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A virtual storage plant (VSP) is identified as an effective approach to aggregating
distributed storage devices participating in power network supports with similar
capability as bulk storage systems. In this study, we develop a distributed control
framework for cost-effective storage coordination in the distribution networks, in which
the energy storage units are coordinated to contribute to a given power reference at the
aggregated level while regulating the local network voltages in the presence of renewable
generations. The salient features of the proposed VSP control roots from the successful
employment of an inexact alternating direction method of multiplier (ADMM) algorithm, in
which the primal updates have analytical solutions in closed form using proximal
operators, which significantly reduces the computation efforts of individual storage
agents, and renders fast storage dispatch. The proposed control is favorable for
near real-time storage dispatch in an optimal manner, and its effectiveness is
demonstrated using realistic distributed networks in the simulations.
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INTRODUCTION

Distributed energy resources (DERs) transform the conventional role of passive distribution
networks in modern power grids. These DERs include dispatchable units, such as diesel
generators, energy storage systems, and nondispatchable units, for example, rooftop PV and
small wind turbine systems. Although the deployment of renewable energy
significantly helps with reduced carbon emissions, with their increased penetration, new
network regulation issues appear. Distributed energy storage devices, located closed to the
end-users and covering wide geographical areas, are identified as an effective measure to
accommodate the intermittency of renewables without compromising the quality of power
delivery (Morstyn et al., 2016).

Energy storage systems are widely available at different levels of a power system. As utility-scale
storage systems, pumped-hydro storage, compressed-air energy storage, etc., have a long history of
participating in energy markets and providing ancillary services to the transmission levels. In the
near decades, distributed storage devices are integrated with smaller capacities but larger unit
numbers. By the end of 2019, the residential energy storage systems coupled with rooftop PVs
reached 2GW, representing a 57% annual increase in Europe; electrical vehicles, whose batteries can
potentially contribute to grid supports, attained a 184% annual increase by September 2020 in the
United Kingdom (Energy Storage News, 2019). The aggregation of distributed storage devices has a
competitive capacity and presents more benefits over bulk storage. Such aggregated storage system is
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designed as a virtual storage plant (VSP), which seeks to use
available storage resources providing flexibility to the large
network interconnections.

The coordination of storage devices in a VSP relies on the
cyber network for storage communications. This coincides
with the concept of virtual power plants (VPPs) for the
integration of general DERs (Kim et al., 2019; Cheng et al.,
2017). The typical centralized control, in which a control
center has access to every storage unit, will soon become
inadequate regarding the expansions of the scales of storage
in future distribution levels. On the other hand, distributed
control collaborates individual agents to settle a given target
based on neighboring communication, not only reducing the
required bandwidth of the cyber layers but also enhancing
robustness against failures and noises of the integrated systems
(Olfati-Saber et al., 2007). Existing literature studies on
distributed controls of power networks can be categorized
into consensus-based controls (Wang et al., 2018,2019; Li
et al., 2017) and optimization-based distributed controls
(Yang et al., 2013a; Dall’Anese et al., 2018; Sulc et al., 2014;
Tang et al., 2019; Li et al., 2019). Compared to the consensus
controls, distributed optimization can generally achieve more
sophisticated objectives, although deriving distributed
solutions are not straightforward as that in a centralized
setup. Yang et al. (2013b) and Xu et al. (2015) exploited the
summation invariant of agent states under special cyber
topologies, such that all agents are aggregated to provide a
fixed amount of power and meanwhile minimize the overall
cost; a similar method is employed for optimal VPP dispatch
considering cyber attack in Li et al. (2018). Although these
consensus controls are simple and effective in synchronizing
agent states, system constraints cannot be easily handled by

purely consensus-based methods. The power limits of DERs
are enforced in Yang et al. (2013b), and then the algorithm
stability is established by generalizing the unconstrained
consensus cases. In addition, the optimal VSP operation
should account for local voltage variations due to storage
dispatch and load variations in the distribution level, but
most of the studies (Yang et al., 2013a; Wang et al., 2019;
Li et al., 2018; Zheng et al., 2018) were only concerned with the
cyber layer and ignored the physical grid that holds the
controllable units.

Distributed optimization, on the counterpart, can realize
optimal storage dispatch and respect device and network
constraints in a systematic manner Zhao and Ding, (2021).
Primal-dual algorithms are usually used to derive distributed
solutions for a centralized optimization problem by exploring
the sparsity in the problem setup. For example, Mallada et al.
(2017) developed the optimal frequency control in multi-area
power networks in which the proposed control keeps the

FIGURE 1 | Diagram of the IEEE 33-bus system with distributed energy storage systems aggregated as a VSP (black solid line: distribution lines; red dashed line:
communication lines).

FIGURE 2 | Realistic generation profiles for 25 PV systems in 24 h.
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distributed structure of the typical automatic generation control
(AGC) and incorporates frequency dynamics as part of the primal
updates. For voltage control in distribution networks, Zhu and Liu
(2016) modified the primal updates by a positive definite matrix,
which maintains the direction of primal descent and leads to
decentralized computation in radial networks. Tang et al. (2019)
further employed the dual ascent byminimizing primal variables in
each iteration for accelerated convergence but assumptions are
made for homogeneous line parameters and 2-hop neighboring
communications. Amore relevant study by Dall’Anese et al. (2018)
investigated optimal operations of a distribution network feeder as
a VPP; the local voltage variations are considered, and the primal-
dual algorithm is derived for the regularized Lagrangian showing
better convergence. Dall’Anese et al. (2018), Zhu and Liu (2016),
and Tang et al. (2019) used gradient-based methods for variable
updates, whose slow converging rates are undesirable in time-
critical and real-time applications. Combining the features of dual
decomposition and the method of the multiplier, the alternating
direction method of multiplier (ADMM) improves algorithm
robustness and significantly reduces the needed number of
iterations for convergence (Boyd et al., 2010; Feijer and
Paganini, 1974). Distributed voltage regulation using ADMM is
investigated in Sulc et al. (2014), in which the optimization is
formulated in a consensus form with copied variables for fully
distributed implementation. Similar concepts are employed for

area voltage regulations of a partitioned distribution network (Xu
and Wu, 2020), in which the dual update is accelerated to
outperform the convergence of the original ADMM.

In Sulc et al. (2014), Xu andWu (2020), and Zheng et al. (2018),
the primal updates of ADMM were to find the minimizer of a
constrained optimization problem. This process can be
computational-intensive for high-dimensional problems. This
disadvantage is first tackled for the linear regression issues in
Mateos et al. (2010) using a consensus ADMM, which is further
extended in Chang et al. (2015) and Chang (2016) considering
coupled constraints by optimizing the dual problems based on
inexact ADMM. In this investigation, a VSP is controlled to deliver
the requested amount of power at the aggregated level by cost-
effective storage coordination. This aggregated power reference can
either follow an AGC signal or sustain for a specified amount and
duration, for example, in the fast frequency reserve (FFR) defined
by the National Grid in the United Kingdom (Zhao et al., 2020). In
this study, the concerned VSP dispatch is formulated as an
optimization problem considering both storage charging and
discharging. We use voltage feedback and represent the
formulation in an incremental form that accounts for voltage
variations against storage dispatch and renewable generations. A
proximal dual-consensus ADMM algorithm (PDC-ADMM)
(Chang et al., 2015; Chang, 2016) is employed to solve the
problem in a distributed manner, whose benefit is that the

FIGURE 3 | System voltage profiles under no storage response: (A) IEEE 33-bus system and (B) IEEE 69-bus system.

TABLE 1 | Parameters of the storage assets in the VSP.

IEEE 33 bus system IEEE 69 bus system 119 Bus system

No. of storage 20 30 40
No. of PVs 4 7 19
Control parameters σ � 0.01 τ � 0.05, β � 2e3 σ � 1e − 3 τ � 0.1 β � 1e3
Storage costs αPi � 1e2 − 3e2, γPi � 1e1 − 3e1 αQi � 5e1 − 1e2, γQi � 5 − 1e1
Storage power rating 0.5–1 MW
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minimizer of the primal variables can be represented in a closed-
form under coupled affine constraints. This results in a low-
complexity algorithm that reduces the overall computation cost
of ADMM.A similar problem setup appears in Chen and Li (2018),
in which the primal update still depends on effective solvers to
minimize a constrained optimization problem, and the impact of
undispatchable units on network operation is ignored. The
contribution of this study is that we develop a distributed

control framework for optimal storage cooperation through
VSP, considering local voltage regulations during storage
dispatch based on the inexact PDC-ADMM, in which the
variable update is accomplished by per-agent estimates and
enjoy analytical forms that reduce the overall computation efforts.

The rest of the study is organized as follows: the System
Modeling and Problem Formulation section describes the
modeling of the cyber-physical systems involving the

FIGURE 4 |Case I: comparative results of VSP dispatch using a centralized optimization and the proposed distributed control: (A) VSP power outputs; (B) storage
costs in the VSP; (C) voltage profile under the centralized control scenario; and (D) voltage profile under the distributed control scenario.

FIGURE 5 |Case II: comparative results of VSP dispatch using a centralized optimization and the proposed distributed control: (A) VSP power outputs; (B) storage
costs in the VSP; (C) voltage profile under the centralized control scenario; (D) voltage profile under the distributed control scenario.
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communication and distribution networks and formulates the
optimization problem for VSP dispatch; the Inexact ADMM
section illustrates the classical ADMM and the inexact variant
of the ADMM algorithms using the proximal operators; Case
Study discusses simulation results showing promising
performance of the proposed approach in realistic
distribution networks with real PV generation data;
Conclusions are given in Data Availability Statement at
the end.

SYSTEM MODELING AND PROBLEM
FORMULATION

In this section, models of the considered cyber-physical system are
presented. We assume that the distribution network has a radial
topology as for most real-world distribution networks. The
consequent DistFlow model is linear with small approximation
errors from the nonlinear power flow models (Zhu and Liu,
2016). If more general networks with meshed topologies are

FIGURE 6 | Diagram of the 69 and 119-bus systems.

FIGURE 7 | Case III: comparative results of VSP dispatch using a centralized optimization and the proposed distributed control: (A,B) active power outputs of
individual storage devices; and (C,D) reactive power outputs of individual storage devices.
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considered, linear approximations can be obtained as well
(Dall’Anese et al., 2018).

DistFlow Model for Radial Distribution
Networks
A radial distribution network is represented by a directed graph
Gp. Except for the substation node having a constant voltage,
buses in the distribution networks are denoted by the set N ,
among which the buses with storage are collected in the set S,
while all the other buses are collected in the set L � N \S. Note
that the buses in L involve loads and renewables. The set of line
segments connecting buses in N are denoted by the edge set
Εp � {(i, j) ⊂ N × N }. For every line segment (i, j) ∈ Εp, the
DistFlow model is established as follows:

Pij − ∑
k∈N j

Pjk � −Pn
j , (1a)

Qij − ∑
k∈N j

Qjk � −Qn
j , (1b)

Vi − Vj � rlijPij + xl
ijQij, (1c)

where Pij, Qij denote the active and reactive power flows on line
(i, j); the net injections of the bus j are Pn

j � Pg
j − Pl

j, Qn
j � Qg

j −
Ql

j, where Pg
j , Q

g
j denote active/reactive powers from DERs and

Pl
j, Q

l
j denote the powers of load consumptions. The power flows

from the substation to the end buses lead to voltage drops as Vi −
Vj described in (1c), where rlij, x

l
ij are resistance and reactance of

the distribution lines, N j denotes the set of neighbors of note j.
The DistFlow model in (1) can be represented in a more compact
form as (Zhu and Liu, 2016) follows:

V � RlPn +XlQn + V0, (2a)

Rl � M−TDrM
−1, Xl � M−TDxM

−1. (2b)
In Equation 2, V is the vector of bus voltages and denoted as

V � (Vj)j∈N ; similarly, Pn � (Pj)j∈N , Qn � (Qj)j∈N are vectors
of net bus injections, and V0 � v01|N | where v0 is the voltage
magnitude of node 0 and 1|N | denotes a vector of all one with
dimension |N |, where |N | is the cardinality ofN . The matrixM
is the incidence matrix of the graph (N , Ep), and Dr �
diag(rlij)ij∈Ep, Dx � diag(xl

ij)ij∈Ep
are diagonal matrices of the

line parameters.

Cyber Network
The cyber network communicating distributed storage devices
are represented as a graph Gc � {S, Ec} in this study, where the
graph edges in Ec represent the communication lines among
storage agents in S. The connectivity of the graph is described
by the adjacency matrix Ac � (aij)i,j∈S where aij � 1 for all
j ∈ Si and 0 otherwise, where Si is the neighboring set of node
i. We assume that the cyber graph is undirected and
connected.

Problem Formulation
The optimization problem is formulated for the optimal
storage coordination of a VSP located in a radial
distribution network. The VSP is controlled to deliver a
given amount of active power while regulating the local
network voltage using its reactive power control capability.
Considering every time slot t in a time horizon T and ∀i ∈ S,
we have

min .(Pb
i,t ,Q

b
i,t) ∑

|S|

i�1
{αP

i,t(Pb
i )2 + γPi,t

∣∣∣∣Pb
i

∣∣∣∣ + αQ
i,t(Qb

i )2 + γQi,t
∣∣∣∣Qb

i

∣∣∣∣}, (3a)

FIGURE 8 | Case III: comparative results of VSP dispatch using a centralized optimization and the proposed distributed control: (A,B) active power outputs of
individual storage devices; and (C,D) reactive power outputs of individual storage devices.
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Vmin1|S| ≤ ∑|S|
i�1
{Rl

i(Pb
i,t + Pl

i,t) +Xl
i(Qb

i,t + Ql
i,t)} +∑|L|

j�1
{Rl

jP
n
j,t

+Xl
jQ

n
j,t} + V0 ≤Vmax1|S|, (3b)

∑|S|
i�1

Pb
i,t � PA

t , (3c)

(Pb
i,t)2 + (Qb

i,t)2 ≤ (Sbi )2, (3d)
Pb,min
i ≤Pb

i,t ≤P
b,max
i , (3e)

SoCmin ≤ SoCb
i,t � SoCb

i,t−1 +
ηPb

i,t

CAb
i

≤ SoCmax, ∀i ∈ S. (3f )

In the optimization problem (3), Pb
i,t, Q

b
i,t are active and

reactive power outputs of the ith storage unit at the current
time step. We assign a quadratic cost for every storage unit that
is described by the parameters αPi,t, γ

P
i,t, α

Q
i,t, γ

Q
i,t as in (Eq. 3a),

and the absolute values indicate that both charging and
discharging yield costs are related to storage usage. In (Eq.
3b), Rl

i � (Rl
ij)j∈S , Xl

i � (Xl
ij)j∈S ∈ R|S| are column vectors of

Rl, Xl corresponding to the ith storage response on other
storage buses, which can be understood as the bus voltage
sensitivities with respect to the power injections at the ith
buses. Here, we separately represent the power injections on
the storage buses and load buses in L, whose net powers
Pn
j,t, Q

n
j,t combine the effects of renewables and loads as in

(Eq. 3b); Vmin, Vmax are the bus voltage limits. The VSP is
optimized to provide the aggregated power PA

t as in (Eq. 3c). We
mainly focus on inverter-based storage technologies, and the
local constraints (3d)—(3e) characterize the limits of storage
power capacity where Sbi is the apparent power limit of the
power converter. Eq. 3f imposes the limits on storage energy
capacity based on a general storage model, in which η is the
coefficient for charging/discharging, and CAb

i is the storage
energy capacity. Note that (Eq. 3f) can be incorporated into
(Eq. 3e) with time-varying power limits depending on the
storage SoC (Dall’Anese et al., 2018); for example, storage
with a full charge has Pb,max

i,t � 0 and Pb,min
i,t � −Sbi . To

facilitate the algorithm implementation, the quadratic
constraint (3d) is further linearized as follows:

−Sbi ≤ cos(τ πκ)Pb
i,t + sin(τ π

κ
)Qb

i,t ≤ S
b
i , τ � 1, . . . , κ, (4)

where the accuracy loss is 1.5% when κ � 8 (Jabr, 2017).
Moreover, considering that only the power injections on
storage buses are known by agents, the network voltage
constraint (3b) is rewritten in an increment form of storage
power, as follows:

Vmin1|S| ≤ ∑|S|
i�1
{Rl

i(Pb
i,t−1 + ΔPb

i,t + Pl
i,t) +Xl

i(Qb
i,t−1 + ΔQb

i,t + Ql
i,t)}

+∑|L|
j�1
{Rl

jP
n
j,t +Xl

jQ
n
j,t} + V0 ≤Vmax1|S|.

(5)

It is assumed that the algorithm is fast enough such that the
powers of loads and renewables are nearly constant within each
time slot. From (Eq. 5) we denote

~Vt �∑|S|
i�1
{Rl

i(Pb
i,t−1 + Pl

i,t) +Xl
i(Qb

i,t−1 + Ql
i,t)} +∑|L|

j�1
{Rl

jP
n
j,t

+Xl
jQ

n
j,t} + V0, (6)

which is the vector of voltage magnitudes of storage buses
before the agent actions and can be measured at the beginning
of the current time step t. We denote
xi,t � (Pb

i,t, Q
b
i,t)T � xi,t−1 + xi,t, and then the optimization

problem (3) is arranged in the canonical form with the
incremental variables xi,t, considering storage outputs at t −
1 are known by each agent.

min
Δxi,t ,Δri,t ≥ 0

∀i∈S

∑|S|
i�1
{ΔxT

i,tΩi,0Δxi,t + Ωi,t−1Δxi,t + ���ΓiΔxi,t + Γixi,t−1
���},
(7a)

∑|S|
i�1
([Ai

E
]Δxi,t + [ bi,t−1ei,t−1

] − [ b0/|S|
e0/|S| ])≤ 0, (7b)

CΔxi,t + Δri,t − di � 0, ∀i ∈ S, (7c)
where

Ωi,0 � diag(αP
i,t, α

Q
i,t), Ωi,t−1 � 2xT

i,t−1Ωi,0, Γi � diag(γPi,t, γQi,t),
Ai � [ Rl

i, X
l
i

−Rl
i,−Xl

i

], bi,t−1 � [ ~Vi,t1i
− ~Vi,t1i

], b0 � [ Vmax1|S|
−Vmin1|S|

],
E � [ 1 0

−1 0
], ei,t−1 � [ Exi,t−1

−Exi,t−1
], e0 � [ PA

t

−PA
t

],

Cs �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

cos(1 π
κ
) sin(1 π

κ
)

cos(2 π
κ
) sin(2 π

κ
)

..

. ..
.

cos(κ π
κ
) sin(κ π

κ
)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
, Cp � [1, 0], C �

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Cs

−Cs

Cp

−Cp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦,

di �
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Sbi 1κ − Csxi,t−1
Sbi 1κ + Csxi,t−1
Pmax
i,t − Cpxi,t−1

−Pmin
i,t + Cpxi,t−1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦.

The vector 1i has the ith entity equal to 1 and 0 for the others.
The 1-norm ‖■‖1 in the objective function (7a) accounts for
storage costs in both charging and discharging modes; the
coupled equality constraints 3(c) are represented in inequality,
which with (Eq. 3b) is incorporated into (7b); (7c) are local
constraints for storage capacity limits while Δri,t ≥ 0 is a slake
variable.
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INEXACT ADMM

In this section, we introduce the basic principle of ADMM, based
on which a proximal dual consensus ADMM is presented to solve
convex optimization problem with coupled constraints. The
inexact ADMM has the closed form for primal updates and
thus reduces computational overheads of individual agents
(Chang et al., 2015).

Alternating Direction Method of Multiplier
Consider the following optimization problem:

min .
x,r

h(x) + g(r), (8a)
Ax + Br � c. (8b)

For the augmented Lagrangian of (8), as Lρ(x, r, y) � h(x) +
g(r) + yT(Ax + Br −c) + (ρ/2)||Ax + Br − c22, ADMM consists
of the following iterations:

xk+1 � argmin .
x

Lρ(x, rk, yk), (9a)
rk+1 � argmin .

r
Lρ(xk+1, r, yk), (9b)

yk+1 � yk + ρ(Axk+1 + Brk+1 − c). (9c)
The updates of the primal variables are carried out jointly with

respect to the augmented Lagrangian in a sequential fashion,
while the dual update takes on a gradient step with coefficient ρ.
ADMM brings robustness and yields convergence without the
restrictive assumptions for primal-dual and dual ascent
algorithms (Boyd et al., 2010).

Inexact ADMM
In the classical ADMM, a central coordinator is usually needed
to collect the primal variables in (Eq. 9c), and then the updated
dual variable is broadcasted to every agent. To make the
ADMM completely distributed, a consensus ADMM is
proposed by Mateos et al. (2010), which is further
developed to solve the problem with coupled constraints via
its Lagrange dual problem (Chang et al., 2015;Chang, 2016).
For an optimization problem in the form of (7), in which we
make the generalization that Δxi,t ∈ Rn, Δri,t ∈ Rm and the
other matrices have compatible sizes. The objection
function of (7) can be separated for individual agents and
denoted as fi,t(Δxi,t) � gi,t(Δxi,t) + hi,t(Δxi,t), where
gi,t(Δxi,t) and hi,t(Δxi,t) are the smooth and non-smooth
parts, respectively. The Lagrange dual problem of (7) is
considered and arranged in a consensus form, as follows:

min .
yi,t ≥ 0,zi,t

max .
Δxi,t ,Δri ≥ 0

i∈S

∑S
i�1
{ − fi(Δxi,t) − yT

i,t([Ai

E
]Δxi,t + [ bi,t−1ei,t−1

]

− [ b0/|S|
e0/|S| ]) − zTi,t(CΔxi,t + Δri,t − di)},

(10a)
yi,t � tij, yj,t � tij,∀j ∈ Si, (10b)

zi,t � li, iεS. (10c)

where yi,t, zi,t are dual variables associated with the coupled
constraints and local constraints. Since the dual variables of the
coupled constraints are kept by individual agents, constraint
(10b) imposes their consensus, in which tij is an auxiliary
variable. Constraint (10c) is a dummy constraint to make a
strongly convex subproblem facilitating the following
derivation (Chang, 2016). The augmented Lagrangian of (10)
is as follows:

Lc(yi, zi, λ+,ij, λ−,ij, ]i) �∑S
i�1

φi(yi, zi) + 1

|S|y
T
i ([ bi,t−1ei,t−1

]{
− [ b0/|S|

e0/|S| ]) + zTi di

+∑
j∈Si

[λT+,ij(yi − tij) + λT−,ij(yj − tij)]
+ ]Ti (zi − li) + τ

2
‖zi − li‖22

+ σ

2
∑
j∈Si

(����yi − tij
����22 + �����yj − tij

�����22)⎫⎬⎭.

(11)
where we drop the time stamp t to simplify notions, and

φi(yi, zi) � max .
Δxi,Δri ≥ 0

{ − fi(Δxi)

−yT
i [Ai

E
]xi,t − zTi (CiΔxi + Δri)}, and λT+,ij, λ

T
−,ij, ]i are dual

variables associated with the consensus and dummy
constraints, τ, σ are positive coefficients of the Lagrange
multipliers. Applying the ADMM procedure for (11), we have

(yi, zi) � arg min .
yi ≥ 0,zi

⎧⎨⎩φi(yi, zi) + 1

|S|y
T
i
⎛⎝⎡⎣ bi,t−1

ei,t−1
⎤⎦ − ⎡⎣ b0/|S|

e0/|S| ⎤⎦⎞⎠
+ zTi di + ∑

j∈Si

[λT+,ij(yi − tij) + λT−,ij(yj − tij)]
+ σ

2
∑
j∈Si

(����yi − tij
����22 + �����yj − tij

�����22)
+ τ

2

��������zi − lk−1i + ]k−1i

τ

��������
2

2

},
(12a)

tkij � arg min .
tij

⎧⎨⎩ ∑
j∈Si

(
���������yk

i − tij +
λk−1+,ij
σ1

���������
2

2

+
���������yk

j − tij +
λk−1−,ij
σ1

���������
2

2

)⎫⎬⎭,

(12b)
lki � arg min.

li

{��������zki − li + ]k−1i

τ

��������
2

2

}, (12c)

]ki � ]k−1i + τ(zki − lki ), (12d)
λk+,ij � λk−1+,ij + σ1(yk

i − tkij), λk−,ji � λk−1−,ji + σ1(yk
i − tkji). (12e)
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Deriving solutions of (12a)–(12c) and combining with
(12d)–(12e) gives tkij � tkji � (yk

i + yk
j)/2, zki � lki , ]

k
i � 0. So,

(12) can be simplified as follows:

(yi, zi) � arg min.
yi ≥ 0,zi

⎧⎨⎩φi(yi, zi) + 1

|S|y
T
i
⎛⎝⎡⎣ bi,t−1

ei,t−1
⎤⎦ − ⎡⎣ b0/|S|

e0/|S| ⎤⎦⎞⎠
+ zTi di + yT

i ∑
j∈Si

(λk−1+,ij + λk−1−,ij)
+ ∑

j∈Si

(σ
���������yi −

yk−1
i + yk−1

j

2

���������
2

2

) + τ

2

������zi − zk−1i

������2
2

⎫⎬⎭,

(13a)
λk+,ij � λk−1+,ij + σ(yk

i −
yk
i + yk

j

2
), λk−,ji � λk−1−,ji + σ(yk

i −
yk
i + yk

j

2
).

(13b)
Using the minmax theorem and the strong convexity of (13a)

(Chang, 2016), yi, zi can be conveniently obtained by expanding
φi and combining the linear and quadratic terms, which gives

(Δxk
i,t,Δrki,t) � arg min .

Δxi,t ,Δri,t ≥ 0

⎧⎨⎩fi,t(Δxi,t) + σ

4|Si|

����������
1
σ
⎛⎝⎡⎣Ai

E
⎤⎦Δxi,t + ⎡⎣ bi,t−1

ei,t−1
⎤⎦ − ⎡⎣ b0/|S|

e0/|S| ⎤⎦⎞⎠

−p
k−1
i,t

σ
+ ∑

j ∈ Si

(yk−1
i,t + yk−1

j,t )
����������
2

2

+ 1
2τ

����CΔxi,t + Δri,t − di + τzk−1i,t

����22⎫⎪⎬⎪⎭,

(14a)

yk
i,t �

1
2|Si|

⎡⎢⎢⎣ ∑
j ∈ Si

(yk−1
i + yk−1

j ) − 1
σ
pk−1
i,t + 1

σ
([Ai

E
]Δxi,t+

[ bi,t−1
ei,t−1

] − [ b0/|S|
e0/|S| ])⎤⎥⎥⎦

+
, (14b)

zki,t � zk−1i,t + 1
τ
(CΔxk

i,t + Δrki,t − di), (14c)
pk
i,t � pk−1

i,t + c∑
j∈Si

(yk
i,t + yk

j,t), (14d)

where pk
i � ∑

j∈Si
(λk+,ij + λk−,ji) and [■]+ � max(0,■). The iterative

minimization of primal variables in (14a) does not need to be very
accurate since it is an intermediate step inADMMprocedures (Mateos
et al., 2010). In this regard, the inexact ADMM approximates (14a) by
its first-order Taylor expansion at (Δxk−1i,t ,Δrk−1i,t ) (Chang, 2016).
Denote the smooth part of (14a) as follows:

~gi,t(Δxi,t) � ΔxT
i,tΩi,0Δxi,t + Ωi,t−1Δxi,t

+ σ

4|Si|

����������
1
σ
⎛⎝⎡⎣Ai

E
⎤⎦Δxi,t + ⎡⎣ bi,t−1

ei,t−1
⎤⎦ − ⎡⎣ b0/|S|

e0/|S| ⎤⎦⎞⎠

−1
σ
pk−1
i,t + ∑

j ∈ Si

(yk−1
i,t + yk−1

j,t )
����������
2

2

+ 1
2τ

����CΔxi,t + Δri,t − di + τzk−1i,t

����22.
(15)

To derive an analytical solution, (14a) is simplified as follows:

(Δxk
i,t,Δrki,t) � arg min .

Δxi,t ,Δri,t ≥ 0
hi,t(Δxi,t) + (∇x~g

k−1
i,t )T(Δxi,t{

−Δxk−1
i,t ) + (∇r ~g

k−1
i,t )T(Δri,t − Δrk−1i,t )

+ βi
2

����Δxi,t − Δxk−1
i,t

����22 + βi
2

����Δri,t − Δrk−1i,t

����22}, (16)

where βi > 0 is some penalty coefficient. Expanding the gradients
∇x ~g

k−1
i,t and ∇r ~g

k−1
i,t gives

Δxk
i,t � argmin .

Δxi,t
{���ΓiΔxi,t + Γixi,t−1

���
1

+ βi
2

��������Δxi,t − (Δxk−1
i,t − 1

βi
∇x~g

k−1
i,t )

��������
2

2

}, (17a)

Δrki,t � [(1 − 1
βiτ
)Δrk−1i,t + 1

βiτ
(di − CΔxk−1

i,t − τzk−1i,t )]+. (17b)

To solve (17a) with non-smooth 1-norm terms, we employ the
proximal operator for each coordinate of Δxi,t. Denoting the jth
component of Δxk

i,t as Δxk
i,t(j), we have

Δxk
i,t(j) � arg min .

Δxi,t(j){
∣∣∣∣Γi(j)Δxi,t(j) + Γi(j)xi,t−1(j)∣∣∣∣

+ βi
2
[Δxi,t(j) − (Δxk−1

i,t (j) − 1
βi
∇x~g

k−1
i,t (j))]2},

(18)
where Γi(j) is the jth diagonal element of Γi and∇x~g

k−1
i,t (j) is the

jth component of the gradient vector. Since hi,t(Δxi,t) �∑n
j�1h

j
i,t(Δxi,t(j)) � ∑n

j�1|Γi(j)Δxi,t(j) + Γi(j)xi,t−1(j)| is
separatable, and notice that (Eq. 18) is a proximal operator
for a scaler function hji,t(Δxi,t(j)), which is precomposed by
an affined form. Thus, we rearrange (18) as follows:

Δxk
i,t(j) � arg min .

Δxi,t(j){hji,t(Δxi,t(j))
+ [Δxi,t(j) − (Δxk−1

i,t (j) − 1
βi
∇x ~g

k−1
i,t (j))]2}

� prox.
hji,t/βi(Δxk−1

i,t (j) − 1
βi
∇x ~g

k−1
i,t (j))

� 1
Γi(j) proxΓ2i (j)|■|/βi Γi(j)(Δxk−1

i,t (j)[{
− 1
βi
∇x ~g

k−1
i,t (j)) + Γi(j)xi,t−1(j)] − Γi(j)xi,t−1(j)},

(19)
where the last equation uses the scaling and translation property
of the proximal operator (denoted as prox.) for scalar functions
(Beck, 2017). The proximal operator of the absolute value is called
soft thresholding (Boyd et al., 2010), and thus, (19) can be
computed analytically as follows:
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Δxk
i,t(j) � 1

Γi(j) {[Γi(j)(Δxk−1
i,t (j) − ∇x ~g

k−1
i,t (j)
βi

)
+Γi(j)xi,t−1(j) − Γ2i (j)

βi
]+ − [ − Γi(j)(Δxk−1

i,t (j) − 1
βi
∇x ~g

k−1
i,t (j))

−Γi(j)xi,t−1(j) − Γ2i (j)
βi
]+ − Γi(j)xi,t−1(j)}. (20)

From (Eq. 20), we recover the optimal VSP control as defined
in the System Modeling and Problem Formulation section. This
gives the control commands for storage agents:

ΔPk
i,t �

1
γPi,t
{[γPi,t(ΔPk−1

i,t − 1
βi
∇P ~g

k−1
i,t ) + γPi,tPi,t−1 − γP 2

i,t

βi
]+

− [ − γPi,t(ΔPk−1
i,t − 1

βi
∇P ~g

k−1
i,t ) − γPi,tPi,t−1 − γP 2

i,t

βi
]+

− γPi,tPi,t−1}, (21a)

ΔQk
i,t �

1

γQi,t
{[γQi,t(ΔQk−1

i,t − 1
βi
∇Q~g

k−1
i,t ) + γQi,tQi,t−1 − γQ 2

i,t

βi
]+

− [ − γQi,t(ΔQk−1
i,t − 1

βi
∇Q~g

k−1
i,t ) − γQi,tQi,t−1 − γQ 2

i,t

βi
]+

− γQi,tQi,t−1}.
(21b)

Combining (21) with the primal and dual updates in (17b),
(14b)–(14d) makes up the control law of storage devices in a VSP.
Assuming a zero-duality gap, and the primal and dual optimal is
attainable, the only requirement for the algorithm convergence is
that the penalty coefficient βi should be larger than some constant
determined by the modulus and Lipschitz constant of the smooth
part of the objection function gi,t (Chang, 2016).

CASE STUDY

The performance of the proposed method in optimal storage dispatch
is demonstrated in this section. AVSPhas an aggregatorwhich receives
high-level power reference for participating in transmission-level
operations. Note that individual storage agents need to know this
VSP power referencePA

t , which can be either estimated by a first-order
consensus algorithm or broadcasted by the VSP aggregator with low
communication costs.We consider three study cases in the simulations,
i.e., the IEEE 33-bus system, IEEE-68 bus system (Schneider et al.,
2017), and a 199-bus system originally presented in Zhang et al. (2007).
All the three distribution networks have radial topology, but the
proposed algorithm can be employed for general network scenarios
using linear approximation or voltage sensitivity matrix derived in fast-
decoupled power flow. The diagram of the IEEE 33-bus system is
shown in Figure 1 with an illustration of the VSP concept.

Simulation Setup
The simulations use real PV generation data sampled at 5 min,
which are collected from a 75 MW solar power plant in

Colorado, United States (Solar Power Data for Integration).
The PV generation data from different days are used (Solar
Power Data for Integration Studies, 2006) for 25 PV systems
covering 24 h, and their profiles are shown in Figure 2. The PV
powers are scaled-down by 150 times to suit the capacities of
the distribution networks. The buses where the storage and
PVs are located are randomly selected, while the loads are
assumed to be constant in the simulations. The VSP dispatch
commands are each randomly generated in 10 min. The
voltage limits for cases 1 and 2 are 0.95–1.05 p.u., and
0.99–1.01 p.u. for case 3. Figure 3 shows the voltage profile
of the IEEE 33 and IEEE 69 bus systems with integrated PV
systems. This indicates that without storage response, a
significant voltage increase is observed during peak PV
generation hours.

Table 1 gives the storage and control parameters in the
simulations. The storage agents are labeled by the same bus
number where they are located. We assume a ring topology for
storage communication in the VSP cyber network, that id each
storage agent communicates to its 2 most adjacent neighbors in
the undirect graph. The sampling time of the algorithm is set to
1 min, which gives enough time for algorithm convergence at
each time step. The storage power capacities and costs are
randomly selected from the ranges provided in Table 1. We
assume that all the storages have enough energy in the
considered duration. The condition for algorithm termination
is the accuracy of the objection function
(objk − objp)/objp ≤ 1e−5, where objp is the cost of a
centralized optimization for the same problem.

Simulation Results
Case I: The IEEE 33-bus system is rated at 12.7 kV with
3.75 MW/2.3MVar loads in total. The PV generations are
selected from the data profile and integrated into the
network at random buses. Figures 4A, B compares the VSP
aggregated powers and costs under the proposed distributed
control and a centralized optimization using YALMIP. This
illustrates that the proposed VSP control can track the given
power reference in a timely fashion and yield almost identical
storage costs with respect to a centralized optimization result.
The voltage profiles of the system are given in Figures 4C,D.
Again, the proposed distributed control, i.e., Figure 4D
generates similar results as the centralized scenario in
Figure 4C, both of which successfully restrict the voltage
within 0.95–1.01p.u., compared to the significant voltage
variation observed in Figure 2A. Generally, the
computational time of the distributed approach scales
linearly with respect to the dimension of the decision
variables, while the centralized approach has a high-order
polynomial relation between the computational time and the
dimension.

Case II: The IEEE 69 bus system is used in this study case. The
radial distribution network is rated at 12.7 kV. The total loads are
3.8 MW and 2.7 MVar. Again, the simulation results in Figure 5
indicate that the proposed distributed control accomplishes
nearly identical results as a centralized optimization in VSP
dispatch and voltage regulations, while the distributed control
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has fewer requirements on the communication capability of the
cyber network.

Case III: The data of the 119-bus system is obtained from
Zhang et al. (2007) and the diagram is shown in Figure 6. The
nominal voltage of the system is 11 kV, and all the initial tie
switches are open to making a radial distribution network. The
total power loads are 22.7 MW and 17.0 MVar. In Figure 7, we
present the active powers and reactive powers of the total 40
storage units in the VSP. The first column gives the results from a
centralized optimization using CPLEX, while the second column
is the result using the proposed PDC-ADMM method. It can be
observed that the centralized control maintains the storage power
references in each dispatch duration, while the proposed
distributed control can gradually approach the optimal
dispatch using feedback from the previous time step. Figure 8
validates the performance of the proposed VSP control in terms
of the power reference tracking and voltage regulations similar to
the results in IEEE 33-bus and IEEE 69-bus systems. Note that the
proposed control framework generalizes the functionalities of
storage solely by providing voltage supports in distribution
networks.

The centralized optimization can provide the global optimal
regarding the storage dispatch in the convexified optimization
problem. It provides a lower bound on the cost of storage
coordination. The proposed distributed control framework
uses an inexact approach to reduce the computational efforts
of each storage agent. So, the accuracy of the optimization is
compromised in exchange for the speed of storage dispatch. In
addition, for the sake of practical implementation, we set a fixed
value for the maximum number of iterations. So, the distributed
control approach might output the calculated storage setpoints
even when a suboptimal solution is obtained. These are the
reasons that cause slight differences in the cost and storage
dispatch between the centralized and distributed approach, but
the control performance regarding the reference tracking and
voltage regulation is almost in the two control scenarios.

CONCLUSION

This study presents a distributed control framework for the
optimal coordination of distributed energy storage devices
providing active power at the aggregated level in response
to the request from system operators. The proposed control
also covers the functionality of local voltage regulation that is
widely defined by grid codes in the distribution networks. An
improved ADMM algorithm is employed to solve the
formulated optimization problem considering storage
charging/discharging and its active/reactive power control
capabilities. This leads to a fully distributed storage
dispatch with analytical control laws based on the
inexactness of intermediate ADMM calculations. The
closed-form solution significantly reduces the computation
overhead in algorithm iterations. The simulation results
using MATLAB validate that the proposed VSP control can
track the given power reference in a cost-effective manner
while maintaining a flat voltage profile against renewable
variations. In future work, the proposed control framework
will be extended to a robust optimization framework that can
handle uncertainties from the renewables and loads.
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