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For the horizontal take-off hypersonic cruise aircraft, research on the combined design
method of multi-section was carried out, the main design parameters of different sections
were analyzed, the parametric design model of the flight path was established, and the
characteristics of the typical flight path were studied. On this basis, the calculation of
sample points was carried out, and a prediction model of aircraft range and flight time
based on the design parameters of the four main flight sections was established based on
the neural network method. The genetic algorithm is used to optimize the flight path of the
prediction model with the range as the objective function. The research results show that
the neural network prediction model based on the parametric design of the trajectory can
predict random sample points better than the trajectory model For the prediction of
random sample points, compared with the calculation results of the trajectory model, the
maximum errors of the flight range and flight time are within 0.82% and 0.45%. The
prediction model is optimized with the flight range as the objective function, and the relative
error between the optimal range and the trajectory model under the corresponding section
parameters is less than 0.2%, which shows that the model established in this paper can
better predict the range and flight time according to the section design parameters.
Parametric modeling and neural network optimization are feasible methods for aircraft
trajectory design and section parameter optimization.
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1 INTRODUCTION

Due to the outstanding tactical and technical advantages of hypersonic vehicles, they have received
extensive attention. The horizontal take-off and landing of a high-speed cruise aircraft is usually
powered by an air-breathing combined engine. During the climb, the acceleration and climb ability
of the aircraft are affected and constrained by the dynamic characteristics, and the change in the flight
profile will affect the engine performance. At the same time, the aerodynamic performance of the full
mission profile is highly coupled with the engine performance (Wei, 2022). Therefore, flight profile
design and optimization are very important for aircraft/engine matching and the overall technical
scheme of aircraft (Mei et al., 2019), which is one of the research hotspots.

Trajectory optimization of a hypersonic vehicle involves many constraints and is a complex
nonlinear multi-constraint optimal control problem (Gath and Calise, 1999), which is quite difficult
and challenging to solve. Aiming at the trajectory optimization of the aircraft, research based on the
trajectory model is carried out. By establishing the calculation model of the flight process, the
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influence law of the parameters of different flight sections is
analyzed, and the scheme design and optimization are carried
out. Lu et al. (2010) proposed a trajectory design method for the
climbing phase of a rocket-based combined cycle (RBCC) engine
cruise vehicle based on the Mach number dynamic pressure
reference curve, but did not adopt the optimization method
and did not obtain the optimal solution. Based on the
relationship between flight dynamic pressure and design
dynamic pressure in flight, Olds and Budianto (1998) put
forward three methods to realize isodynamic pressure
trajectory control. The climbing trajectory is designed by
establishing the Mach number dynamic pressure reference
curve of RBCC aircraft and iterating the angle of attack
tracking reference curve by dichotomy. Jia and Yan (2015)
proposed a climbing trajectory design method for horizontal
take-off aspirated combined power aircraft. The climbing
trajectory is divided into three sections: take-off climbing
section, isodynamic pressure section, and equal heat flow
section. Constraints such as overload, dynamic pressure, and
heat flow are considered respectively. The constraint boundary of
trajectory design and the climbing trajectory design method of
three flight sections are given in the altitude-velocity profile. The
tracking guidance law of the reference trajectory is designed by
using the feedback linearization method. Zhang et al. (2014)
adopt the integrated analysis method of aircraft/engine, divide
flight sections into different tasks in design and evaluation, and
select optimization parameters through scheme comparison.
These designing methods can realize the design of the
trajectory, but the optimization process is mainly based on
models and experience.

Trajectory optimization based on optimization theory or
intelligent algorithms is another technical way. From the
perspective of algorithms, trajectory optimization problems
can be divided into indirect methods and direct methods (Liu,
2017). With the advancement of computer technology, direct
method has become amore popular method for solving nonlinear
multi-constraint trajectory optimization problems. Extensive
research has been carried out on this key problem, and many
research results have been obtained (Zhang, 2013; Gandhi and
Theodorou, 2016). Among them, the Gauss pseudo spectral
method is a direct collocation method based on global
interpolation polynomials that has high computational
efficiency. Therefore, it is favored by researchers and is the
focus of current research (Reddien, 1979; Benson et al., 2006;
Tao, 2017). In addition, as a branch of the direct method, the
global pseudo spectral method has developed very rapidly, such as
the adaptive pseudo spectral method, which is applied to the
optimal control problem (Darby et al., 2011) and trajectory
piecewise optimization (Zhao and Zhou, 2013), and the
improved hp-adaptive pseudo spectral method rising section
prediction based on trajectory division into multiple
subintervals (Liu et al., 2016). Some scholars have also
conducted comparative studies on different improved pseudo
spectral methods (Narayanaswamy and Damaren, 2020).
Although the pseudo spectral method is widely used in
trajectory optimization, the pseudo spectral method is only a
transformation method and is often used together with

optimization algorithms such as sequential quadratic
programming (SQP) (Cui et al., 2020). Compared with
traditional algorithms such as the gradient method and
dynamic programming method, modern revelation algorithms
have gradually become a hot spot in recent years, including
particle swarm optimization algorithms and genetic
algorithms, which have been applied to many fields such as
aerospace (Antunes and Azevedo, 2014; Ahuja and Hartfield,
2015). The numerical optimization algorithm in the study by
Zhang (2017) is established under the framework of the particle
swarm optimization algorithm. The concepts of Pareto optimal
solution and congestion distance are introduced to describe the
optimal solution relationship and optimization processing logic
in the numerical optimization process of the algorithm, and the
corresponding evaluation indexes are used to measure the quality
of the optimal solution set. Zheng et al. (2018) took the RBCC
hypersonic cruise vehicle as the research object, and proposed a
nested optimization strategy of “particle swarm optimization
algorithm and pseudo spectral method” for its climb-cruise
global trajectory optimization problem. Because the genetic
algorithm can be applied to different complex optimization
systems, Patrón and Botez (2015) used the genetic algorithm
to obtain the minimum fuel consumption flight trajectory,
including the longitudinal and lateral directions for the cruise
section of the long-distance aircraft. Li et al. (2012) used genetic
algorithms to optimize the climbing and cruise range of RBCC
hypersonic missiles. This research work has greatly promoted the
development of aircraft trajectory optimization.

As a predictive modeling method, neural networks have the
advantages of nonlinear fitting, and can improve the accuracy
through training, realize the nonlinear approximation of high-
dimensional complex mapping (Li et al., 2006), and have been
applied in flow solution and flow field reconstruction (Xie et al.,
2018; Wang et al., 2021), and trajectory prediction (Zheng et al.,
2020). Zhang and Li (2020) optimize the initial weight and
threshold in the BP neural network by constructing a GA-BP
neural network and comprehensively considering the behavioral
characteristics such as longitude and latitude, speed and heading,
so as to realize the prediction of ship track. Ma et al. (2020) used a
depth network to study trajectory generation for hypersonic
vehicles. Oktay et al. (2018) carried out the optimization of
the tilt stability and maximum lift drag ratio of variable
UAVs, using a neural network. These studies show that neural
networks can be applied to trajectory prediction.

At present, the research on aircraft trajectory optimization is
relatively in-depth, and the trajectory optimization design is
mostly combined with the control system design (Qian, 2021;
Tang et al., 2021). For example, in the optimization process, the
angle of attack is the main variation, so as to reflect the guidance
and control process (Zhou et al., 2020; Zhu et al., 2020). These
methods are more suitable for the improvement of flight profiles
and control laws in detailed design. Compared with optimization
theory and intelligent algorithms, the segment parameters of
model-based trajectory design have obvious physical
significance. Through the analysis of segment design
parameters, it can reflect the influence of different segment
parameters on the flight process, help study the coupling law
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between engine performance and flight profile, and is very
suitable for the preliminary design and demonstration of the
trajectory. Based on the characteristics of multi parameter
nonlinear influence of hypersonic vehicles, based on section
analysis and parametric modeling, this paper constructs the
climbing section by section, divides the climbing process into
different control law processes, and studies the main influence
parameters of different sections. Based on the sample calculation
in the flight envelope, the nonlinear combined neural network
between the section design parameters and the flight distance and
flight time is established, and then the optimization algorithm is
used to predict and optimize the overall trajectory parameters of
the hypersonic vehicle, which provides a method for the
trajectory optimization of hypersonic vehicles.

2 TRAJECTORY CALCULATION MODEL

2.1 Aircraft Centroid Motion Model
Aircraft trajectory calculations include dynamic and kinematic
models. The equations describing the motion parameters of the
aircraft centroid include:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

_R � V sin γ

_θ � V cos γ sinψV

R cos ϕ

_ϕ � V cos γ cosψV

R

_V � P cos α cos β −D

m
− g sin γ

_γ � 1
mV

[P(sin α cos γV + cos α cos β sin γV) + L cos γV − Z sin γV] − g

V
cos γ

ψV � − 1
mV cos γ

[P(sin α sin γV − cos α sin β cos γV) + L sin γV + Z cos γV]

,

(1)

where R is the distance from the aircraft to the earth’s center, V is
the aircraft speed, θ and ϕ are the longitude and latitude of the
aircraft, respectively, γ is the trajectory inclination, ψV is the
trajectory deflection angle, γV is the speed inclination angle, α and
β are the attack angle and sideslip angle of the aircraft
respectively, L, D, Z, and P are lift, drag, lateral force, and
engine thrust, respectively.

The aerodynamic force acting on the aircraft is the functional
relationship of flight speedMa, heightH, attitude angles α, β, etc.,
and control surface deflection angles δx, δy, δz, etc., which can be
expressed as:

CL,D,Z � f(Ma,H, α, β, δx, δy, δz), (2)
In addition, the trajectory calculation also needs the geometric

relationship between the angles in formula (1), atmospheric
model, a control system loop model, etc.

2.2 Flight Section Model
For hypersonic vehicles, they go through different flight stages,
from ground zero speed take-off to high-altitude high-speed
cruise. According to the flight characteristics of different

stages, the trajectory can be divided into different sections.
Typical sections include:

(1) Program flight section

At the initial stage of takeoff and climb, the aircraft can fly
according to a certain law of trajectory parameters. The flight
program can construct different modes according to different
parameters, such as the change of angle of attackα, the law of
altitude H, etc. A typical variation law according to the trajectory
inclination γ is:

dγ

dt
� { C1 0< t< t1

−C2 t1 ≤ t< t2
. (3)

Among them, C1 and C2 can be taken as constants. Under this
law, the aircraft takes off from the horizontal state, gradually
decreases after reaching the maximum trajectory inclination, and
finally turns into the level flight state.

If the height change rate is taken as the parameter, set the
height change rate as a function of time, that is:

dH

dt
� f(t). (4)

f(t) can be a constant value or the law of time. When the
climbing ability is insufficient or you want to obtain a large
acceleration rate, it can fly at constant altitude and the climb rate
is zero, that is:

dH

dt
� 0. (5)

(2) Variable acceleration flight

According to the performance of the engine, the acceleration
rate _V is taken as the control variable in the climbing process. The
higher the thrust of the engine, the greater the acceleration rate
that can be achieved, otherwise the acceleration rate is reduced.
Acceleration rate as a function of time is achieved for a specific
flight section:

dV

dt
� f(t,H,Ma). (6)

If the acceleration rate is set to be constant, that is, a constant
acceleration rate climb, that is:

dV

dt
� C. (7)

(3) Isodynamic pressure flight

Isodynamic pressure flight is a common flight mode of
aircraft, which can coordinate between acceleration rate and
climb rate under the constraint of structural load. That is:

⎧⎪⎨⎪⎩
dQ

dt
� 0

Q0 � C

. (8)
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(4) Cruise flight

When the aircraft reaches the predetermined cruise flight
state, the flight altitude and speed remain constant. it is
necessary to control the engine thrust through speed feedback
and the balance relationship between aerodynamic force and
moment to realize cruise flight. During cruise flight, the following
requirements are met:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dH

dt
� 0

dV

dt
� 0

H � HC

V � VC

. (9)

In the above formula, HC is the cruise altitude and VC is the
cruise speed.

(5) Transition Process Control

During flight, there will be differences in parameters between
different sections. During the section conversion, the parameter
PID feedback control is used to realize the smooth transition. For
example, when transitioning from the constant acceleration
phase to constant dynamic pressure flight, take Qp as the
expected dynamic pressure value by controlling the change of
trajectory inclination Δγ adjust the dynamic pressure. Construct
the following model:

Δγp � K1(Q − Qp) +K2
_Q + K3 ∫ (Q − Qp)dt. (10)

(6) Engine thrust

The main flight processes of horizontal take-off high-speed
aircraft include ground take-off acceleration climb, constant
speed cruise, return and other processes. In the climbing
process, it is expected to climb at a large acceleration, and the
engine works according to the maximum state, including:

P � PMax(H,Ma,Q, ε). (11)
WhereH,Ma,Q, and ε are flight altitude, Mach number, dynamic
pressure, and fuel gas ratio, respectively, and PMax is the thrust
value under the maximum condition of the engine.

During cruise flight, the engine works in a throttling state, and
the change in thrust can be calculated according to the feedback
of a predetermined speedMap, and then the thrust can be
adjusted through fuel supply. The thrust adjustment of the
cruise section adopts the following form:

ΔP � K1(Ma −Map) + K2Ma. (12)

(7) Constraints

During the flight, the flight profile, trajectory parameters,
attitude angle, etc. will change. According to the design

scheme, during the trajectory calculation, it is necessary to
restrict the variation range of multiple parameters, mainly
including:

Attack angle constraint: α ∈ [ αMin, αMax ].
Dynamic pressure constraint: Q ∈ 1

2 ρV
2 ∈ [QMin, QMax ].

Flight profile constraints: Ma≤MaMax; H≤HMax.
Overload restraint: Ny ≤NyMax; Nz ≤NzMax.
Aerodynamic thermal restraint (Jia and Yan, 2015):

_q≤
C1���
Rd

√ ( ρ

ρ0
)0.5( V

VC
)3.15

≤ _qMax. (13)

The above constraints affect each other, so they are balanced
according to certain strategies during flight.

2.3 Flight Section Design Parameter
Analysis
For the flight process of horizontal take-off and landing on a
high-speed cruise, the flight trajectories of different flight sections
can be constructed. According to the model characteristics of
different flight sections, the parameters affecting the flight process
are extracted, and the parameter selection needs to be analyzed
from the aspects of simplicity and sensitivity. Taking the
longitudinal plane flight process as an example, this paper uses
a typical four-section trajectory model for analysis. Since the
range and flight time are mainly related to the climb and cruise
process, the fuel threshold required for the return process is set in
the calculation, and the return landing process is no longer
compared. The main parameters are listed in Table 1, and the
trajectory is shown in Figure 1.

The typical flight sections described above have a total of 11
parameters. By changing the parameter values and combining the
constraints, different flight trajectories can be obtained.
Obviously, in the flight profile, there are many parameters
affecting the flight process, and there is a complex mutual
coupling relationship between them.

Analyzing all parameters would greatly increase the difficulty
of analyzing and optimizing the design. In practice, different
parameters have different effects on flight trajectory. Through the
analysis of a typical trajectory, four parameters are selected as the
main variables for the trajectory analysis and optimization design
for the flight mission with a certain cruise altitude and speed,
including the flight time of the acceleration section TA, the
acceleration section acceleration _VBSet, the acceleration section
end speed VBEnd, and the dynamic pressure QCset in the climb
section.

2.4 Numerical Calculation Method
The trajectory calculation model is a system of differential
equations, and the fourth-order Runge-Kutta method is
adopted for the differential equations. Let the initial value
problem be expressed as follows:

y′ � f(t, y), y(t0) � y0 ,

yn+1 � yn + h

6
(k1 + 2k2 + 2k3 + k4). (14)
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Here:

k1 � f(tn, yn),
k2 � f(tn + h

2
, yn + h

2
k1),

k3 � f(tn + h

2
, yn + h

2
k2),

k4 � f(tn + h, yn + hk3).
The trajectory is solved by integrating on the time axis.

3 MODELING AND OPTIMIZATION
METHOD

3.1 Neural Network Modeling Method
The BP neural network is a nonlinear parameter modeling
method. Its most obvious feature lies in the error back-
propagation learning algorithm it adopts, and it can adjust the
weight coefficients of each layer network in the model in real time
through continuous learning. When the total weight and fuel are
constant, the variables of trajectory analysis and optimal design
are used as input values, and the range RD and flight time TD are

output values to establish a prediction model for the overall
parameters of the trajectory. Since the input data of the neural
network is given 4 parameters, the input layer has four nodes. The
hidden layer is 1, the number of neurons is 8, and the output layer
has two nodes. The adopted neural network structure is shown in
Figure 2.

The input of the h neuron in the hidden layer is:

ah � ∑4
i�1
ωihxi, (15)

where ωih represents the weight of the i input neuron in the input
layer to the h neuron in the hidden layer.

The activation function passing through the hidden layer is the
tansig function, and the expression is:

f(x) � 2
1 + e−2x

− 1. (16)

Thus:

bh � f(αh − γh), (17)

TABLE 1 | Parameters of flight section.

Section Number Parameter value

I: Programme A1 Trajectory inclination acceleration rate CA1

A2 Trajectory inclination reduction rate CA2

A3 Time of trajectory inclination increase TA1
A4 Trajectory inclination reduction time TA2
A5 Total time of program section TA

II: Constant acceleration B1 Expected acceleration _VBSet

B2 Speed at the end of acceleration section VBEnd

III: Constant dynamic pressure C1 Predetermined dynamic pressure QCset

C2 Speed at the end of constant dynamic pressure section MaCset

IV: Cruise D1 Cruise altitude HDset

D2 Cruise speed MaDset

FIGURE 1 | Typical flight trajectory diagram

FIGURE 2 | Neural network structure model
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where γh represents the threshold of the h neuron in the
hidden layer.

The input of the j neuron in the output layer is:

βj � ∑8
h�1

vhjbh, (18)

where vhj represents the weight from the h neuron in the hidden
layer to the j output in the output layer.

The activation function of the output layer is the purelin
function, and the expression is:

f(x) � x. (19)
Thus, the output of the neural network is:

y~
j � f(βj − θj), (20)

where θj represents the threshold of the j neuron in the
output layer.

Establish loss function:

J � 1
2
∑2
j�1
(y~

j − yj)2, (21)

where yj is the target output and y~
j is the output of the neural

network.
By optimizing the input weights of neurons in each layer to

minimize the loss function, the output of the neural network is
close to the target output as much as possible, and the training
model is obtained. Finally, the training model is used for
prediction.

3.2 Optimization Algorithm
Based on the establishment of a parametric prediction model,
optimization analysis can be carried out. There are many
optimization design methods. Among them, the genetic
algorithm, as a global optimization design method, has better

FIGURE 3 | Modeling and analysis process
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optimization accuracy for nonlinear high-dimensional functions.
In this paper, a genetic algorithm is used to optimize the neural
network.

3.3 Modeling and Analysis Process
Through the combination of flight sections and parametric
modeling, the trajectory optimization of the aircraft is
transformed into the established neural network model and
the process of optimization. The process of simulation
calculation and modeling is as follows:

Step 1. Determine the model’s input and output parameters and
sample points

According to the flight section analysis of the aircraft, taking
the four main parameters that affect the flight section as the input
and the range RD and flight time TD as the output, the functional
relationship is established as follows:

RD � fR(TA, _VBSet, VBEnd, QCSet),
TD � fT(TA, _VBSet, VBEnd, QCSet). (22)

According to the working envelope of the aircraft, the
analysis sample points for modeling are determined through

experimental design or parameter combination. For the four
parameter combinations in this paper, a total of 420 sample
points are taken.

Step 2. Trajectory calculation of sample points
For the sample points, carry out the trajectory calculation in

the flight process according to the trajectory calculation model
established in Section 2, and obtain the sample values of the range
RD and flight time TD.

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

RD0 � fR0(TA, _VBSet, VBEnd, QCSet)
RD1 � fR1(TA, _VBSet, VBEnd, QCSet)

......
RDm � fRm(TA, _VBSet, VBEnd, QCSet)

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

TD0 � fT0(TA, _VBSet, VBEnd, QCSet)
TD1 � fT1(TA, _VBSet, VBEnd, QCSet)

......
TDm � fTm(TA, _VBSet, VBEnd, QCSet)

.

(23)

Step 3. Establish neural network model based on sample
points

FIGURE 4 | Effect of acceleration rate _VBSet on trajectory and parameters.
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Based on the trajectory calculation results of sample
points, the neural network is trained to obtain the
functional model between section parameters and range RD

and time TD. On this basis, the established neural network
model is used to predict the random sample points in the
flight envelope. After comparing with the trajectory

calculation results, the feasibility and accuracy of the
model are analyzed.

Step 4. Model optimization
According to the established neural network model, the

optimization of the neural network is carried out by using a

FIGURE 5 | Effect of dynamic pressure QCSet on trajectory and parameters.

FIGURE 6 | Influence of parameters on overall parameters.
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genetic algorithm with flight range RD as the optimization
objective function. The trajectory calculation is carried out by
using the segment parameter value corresponding to the best
advantage obtained by optimization. The difference between the
optimized value and the calculated value of range and time under
the same segment parameters is compared, the feasibility of the
optimization result is evaluated, and the characteristics of the
optimized trajectory are analyzed.

In the calculation process, the neural network modeling and
optimization algorithm parameters can be adjusted according to

the verification of the model. The overall modeling and
calculation process is shown in Figure 3.

4 TRAJECTORY CALCULATION AND
ANALYSIS

Trajectory calculation is carried out for the parameter
combination of sample points. Among the four parameters
selected in this paper, the acceleration rate _VBSet and dynamic
pressure QCset have a great influence on the middle of the climb,
which is mainly analyzed.

4.1 Influence of Acceleration Rate _VBSet on
Trajectory
For parameters TA = 160s, speed VBEnd = Ma1.8, and climb
dynamic pressure QCset = 40kPa, four different climb rates are

TABLE 2 | Experimental and verification scheme.

Experiment serial number Training set Test set

1 s1, s2, s3 s4
2 s1, s2, s4 s3
3 s1, s3, s4 s2
4 s2, s3, s4 s1

FIGURE 7 | Range RD prediction results.

FIGURE 8 | Flight time TD prediction results.
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used to calculate flight paths. The results are compared in
Figure 4.

Before 160 s, the aircraft climbs according to the law of
trajectory inclination. The flight Mach number continues to
increase, and the dynamic pressure first increases and then
decreases. The change is related to the inclination design in
the program section. When compared with the trajectory of
the climb section in Figure 4A, combined with the analysis of
Mach number and dynamic pressure change, when the
acceleration is _VBSet 0.5 m/s2, the flight speed of Section 2
increases slowly. Under the maximum thrust of the engine,
the climb rate of the aircraft is high, that is, the increase rate
of height is large, so the dynamic pressure decreases rapidly in the
initial stage, as shown in Figure 4C. Due to the low acceleration
rate, when the flight time is 602.4 s, the speed reachesMa1.8 and
turns to Section 3 dynamic pressure flight. In this process,
maintain a low dynamic pressure of about 20–25 kPa. Due to
the long flight time of Section 2, the overall acceleration and
climb time increases significantly, and the aircraft enters the
cruise flight in 1300 s.

When the acceleration _VBSet of the constant acceleration
section increases to 1 m/s, the climb rate of Section 2 decreases,
the slope of the Mach number curve increases (Figure 4B), and
the corresponding dynamic pressure also increases. Through

calculation, the flight speed reaches Ma1.8 when the time is
377.9 s, and it turns to Section 3 constant dynamic pressure
climb. Compared with the condition of acceleration of 0.5 m/s2,
the overall climbing time is significantly reduced, and it enters
the cruise flight state at 1122 s.

When the acceleration of Section 2 is further increased, the climb
rate of the aircraft is reduced under a certain thrust, and the kinetic
energy is increased rapidly by reducing the increasing trend of
potential energy. As shown in the trajectory curve in Figure 5A,
when _VBSet � 2m/s2, the constant acceleration section is
approximately level flight, and when the acceleration is further
increased to 4 m/s2, a local dive is required to achieve a rapid
increase in speed. From the change process of Mach number, when
_VBSet � 2m/s2, the flight speed reaches Ma1.8 at277.9 s and turns
into a constant dynamic pressure flight section; when _VBSet � 4m/s2,
the flight speed is about Ma1.57 at 217.1 s, but the flight dynamic

pressure has exceeded the set maximum dynamic pressure
constraint value, so the flight speed is directly transfer to Section
3. From the perspective of dynamic pressure changes, after the
acceleration rate exceeds 2m/s2, the dynamic pressure of Section 2

TABLE 3 | Range and flight time prediction results.

Condition TA(s) _VBSet

(m/
s2)

VBEnd

(Ma)
QCSet

(kPa)
RD(BP)

(km)
RD(Tra)

(km)
Error
(%)

TD(BP)

(s)
TD(Tra)

(s)
Error
(%)

1 130 2.4 1.6 35 4902.02 4896.38 0.115 3299.03 3300.57 -0.047
2 90 3.2 1.4 50 4890.86 4885.06 0.119 3133.13 3119.13 0.4488
3 168 1.6 1.7 53 4940.83 4927.74 0.266 3180.49 3171.99 0.268
4 160 0.8 1.3 26 4382.07 4346.47 0.819 3522.28 3522.89 -0.017
5 190 2.2 1.5 29 4647.79 4644.59 0.069 3426.20 3418.99 0.2109
6 110 3.8 1.6 29 4637.02 4627.56 0.204 3397.19 3386.42 0.318
7 150 2.8 1.9 37 4917.70 4925.80 -0.16 3260.34 3261.60 -0.039
8 120 3.5 1.2 58 4922.90 4919.39 0.071 3101.65 3096.20 0.176
9 170 1.9 1.6 40 4939.34 4956.98 -0.36 3267.73 3267.02 0.0217
10 130 1.8 1.8 32 4812.04 4806.08 0.124 3341.99 3341.07 0.0275

TABLE 4 | Main parameters of genetic algorithm.

Parameter Value

Group size 200
Crossover probability 0.8
Mutation probability 0.05
Maximum evolutionary algebra 500

TABLE 5 | Optimization calculation results.

TA(s) _VBSet (m/s2) VBEnd (Ma) QCSet (kPa) RD (km) TD(s)

134.23 2.378 1.205 40.877 4991.40 3247.24

FIGURE 9 | Comparison between optimization results and sample
points.
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increases, and the maximum dynamic pressure exceeds the preset
dynamic pressure value of Section 3. When transitioning to Section
3, the climb rate of the aircraft increases and the acceleration rate
decreases until the dynamic pressure is restored. Decrease to the
preset dynamic pressure value of Section 3, and then maintain the
isodynamic pressure to fly. Because the acceleration time is shorter
when the acceleration rate is large, the time to enter the cruise flight
is also relatively early.

4.2 Influence of Dynamic Pressure QCSet on
Trajectory
For parameters TA = 160s, speed VBEnd = Ma1.8, and acceleration
_VBSet � 2m/s2, four different climb rates are used to calculate flight
paths. The results are compared in Figure 4. The flight trajectory
under four groups of dynamic pressure QCSet is calculated.

From the change of parameters in Figure 5A, B, the flight
dynamic pressure increases, the speed increases faster and the
climbing time decreases. When QCSet � 25kpa, the
acceleration process is the longest. Due to the low dynamic
pressure flight, the engine thrust is low and the climbing

process is slow. It takes about 2693 s to reach the
predetermined cruise flight state. With the increase of
flight dynamic pressure, the engine thrust increases, and
the climbing speed of the aircraft also increases. When the
dynamic pressure is 60 kPa, the predetermined cruise
parameters can be reached in 650 s, and the aircraft will
turn to Section 4. From the trajectory in Figure 5A, in
addition to the difference in climbing time and distance
due to the cruise dynamic pressure setting of about 30 kPa
and the climbing trajectory according to the dynamic
pressure of 25 kPa, the maximum altitude has been higher
than the cruise altitude before turning into cruise flight, and
the flight altitude needs to be reduced when turning into
Section 4. When the dynamic pressure during climbing is
greater than 40 kPa, it needs to transition to the cruise
altitude through further climbing because it is greater than
the set cruise dynamic pressure. Under the given flight
strategy, the dynamic pressure of Section 1 is first high
and then low (Figure 5C). The dynamic pressure has
achieved a good transition in the process of change, and
there is no serious parameter overshoot and fluctuation.

FIGURE 10 | Parameter variation of the optimized trajectory.
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Corresponding to the changes in trajectory and Mach
number, when turning to cruise flight, the dynamic
pressure transits from the climb phase to the cruise
dynamic pressure.

According to the ballistic simulation of the above typical state,
the range and flight time under different combinations of
parameters are extracted, which are compared with Figure 6.

From Figure 6A, the dynamic pressure QCSet of Section 3 has a
great impact on the range. The range is significantly smaller under
the low dynamic pressure of 25 kPa, which is due to the long
climbing time and more total fuel consumption. When the
dynamic pressure value of Section 3 is about 40 kPa, the range is
the largest. If the dynamic pressure value is further increased, the
range will be slightly reduced. From the influence of
acceleration _VBSet, the influence under different dynamic pressures
is different.When the flight dynamic pressure of Section 3 is 25 kPa,
the range with an acceleration rate of 0.5 m/s2 is the smallest, while
the range with an acceleration rate of 2 m/s2 and 4m/s2 is the largest.
When the dynamic pressure is 40kPa, the range with an acceleration
rate of 2 m/s2 is the largest and the range with an acceleration rate of
1 m/s2 is the smallest, which indicates that there is an interactive
relationship between the design parameters of the flight section.

From Figure 6B, the dynamic pressure of Section 3 has a
monotonic effect on the flight time. As the dynamic pressure QCSet

increases, the flight time decreases. Compared with the influence of
dynamic pressure, the influence of acceleration rate on flight time is
relatively small. When the dynamic pressure is 60 kPa, the difference
in flight time under different acceleration rates is less than 70 s.

5 PREDICTION MODELING AND
OPTIMIZATION

5.1 Neural Network for Predict RD and TD
According to the calculation results of sample points, a neural
network prediction model corresponding to four parameters,
flight range, and flight time is constructed. In the process of
parameter construction, through the optimization of neural
network model parameters, the main parameters are as follows:

1) Number of hidden layers is 1
2) Number of neurons in hidden layer is 8
3) Learning rate is 0.01
4) Minimum training error is 0.00000 1
5) Training times: 1,000

In order to better test the prediction effect of the algorithm
model, the experimental scheme of cross validation is adopted.
The data is randomly divided into four subsets, which are
recorded as S1, S2, S3, and S4. Select S1, S2, S3, and S4 as the
test sets, respectively, and select the other three subsets as the
training set to establish the model. The experimental and
verification scheme are shown in Table 2.

The neural network is trained according to the test and
verification scheme given in Table 2. The RD and TD training
and prediction results of the two sets of trials are compared in
Figure 7 and Figure 8. From the results, the training model’s

error in the sample prediction value of the flight range is mainly
concentrated in ±10 km, and the value error of the flight time
prediction value is mainly between ±5 s. The error value of
individual test sample points is relatively large, but the relative
error is not high, indicating that the neural network has better
accuracy.

The random state test is carried out for the established
prediction model. Table 3 shows the range and flight time
calculated by using neural network and trajectory model,
respectively, under the randomly selected 10 groups of
parameter combinations. From the comparison of results, the
maximum error between the range prediction value RD(BP) and
the trajectory calculation value RD(Tra) is in condition 4. The
relative error of the two algorithms is less than 0.82%, and the
error of other conditions is less than 0.3%. The maximum relative
error between the predicted value TD(BP) of flight time and the
calculated value TD(Tra) of trajectory is within 0.45%. It can be
seen that the neural network prediction model has high accuracy.

5.2 Parameter Optimization
The aircraft’s range is an important indicator of the overall
design. In the trajectory design, overload, attack angle,
dynamic pressure, etc. have been reflected in the flight model
as constraints, so the range RD is used as the objective function of
trajectory optimization.

A genetic algorithm is used to optimize the overall parameters
of the established neural network prediction model. The main
parameters of the algorithm refer to the values in the study by
Cheng and Wang (2011), and the settings are listed in Table 4:

In order to test the influence of genetic algorithm parameters,
the group sizes of 50, 100, 150, 200, and 250 are taken, and the
optimal value of RD obtained by optimization varies from 4991.40
to 4992.26 km; Take five groups of mutation probability of 0.05,
0.10, 0.15, 0.20, and 0.25. The variation range of RD is
4991.40–4992.78 km, and its relative variation value is very
small. For the training model, the change of algorithm
parameters is not sensitive to the optimization results, so it
can be carried out according to the parameter values in Table 4.

Based on the parameter settings inTable 4, a total of 138 steps are
iterated, and the calculated results are listed in Table 5. From the
optimization results, the flight pressure is close to 40 kPa, which is
similar to the ballistic characteristics analysis results in Section 4.

The optimal value in Table 5 is used as the input parameter for
trajectory calculation. Under this condition, the flight time of the
aircraft is 3247.60 s and the range is 4981.15 km. The result of the
trajectory calculation is basically consistent with the time
prediction value in Table 4. The range value is slightly
smaller, and the relative error is 0.2058%. Comparing the
overall parameters of the sample points, the optimized results,
and the optimal point of trajectory calculation in Figure 9, it can
be seen that the optimized result range RD is the best, and the
flight time TD is at the middle level of the sample points.

The trajectory and parameter changes in the optimized state
are shown in Figure 10. From the analysis of the flight process,
since the end speed of Section 2 isMa1.205, the proportion of this
section in the climb process is relatively small, and it is transferred
to Section 3 isodynamic flight when the flight altitude is about
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8.7 km. During the whole climbing process, the flight speed
continued to increase, and the acceleration in the isodynamic
pressure section was large. After the change of dynamic pressure,
the maximum value is about 55 kPa, which does not exceed the
upper and lower limits of constraints, and the parameter changes
are within a reasonable range.

6 CONCLUSIONS

In this paper, research on the parametric modeling of the
trajectory is carried out for hypersonic vehicles. Based on the
calculation results of the sample points, a neural network model
for predicting the flight range and flight time is established, and
the genetic algorithm is used to optimize the flight range
prediction model. The research has the following conclusions:

(1) The flight process of hypersonic aircraft is complex, and the
parameters between each section are mutually constrained.
Parametric modeling can be achieved, by designing the flight
process as a combination of typical sections and extracting
the parameters that affect the sections.

(2) From the influence of typical parameters, the flight
dynamic pressure QCSet is more sensitive to the
parameters of the climbing section and the range of the
aircraft. When the dynamic pressure is lower than 30 kPa,
the climb time will be significantly increased, the fuel will
be consumed, and the range will be significantly reduced;
when the dynamic pressure is higher than 50 kPa, the
range will also decrease.

(3) Based on the sample points, a BP neural network for
predicting the range and flight time was established, and
the random state test was used. The errors of the range RD

and flight time TD, relative to the calculation results of the
trajectory model were within 0.82% and 0.45%,
respectively, indicating that the established model has
good prediction ability for overall parameter value of the
aircraft trajectory.

(4) The genetic algorithm is used to optimize the prediction
model, and the error of RD between the optimization point
and the trajectory calculation result is about 0.2% with the
maximum range as the objective function. The flight process
in the optimized state has a good balance between the flight
range and the flight time.

By parametric modeling of the flight section of the hypersonic
vehicle and optimization based on the range prediction model,
the optimization of the complex flight process can be realized,
and it is easy to extend to the modeling process of more
parameters and section combinations.
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