good
potential of the approach: the Lagrangian flow model captures
an array of phenomena that classical steady-state models simply
cannot capture.

A first qualitative comparison indicates a good agreement
between the meandering patterns, particularly for the low-
TI case. While the high-TI near-wake is reconstructed in a
satisfactory manner, the far-wake estimate deviates from the
expected value significantly. Indeed, the information collected

FIGURE 7 | Isolated wind turbines: instantaneous streamwise velocity field
(t = 1,000 s) predicted by the flow model for UABL = 8 ms−1 and TIABL = 6%;
wake particle (•) and freestream particle (▴); wake position extracted from
the LES (full black line).

at the rotor becomes less pertinent as one travels downstream.
Accordingly, the deterioration of particle information is expected
to increase with the turbulent intensity of the inflow.

If one now considers the freestream information, the
corresponding particle discretization appears to capture the
flow heterogeneity at farm scales: the reconstructed freestream
velocity is not uniform across the domain and reflects the
large-scale velocity fluctuations present in the LES. The
reconstructed flow field can however only provide a smoothed
out representation of the instantaneous LES one. The influence
of small-scale eddies (typically <2D) is ignored since only
rotor-effective information is fed to the model. Moreover, since
information is gathered and processed where it is relevant
(around the wake centerline), some blindspots may appear
between the wind turbines rows. The use of Lidar data could
therefore potentially be investigated in order to better account for
the small-scale structures (Rott et al., 2020). Accounting for these
small-scale structures may however fall outside the hypothesis of
frozen turbulence hypothesis as suggested by Bossanyi (2013).

Thewakemodel also suffers from the same limitation: for both
TI cases, the model depicts the wakes as smooth representations
of their LES counterparts. It is not able to capture asymmetry
nor the loss in coherence of the wake particularly for high-
TI configurations. Nevertheless, one notes the good overall
agreement between the speed deficit widths and intensities.
This is better demonstrated by the instantaneous streamwise
velocity profiles of Figure 8A. Despite its simple form, the
near wake correction introduced by Bastankhah and Porté-
Agel (2016) leads to coherent estimates for the near wake profiles.
These profiles definitely underline the need to account for
wake meandering in dynamic models of wind turbine wakes:
meandering clearly manifests itself in the instantaneous flow
fields, even away from the rotors.

Figure 8B presents time-averaged and instantaneous
streamwise velocity fields at hub height, which confirm the
observations hereabove. A Gaussian steady-state wake model
is fitted over the time-averaged LES data: it corresponds to a
model that would be optimally tuned by exploiting state feedback
in a fashion similar to Doekemeijer et al. (2019). The tuned
parameters obtained, 𝜀 = 0.2 and k = 0.028, are in line with the
values reported by Niayifar and Porté-Agel (2015). Excellent
agreement is obtained between all three approaches regarding
the steady-state profiles especially in the far wake ( x

D
> 4) where

the self-similarity of the Gaussian profile is recovered. This is
however not true for the instantaneous flow field: the calibrated
Gaussian model over-estimates the width of the wake whereas
the Lagrangian flow model better predicts the speed deficit
downstream of the turbine.

3.2.1.1 Wake Centerline Statistics
A quantitative analysis of wake centerline characteristics is now
performed for WT0 and WT3. Figure 9 shows the histories of
their transverse location, zC, evaluated at several downstream
positions (6D, 9D and 12D). As differences in tracked wake
centerline positions will likely occur depending on the size
of the mask considered for the LES post-processing, different
mask sizes are evaluated and used to define the so-called wake
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FIGURE 8 | Isolated wind turbines: instantaneous streamwise velocity profiles (A) Instantaneous streamwise velocity profiles at different streamwise locations (t
= 1,000 s) predicted by the model (blue) and retrieved from the LES (black) for UABL = 8 ms−1 and TIABL = 6% (left); UABL = 8 ms−1 and TIABL = 10% (right); (B) Time
averaged (left) and instantaneous (right - t = 1,000 s) streamwise velocity profiles for WT1; flow model (blue); LES (black); optimally fitted steady-state Gaussian
Bastankhah wake model - 𝜀 = 0.2 and k = 0.028 (dashed red) for UABL = 8 ms−1 and TIABL = 6%.

centerline envelope. Highly asymmetric or incoherent wakes
are logically harder to track and hence tend to lead to larger
differences in wake centerline position depending on the size
of the mask selected. A wider wake envelope is therefore
indicative of an asymmetric or incoherent wake. In both the
high- and the low-TI case, less agreement is obtained between the
different wake tracking masks for WT3 than for WT0 resulting
in broader wake envelopes on average. The reference mask
is then chosen quite wide, i.e., σx = σy = σz = D/2, in order to
prevent the spurious numerical behaviors of the wake centerline
detection.

The wake centerline computed by the model is in good overall
agreement with the wake centroid extracted from the LES. The
model appears to correctly advect the large wake features and to
reproduce consistent wake deflection amplitudes. The accuracy
of the wake centerline prediction is however limited by that of
the underlying flow estimator.The transverse velocity estimations
for WT0 clearly outperform those obtained for WT3 (Figure 5)
which directly translates into a better tracking of the wake center
downstream of WT0. This increased mismatch also reflects the
higher complexity of the wake downstream of WT3 as indicated
by the broader wake envelope. Moreover, the performances of
the Lagrangian flow model degrade as the wavelength of the
meandering mode considered decreases. As noted previously,
this may be partially explained by the reduced turnover time
of small-scale eddies. Small eddies quickly evolve as they travel
downstream thereby making the information conveyed by the
particles less relevant as they age. As a result, the signal
cross-correlations, ρzC , tend to decrease with the downstream
distance.

The wake centerlines are further compared in terms of their
statistics on the basis of the work of Foti et al. (2018). Each wake
centerline is first low-pass filtered spatially with a cut-off length

of 1D. The maxima and minima of the subsequent signals are
then tracked and the statistics are evaluated. The amplitude, A, is
defined as half the transverse distance between two consecutive
maxima-minima while the wavelength, λ, is computed as the
streamwise distance between two successive maxima or minima.
Finally the Strouhal number is introduced as:

St =
̃uW

UABL
⋅ D
λ

(28)

where ũW is the wake convection speed. These quantities are
then binned, with respect to the downwind distance from the
rotor. The resulting wake statistics are finally averaged over the
turbines WT0 to WT4 and the results are plotted in Figure 10.
The greyed areas (i.e., x

D
< 3 and 11 < x

D
) denote areas that are

not exploitable owing to the method used for the computation
of the wake statistics. It is nonetheless plotted for the sake of
transparency.

The method is first applied to the wake centerline time series
extracted from the LES using a Gaussian mask with σx = σy =
D
2
and σz = D. The LES results demonstrate good agreement

with previous experimental investigations by Coudou (2021).
However, while they report strong influence of the ABL
characteristics on the wake meandering statistics, we do no
distinguish such a trend in the current context: the wake
statistics exhibit a similar behavior for the low- and high-TI
configurations.

When comparing the Lagrangian flow model statistics to that
of the LES, reasonable match is obtained regarding the predicted
binned amplitudes. Both approaches result in a drop in amplitude
beyond 8D and the binned amplitude probability distributions
look similar.

The wake convection speed is slightly overestimated by the
Lagrangian flow model even though both curves present similar
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FIGURE 9 | Isolated wind turbines: temporal evolutions of the wake centerline position estimated by the model (blue) against the one retrieved from the LES (black)
at locations 6D, 9D and 12D downstream of WT0 (left) and WT3 (right); settling period (dark grey); LES wake centerline envelope (light grey).(A) UABL = 8 ms−1 and
TIABL = 6%; (B) UABL = 8 ms−1 and TIABL = 10%.

trends. The wake recovery leads to higher ̃uw in the far wake. We
however note that wake convection speed behavior in the near
wake ( x

D
< 4) is not consistent with that of LES. Amore consistent

behavior is obtained when the near wake correction is disabled.
This however leads to a significant time offset between the LES
and the flow model time responses.

We finally investigate the mean wavelength: this metric is
roughly constant across all downstream distances but appears
inflated by the model while the LES produces values in line
with the ones obtained by Coudou et al. (2018) (i.e., 2.5 < λ

D
<

3.25 for isolated wind turbines). This in turn results into
an underestimation of the Strouhal number. Wake lengths
under 3D are mostly overlooked by the model. Improving the
resolution (i.e., the particle shedding frequency) can substantially
improve this match but does not translate into a better
correspondence of the time series. If a wider Gaussian mask
σx = σy = σz = D/2 is employed for the LES wake centerline
extraction, better agreement is recovered regarding the binned

wavelengths while similar agreement is conserved for the other
statistics.

3.2.1.2 Rotor Effective Wind Speed
The rotor-effective streamwise velocity, uRE, describes how the
rotor-averaged velocity of a fictive wind turbine placed at some
location downstream would evolve with time. The 2D flow
field inferred by the Lagrangian Flow model is extrapolated
outside the reference x− z plane assuming wake axi-symmetry
and neglecting the flow shear while the reference uRE value is
simply extracted from the LES using a circular mask. Both curves
are plotted on Figure 11.

The rotor effective velocity can be considered as the
superposition of the freestream velocity and of the speed deficit.
The former dictates the slow velocity fluctuations caused by the
heterogeneous inflow and the latter, strongly influenced by the
meandering phenomenon, leads to the marked drops in velocity
observedwithin the wake. Specifically, wakemeandering deviates
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FIGURE 10 | Isolated wind turbines: mean binned statistics computed from the reconstructed flow field (full blue) against the one retrieved from the LES (full black);
wake centerline amplitudes (A); wavelengths (λ); convective speeds ( ̃uW); Strouhal numbers (St); 25 and 75% confidence bounds of the binned quantities (dashed);
(A) UABL = 8 ms−1 and TIABL = 6%; (B) UABL = 8 ms−1 and TIABL = 10%.
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FIGURE 11 | Isolated wind turbines: temporal evolution of the fictive streamwise rotor effective velocities at different downstream station (3D, 6D and 9D)
downstream WT0 (left) and WT3 (right); flow model (blue) and LES (black); estimated freestream rotor effective velocities (red) (A) UABL = 8 ms−1 and TIABL = 6%; (B)
UABL = 8 ms−1 and TIABL = 10%.

the wake into or away from the fictious downstream rotors, thus
successively decreasing and increasing the rotor effective wind
speed.This phenomena is remarkably well captured downstream
of WT0 for the low-TI configuration (and to some more limited
extent for the high-TI one). In the low-TI case, the extreme
wake centerline deflection occurring 9D behind WT0 at times
45TC, 65TC and 105TC coincides with a sharp increases in uRE.
Similar peaks can be found in the high-TI case for times 40TC,
45TC and 105TC. Still, most small-scale velocity fluctuations are
overlooked by the rotor as they corresponds the eddies whose
characteristic dimensions fall beyond the model resolution.
The model performances regarding this metric are however not
consistent across all wind turbines: turbines whose meandering
is poorly captured are obviously less likely to produce accurate
predictions uRE. Nevertheless, in all cases, the initial drop in
streamwise velocity as well as the slow dynamics of the deficit
recovery are well captured by the Lagrangian flow model.

3.2.2 Small Wind Farm
Let us now assess the model in a configuration quite close
to an operational use with wake impingement. We consider
a small wind farm operating inside a weakly turbulent ABL
(UABL = 8ms−1 and TIABL = 6%); 12 turbines, initially at rest, are
distributed across three rows with a uniform streamwise spacing
of 7D.The resulting wind farm layout is illustrated in Figure 12A
at t = 1,000s.

For the sake of conciseness, the validation of the flow sensing
module is not presented in the context of waked wind turbines.
TheMLP training database nevertheless includes bothwaked and
freestreamwind turbineswhile theBEM-Kalmanbased estimator
does not differentiate between waked and unwaked settings. The
framework developed can therefore be extended to waked rotor
as demonstrated in this section.

Each wake is discretized using 25 wake particles and 15
freestream ones while the update and shedding frequencies are
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FIGURE 12 | Small wind farm: instantaneous (t = 1,000 s) streamwise velocity field across the 12 wind turbines farm for UABL = 8 ms−1 and TIABL = 6%; (A) full flow
field predicted by the flow model (left) and retrieved from the LES (right); (B) velocity profiles at different streamwise locations predicted by the model (blue) and
retrieved from the LES (black).

kept unchanged ( 4
TC

and 1
TC
, respectively). The reconstruction of

the 1,250s-long flow field requires a wall-clock time of 8s on the
same hardware as for Section 3.2.1.

A satisfactory match is obtained between the LES data and the
reconstructed flow field. The instantaneous streamwise velocity
profiles appear similar in both cases as illustrated in Figure 12B.
The estimated wake intensities, widths and deflections are
globally well captured by the model even though the increasing
levels of wake asymmetry and incoherence observed for turbine
deeper in the array are not reflected by the wake model. The
smoothing introduced by the model is particularly apparent for
WT3, WT7 and WT11 whose wakes are pictured as much more
coherent than what they really are.

TheLagrangian flowmodel allows to capturemost of the large-
scale freestream flow heterogeneities. The wind turbines of the
center row experience a slower freestream than that of the upper
and lower row. Some blindspots nonetheless exist between the
wind turbines rows where no information is available. As a result,
the large high-velocity gust propagating between the first and
second row remains completely unnoticed by the model.

Figure 13 provides a comparison of the history of the
transverse wake deflection. In accordance with the non-waked
studies of Section 3.2.1, high correlations are reported for
the freestream wind turbines (ρzC = 0.85 and 0.76). After the
wakes have propagated throughout the farm (t≫ 32TC), broader
wake envelopes indicative of a more pronounced asymmetry
are observed for wind turbines deep into the wind farm.
The wake centerline dynamics predicted by the wake model
nonetheless remain in relatively good agreement with the
LES data with a minimum score of ρzC = 0.55 for WT7.

Remarkably, they even exhibit an amplification of themeandering
process within turbines rows reported by Coudou (2021) and
Muller et al. (2015). For an identical downstream position, the
amplitude of wakemeandering increases for wind turbine deeper
into the row (e.g., WT0 and WT1). The meandering amplitudes
however seem to be overestimated for wind turbines deep into
the array (WT2 -WT3 -WT6 -WT7). Finally, no significant loss
in accuracy with respect to the LES-fed flow model is obtained
when using the flow sensing approach. This confirms the good
performances of the flow sensing module in the context of
Lagrangian flow modeling.

4 DISCUSSION

The presented work introduces a particle-based wind farm flow
modeling framework aimed at wind farm control. It reconstructs
the farm flow field in terms of a freestream velocity field and of
a wake velocity deficit field based on information recovered at
the wind turbines through a flow sensing module. The wakes
are modeled using simplified speed deficits and this information
is propagated across the wind farm in a physics-informed
fashion thereby capturing the dynamic wake signature at a low
computational cost: 5× 10−4 to 7× 10−4 wall-clock seconds are
required per simulation second on a single core laptop depending
on the configuration studied.

The resulting surrogate wake model can, to some extent, be
regarded as a flow sensing-based hybrid approach between the
FAST-farm implementation (Jonkman and Shaler, 2021) of the
DWM and the standard, steady-state speed deficit formulation
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FIGURE 13 | Small wind farm: history of the wake centerline position 6D downstream WT0-WT7 estimated by the model (blue) against the one retrieved from the
LES (black); bottom row WT0-WT3 (left); middle row WT4-WT7 (right); model fed with the flow sensing data (full blue); model fed with LES data (dashed blue);
settling period (dark grey); LES wake centerline envelope (light grey).

introduced by Bastankhah and Porté-Agel (2016). Its wake-
particle formulation is analogous to the FLORIDyn observations-
points approach proposed by Becker et al. (2022) which also
allows to account for heterogeneous inflow in its latest version.

This particle-based discretization is particularly in-line
with the particle filter approach as investigated by Le Provost
and Eldredge (2021) or Notter et al. (2020). Moreover, another
notable aspect for the further development of this framework
is its limited number of input parameters and the reduction of
the state space size in order to facilitate the tuning procedure.
This should allow to extend the presented formalism to joint
state-space correction scheme in a ensemble manner akin to
Doekemeijer et al. (2018b) or Howland et al. (2020). Similar
configurations have already been successfully investigated by
Dong et al. (2021) or Lio et al. (2020) in an attempt to improve
the DWM operational performances by assimilating loads or
Lidar measurements.

Simulation results demonstrate that the proposed Lagrangian
flow model achieves good estimates of the flow state in both
low- and high-TI configurations when compared to LES results.
The analysis is first oriented toward the modelization of isolated
turbines and the ensuing findings are then corroborated by
the study of a small 12 turbines wind farm with strong wake
interactions.Themain dynamic features of the flow are captured:
both the deflection and shape of the speed deficit and the
heterogeneous flow field features are consistent with the LES.The
model distinctly provides additional insight into thewake physics
when compared against the traditional steady state approaches.
Great agreement is observed regarding wake meandering: the
Lagrangian flow model is indeed able to capture the distinctive

wake meandering signature across large downstream distances
while being fed with limited and localized flow information. The
lowest correlation score between the predicted wake centerline
and its LES counterpart is observed 12D downstream the wind
turbine with a value of 0.50 while correlation scores as high
as 0.85 are obtained closer to the rotor (i.e., 6D), where the
information gathered by the wind turbine is more pertinent.
The model however introduces a strong smoothing of LES field
since its resolution is limited by the rotor-averaged nature of the
information collected.This is reflected by an overprediction of the
averagedmeandering wavelength: in line with past investigations
(e.g., Coudou, 2021) the LES provides a mean wavelength of
around 2.75 < λ

D
< 3.25 while, for the flow model, a value around

3.5 < λ
D
< 4.5 is recovered. Feeding the model with Lidar data

could therefore allow the model to boost its spatial resolution
thereby improving its overall performances. Moreover, it is not
clear whether or not the ANN transverse velocity estimator
will generalize well to other wind turbines geometries or ABL
characteristics. This is problematic as we observe a strong
influence of the accuracy of the transverse velocity estimator on
the performances of the flow model as a whole. As mentioned
previously, one way the robustness of the transverse velocity
estimator could be improved is by taking advantage of more
advanced ANN architecture that explicitly account for time (e.g.,
Long Short Term Memory Recursive Neural Network). They
should result in a better ability of the neural network to deal with
the transverse velocity history thereby improving its accuracy.
The use of Lidar data is yet another tool that could also potentially
alleviate the need for such a error-prone flow estimator thereby
making this framework more robust. Notable efforts toward
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reconstructing the ambient flow from Lidar have been performed
by various authors including Bauweraerts andMeyers (2021) and
could provide valuable additional insight into the ambient flow
physics. One could also envision to merge both the transverse
velocity measurements and the ANN inside a unified framework
relying on a Kalman filter in a similar fashion as for the BEM-
based rotor-normal velocity estimator.

Clearly, this model is part of a more general recent
trend toward the development of operational dynamic
surrogate wake models aimed at model-based wind
farm control (Doekemeijer et al., 2018b; Becker et al., 2022)
and that rely on valuable corrective information
provided by state feedback to enhance their robustness
(Doekemeijer et al., 2018a; Howland et al., 2020). We believe
that such an operational meandering-capturing model
could prove invaluable for the mitigation of fatigue loads
in wind farms. This is supported by recent studies (e.g.,
Reinwardt et al., 2020; Moens and Chatelain, 2022) that clearly
demonstrate that the meandering behavior definitely governs
fatigue loads; this clearly pleads for the capture of the
phenomenon by an operational model if one targets fatigue
alleviating model-predictive control of wind farms. Further
work toward evaluating the dynamic response of the flow
model to a control step input change is also under progress
(Lejeune et al., 2022) and shall further demonstrate the
applicability of the presented framework to operational wind
farm control.
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