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In this article, we study the global exponential stability of the equilibrium point for a class
of memristor-based recurrent neural networks (MRNNs). The MRNNs are based on a
realistic memristor model and can be implemented by a very large scale of integration
circuits. By introducing a proper Lyapunov functional, it is proved that the equilibrium point
of the MRNN is globally exponentially stable under two less conservative assumptions.
Furthermore, an algorithm is proposed for the design of MRNN-based circuits with
stable voltages. Finally, an illustration example is performed to show the validation of
the proposed theoretical results; an MRNN-based circuit with stable voltages is designed
according to the proposed algorithm.
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1 INTRODUCTION

Recurrent networks have been one of the necessary tools to character system states since their
wide applications in optimization (Li et al., 2021; Ma and Bian, 2021), games (Wu et al., 2019, 2021;
Cheng et al., 2021), control (Yang et al., 2015; Jianmin et al., 2021; Toyoda and Wu, 2021), and so
on (Wang et al., 2007; Shen et al., 2020; Shen and Raksincharoensak, 2021). In recent years, a new
type of recurrent network was proposed based on a new two-terminal circuit element called
the memristor (Chua, 1971; Strukov et al., 2008). Note that a memristor works like a biological
synapse (Anthes, 2011; Qin et al., 2015) and has the ability of automatic information storage.
Thus, memristors replaced resistors as synapses in recurrent neural networks, that is, memristor-
based recurrent neural networks (MRNNs) (Anthes, 2011; Wen et al., 2013; Zhang et al., 2013). In
recent years, the stability and stabilization of Boolean networks have been extensively investigated
(Chen et al., 2018; Guo et al., 2019, 2021).

MRNNs have been a promising architecture in neuromorphic systems by virtue of their
non-volatility, high-density, and physical storable feature. According to the realistic structure of
MRNNs, several different mathematical models for MRNNs were proposed (Hu and Wang, 2010;
Wu et al., 2011; Li et al., 2014; Chen et al., 2015; Jianmin et al., 2019). Meanwhile, notice that the
MRNN, a special recurrent network, depends on the stability of its equilibrium points in application
scenarios. Therefore, many interesting works were addressed to analyze the stability for the
MRNNs (Hu andWang, 2010;Wu et al., 2011; Li et al., 2014; Chen et al., 2015; Jianmin et al., 2019).
A mathematical model of MRNN was proposed, and its global uniform asymptotic stability was
investigated in a Lyapunov sense (Hu andWang, 2010). A simplemodel ofMRNNwas introduced by
Wu et al. (2011) by means of the typical current–voltage characteristics of memristors. A stochastic
MRNN was proposed by Li et al. (2014) based on the work by Wang et al. (2007), in which there
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was some unavoidable noise in real networks. Furthermore,
the global exponential stability for the stochastic MRNN
was studied under the framework of Filppov’s solution; three
sufficient conditions with the form of linear inequalities were
provided to determine the global exponential stability of
the stochastic MRNN. The global asymptotic stability and
synchronization of a class of fractional-order memristor-based
delayed neural networks were investigated by Chen et al. (2015).
The existence and global exponential stability were discussed by
Jianmin et al. (2019) for an uncertain MRNN with mixed time
delay under two assumptions.

Motivated by the aforementioned works, the global
exponential stability of the equilibrium point is investigated for
a class of MRNNs with time-varying delay, and its application
to stabilize the voltage in a circuit network is carried out in
this study. A sufficient condition is obtained for the global
exponential stability of MRNNs. Based on this condition, an
algorithm is proposed to stabilize the voltage of the MRNN-
based circuit. The time-varying delay was considered in the
activation functions of MRNN in this study. In addition, the
activation functions in the MRNN are not necessarily non-
decreasing, while the activation functions are non-decreasing
in the works by Hu and Wang (2010); Wu et al. (2011);
Li et al. (2014); Chen et al. (2015); Jianmin et al. (2019). Thus,
the MRNN considered in this study is the extension from
the view of activation functions compared with those in the
works by Hu and Wang (2010); Wu et al. (2011); Li et al. (2014);
Chen et al. (2015); Jianmin et al. (2019). Meanwhile, the stable
voltage is a necessary prerequisite for obtaining high-
quality electric energy in power systems, such as wind
power converters (Kobravi et al., 2007). Consequently, the
obtained theretical results are successfully applied to design
the MRNN-based circuit system with global exponential
stability, which makes it possible to apply the MRNN to power
converters.

The structure of this article is given as follows: an MRNN
with time-varying delay and some notations is introduced in
Section 2. In Section 3, the global exponential stability of the
equilibrium point for the MRNN is obtained, and an example is
given to show the effectiveness of the obtained results. Then, an
algorithm to design the MRNN-based circuit with stable voltage
is proposed, and a simple application is carried out in Section 4.
Finally, the main conclusions are given in Section 5.

2 MEMRISTOR-BASED RECURRENT
NEURAL NETWORK

In this section, some notations are introduced, and an MRNN
is described under two assumptions based on the mathematical
models by Wen et al. (2013); Jianmin et al. (2019).

Notation: ℝ denotes the set of real numbers. x =
(x1,x2,…,xm)

T is anm− dimensional column, and the superscript
T stands for the transpose operator. ∥ x ∥≔ (∑mi=1x

2
i )

1/2. A = (aij) ∈

ℝm×m is a matrix. ∥ A ∥= √λM(ATA), where λM(A) represents
the maximum eigenvalue of A. I ∈ ℝm×m stands for an identity

matrix. For a real symmetric matrix A, A > 0(A < 0) means that
A is positive (negative) definite.

Consider the following MRNN, which was originated from
Wen et al. (2013),

Ci ̇xi (t) = −[
n

∑
j=1
( 1
Rfij
+ 1
Rgij
)+Wi (xi (t))]xi (t)

+
n

∑
j=1

signij

Rfij
fj (xj (t)) +

n

∑
j=1

signij

Rgij
gj (xj (t − τj (t))) + Ii.

(1)

Here, fj(⋅) is the activation function, τj(⋅) is the time-varying
delay, Ci is the capacitance of the capacitor, and xi(t) is the
voltage of the capacitor. Rfij is the resistor between the feedback
function fj(xj(t)) and the state xi(t), and Rgij is the resistor between
the feedback function gj(xj(t− τj(t))) and the state xi(t). signij is
defined as

signij = {
1, if i ≠ j;
0, if i = j.

(2)

Wi[xi(t)] is thememductance of the i− thmemristor satisfying

Wi (xi (t)) = {
W′i , if xi (t) ≤ 0;
W′′i , if xi (t) > 0.

(3)

Ii is an external input or bias and i, j = 1,2,…,n. Let

W̃i =
W′′i −W

′
i

2Ci
. (4)

From Jianmin et al. (2019), the MRNN (Eq. 1) is transformed
into:

̇xi (t) = −dixi (t) − W̃i|xi (t) | +
n

∑
j=1

aijfj (xj (t))

+
n

∑
j=1

bijgj (xj (t − τj (t))) +Ui. (5)

Here,

di =
n

∑
j=1
[ 1
CiRfij

+ 1
CiRgij

+
W′i +W

′′
i

2Ci
],

aij =
signij

CiRfij

, bij =
signij

CiRgij

, Ui =
Ii
Ci
.

(6)

Next, let D = diag{d1,d2,…,dn}, W̃ = diag{W̃1,W̃2,…,W̃n},
A = (aij)n×n,B = (bij)n×n, |x(t)| = (|x1(t)|, |x2(t)|,…, |xn(t)|)

T , τ(t) =
(τ1(t),τ2(t),…,τn(t))T , and U = (U1,U2,…,Un)T . Then, Eq. 5 is
rewritten as:

̇x (t) = −Dx (t) − W̃ |x (t) | +Af (x (t)) +Bg (x (t − τ (t))) +U . (7)

In addition, there are two assumptions and one lemma,
which will be needed in the sequel, for the MRNN (Eq. 7).
The first assumption about the activation function fi is from
Wen et al. (2013).The second assumption about the time-varying
delay τj is fromWen et al. (2013).
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S1. For i ∈ {1,2,…,n}, the activation function fi is bounded
continuous, and ∀r1, r2 ∈ ℝ, there exists real number li > 0 such
that

0 ≤
fi (r1) − fi (r2)

r1 − r2
≤ li. (8)

Here, we set Lf = diag{l1, l2,…, ln}.
For i ∈ {1,2,…,n}, the activation function gi is bounded

continuous, gi(0) = 0, and ∀r1, r2 ∈ ℝ, there exists real number
l′i > 0 such that

−l′i ≤
gi (r1) − gi (r2)

r1 − r2
≤ l′i . (9)

Here, we set Lg = diag{l
′
1, l
′
2,…, l

′
n}.

S2. For i ∈ {1,2,…,n}, τi(t) satisfies

0 ≤ τi (t) ≤ τ i, ̇τi (t) ≤ μi < 1. (10)

Here, we let τ =max {τ1,…,τn}, and μ =max{μ1,…,μn}.
Remark 1. From Eq. 9, the activation functions gi[xi(t)] are

non-monotonic in this study. On the other hand, we notice that
the activation functions of MRNNs in the works by Hu and
Wang (2010; Wu et al. (2011); Li et al. (2014); Chen et al. (2015);
Jianmin et al. (2019) are non-decreasing. Thus, Eq. 1 is the
extension from the view of activation functions compared with
those references.

3 GLOBALLY EXPONENTIAL STABILITY

In this section, we will prove that the MRNN (Eq. 1) is
globally exponentially stable under the assumptions S1 and S2.
A sufficient condition with the form of linear matrix inequalities
can be obtained for globally exponential stability of MRNN by
constructing a suitable Lyapunov functional.

Theorem 1. Assume that S1 and S2 hold. If there exist a matrix
P = diag{p1,p2,…,pn} > 0, a constant k > 0, and small enough
constants ξ > 0 and ϑ > 0 such that

Φ≔ ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I + 2ϑ(ξLfP + LfP|W̃ |)

+
(1+ ϑ)
1− μ
∥ PB ∥2 eξτLgLg < 0,

Ψ≔ −2ϑL−1f PD+ ϑ (PA+ATP) + ϑI + k ∥ PA ∥2 I < 0. (11)

Then, the equilibrium point of the MRNN (Eq. 1) is globally
exponentially stable.

Proof: To simplify the proof, we make the following
transformation:

z = x − x∗, (12)

where x∗ is the equilibrium point of theMRNN (Eq. 1).Then, the
MRNN (Eq. 1) can be rewritten equivalently as

̇z (t) = −Dz (t) − W̃ (|z (t) + x∗| − |x∗|)
+Af (z (t)) +Bg (z (t − τ (t))) , (13)

where f(z(t)) = f(z(t) + x∗) − f(x∗) and g(z(t− τ(t))) = g(z(t −
τ(t)) + x∗) − g(x∗). It is obvious that fi(0) = 0 and gi(0) = 0. By
the assumption S1, we get

fT (z (t))z (t) ≥ fT (z (t))L−1f f (z (t)) ,

fT (z (t))z (t) ≤ zT (t)Lf z (t) ,
g (z (t)) ≤ Lg |z (t) |.

(14)

We define a Lyapunov functional as follows:

V (t,z) =V0 (t,z) +V1 (t,z) +V2 (t,z) , (15)

where

V0 (t,z) = eξtzTPz,

V1 (t,z) = 2ϑeξt
n

∑
i=1

pi∫
zi

0
fi (s)ds,

V2 (t,z) = η
n

∑
i=1 ∫

t

t−τi(t)
g2

i (zi (s))e
ξ(s+τi)ds.

(16)

Here, ξ, ϑ are small positive constants, and η is a positive
constant to be determined.

First, calculating the time derivative of V0(t,z) along the
trajectories of the MRNN (Eq. 13), we have

d
dt
V0 (t,z (t)) = ξeξtzT (t)Pz (t) + 2eξtzT (t)P ̇z (t)

= ξeξtzT (t)Pz (t) − 2eξtzT (t)PDz (t)
− 2eξtzT (t)PW̃ (|z (t) + x∗| − |x∗|)
+ 2eξtzT (t)PAf (z (t))
+ 2eξtzT (t)PBg (z (t − τ (t))) . (17)

In addition,

−2eξtzT (t)PW̃ (|z (t) + x∗| − |x∗|) ≤ 2eξt|z (t) |TP|W̃ |
× | (|z (t) + x∗| − |x∗|) |
≤ 2eξt|z (t) |TP|W̃ | ⋅ |z (t) |
= 2eξtzT (t)P|W̃ |z (t) , (18)

2eξtzT (t)PAf (z (t))

≤ eξt [1
k
zT (t)z (t) +fT (z (t))k ∥ PA ∥2 f (z (t))] , (19)

2eξtzT (t)PBg (z (t − τ (t))) ≤ eξt [zT (t)z (t) +gT (z (t − τ (t)))
× ∥ PB ∥2 g (z (t − τ (t)))] . (20)

Here, the parameter k is a positive constant. Substituting
Eqs 18–20 into Eq. 17, we obtain

d
dt
V0 (t,z (t)) ≤ e

ξtzT (t)[ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I]z (t)

+eξtfT(z (t))k ∥ PA ∥2f (z (t))+eξtgT (z (t − τ (t)))
× ∥ PB ∥2 g (z (t − τ (t))) . (21)
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Second, by calculating the time derivative ofV1(t,z) along the
trajectories of the MRNN (Eq. 13), it follows

d
dt
V1 (t,z (t)) = 2ξϑeξt

n

∑
i=1

pi∫
zi

0
fi (s)ds+ 2ϑeξtfT (z (t))P ̇z (t)

≤ 2ξϑeξtfT (z (t))Pz (t) − 2ϑeξtfT (z (t))PDz (t)
− 2ϑeξtfT (z (t))PW̃ (|z (t) + x∗| − |x∗|)
+ 2ϑeξtfT (z (t))PAf (z (t)) + 2ϑeξtfT (z (t))PB
×g (z (t − τ (t))) . (22)

By Eq. 14, we have

2ξϑeξtfT (z (t))Pz (t) ≤ 2ξϑeξtzT (t)LfPz (t) ,
− 2ϑeξtfT (z (t))PDz (t) ≤ −2ϑeξtfT (z (t))L−1f PDf (z (t)) ,

(23)

− 2ϑeξtfT (z (t))PW̃ (|z (t) + x∗| − |x∗|)
≤ 2ϑeξt|z (t) |TLfP|W̃ ∥ z (t) |
= 2ϑeξtzT (t)LfP|W̃ |z (t) .

(24)

Notice that

2ϑeξtfT (z (t))PBg (z (t − τ (t)))
≤ ϑeξtfT (z (t))f (z (t)) + eξtgT (z (t − τ (t)))ϑ ∥ PB ∥2

×g (z (t − τ (t))) . (25)

Substituting Eqs 23–25 into Eq. 22, we have

d
dt
V1 (t,z (t))

≤ 2ξϑeξtzT (t)LfPz (t) − 2e
ξtfT (z (t))ϑL−1f PDf (z (t))

+ 2ϑeξtzT (t)LfP|W̃ |z (t) + 2ϑe
ξtfT (z (t))PAf (z (t))

+ ϑeξtfT (z (t))f (z (t)) + eξtgT (z (t − τ (t)))ϑ ∥ PB ∥2

×g (z (t − τ (t)))
= 2ϑeξtzT (t)[ξLfP + LfP|W̃ |]z (t) + 2eξtfT (z (t))

× [−ϑL−1f PD+ ϑPA+ 1
2
ϑI]f (z (t))

+ eξtgT (z (t − τ (t)))ϑ ∥ PB ∥2 g (z (t − τ (t))) . (26)

Third, calculating the time derivative of V2(t,z) along the
trajectories of the MRNN (Eq. 13), we have

d
dt
V2 (t,z (t))

= η
n

∑
i=1

eξ(t+τi)g2
i (zi (t)) − η

n

∑
i=1
(1− ̇τi (t))e

ξ(t−τi(t)+τi)

×g2
i (zi (t − τi (t)))

≤ ηeξ(t+τ)gT (z (t))g (z (t)) − η(1− μ)eξtgT (z (t − τ (t)))
×g (z (t − τ (t)))
≤ eξtz (t)T [ηeξτLgLg]z (t) − η(1− μ)eξtgT (z (t − τ (t)))
×g (z (t − τ (t))) . (27)

Hence, by Eqs 21, 26, 27, we have
d
dt
V (t,z (t))

= d
dt
V0 (t,z (t)) +

d
dt
V1 (t,z (t)) +

d
dt
V2 (t,z (t))

≤ eξtzT (t)[ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I

+2ϑ(ξLfP + LfP|W̃ |) + ηe
ξτLgLg]z (t)

+eξtfT(z (t))[−2ϑL−1f PD+ϑ (PA+ATP)+ ϑI +k ∥ PA ∥2 I]

×f (z (t)) + eξtgT (z (t − τ (t))) [(1+ ϑ) ∥ PB ∥2 −η(1− μ)]
×g (z (t − τ (t))) . (28)

Let η = (1+ϑ)
1−μ
∥ PB ∥2 in Eq. 28. It means that

d
dt
V (t,z (t))

≤ eξtzT (t)[ξP − 2PD+ 2P|W̃ | + (1+ 1
k
) I

+2ϑ(ξLfP + LfP|W̃ |) +
(1+ ϑ)
1− μ
∥ PB ∥2 eξτLgLg]z (t)

+ eξtfT (z (t))[−2ϑL−1f PD+ ϑ (PA+ATP) + ϑI

+ k ∥ PA ∥2 I]f (z (t))
= eξtzT (t)Φz (t) + eξtfT (z (t))Ψf (z (t)) . (29)

Since Φ < 0, Ψ < 0, and by Eq. 29, we have
d
dt
V (t,z (t)) ≤ 0, (30)

which means that eξtzT(t)Pz(t) =V0(t,z(t)) ≤V(t,z(t)) ≤
V(0,z(0)). More precisely,

∥ x (t) − x∗ ∥=∥ z (t) ∥≤Me
− ξ2 t
, (31)

where M = [pV(0,z(0))]
1
2 and p =max{pi ∶ i = 1,…,n}, that is,

the unique equilibrium point x∗ of the MRNN (Eq. 1) is globally
exponentially stable.

Remark 2. Motivated by the representation of the Lyapunov
functional in the work by Jianmin et al. (2019), we construct a
new Lyapunov functional V(t,x(t)), in order to overcome the
difficulty brought by the nonmonotone activation functions in
MRNN (Eq. 1) in the proof of Theorem 1.

Now, we give an example to illustrate that the equilibrium
point of the MRNN is globally exponentially stable when the
conditions inTheorem 1 are satisfied.

Example 1. Consider an MRNN (Eq. 1) with four state
voltages, for which the parameter values of MRNN (Eq. 1) are
originated from the work by Jianmin et al. (2019), especially the
capacitors C1 = 2, C2 = 3, C3 = 2, and C4 = 7; the external inputs
I1 = 9, I2 = 3, I3 = 9.5, and I4 = 6; the memductances W′1 = 1,
W′2 = 3, W

′
3 = 9.5, and W′4 = 1 for xi(t) ≤ 0; the memductances

W′′1 = 4, W
′′
2 = 1.5, W

′′
3 = 2, and W′′4 = 3.5 for xi(t) ≥ 0; and the

resistors Rf ≔ (Rfij) and Rg ≔ (Rgij) are given as follows:

Rf =
[[[

[

1 3 1.5 2
2 4 6 12
1.8 2.6 3.5 4
7 3 4 3

]]]

]

,
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Rg =
[[[

[

1 3 1.5 2
2 2 2 2
1.8 2.6 3.5 4
7 3 4 3

]]]

]

.

Next, by the aforementioned parameters and Eqs 2–6, it
follows that D, W̃ , U, A, and B. Let the activation functions

fi (xi (t)) =
1
2
(|xi (t) + 1| − |xi (t) − 1|) ,

gi (xi (t)) = sin(xi (t)) ,

and the time-varying delays

τi (t) = 1.8+ 0.5⁡sin ⁡t,

for i = 1,2,3,4. It is obvious that the assumptions S1 and S2
are satisfied. Then, by assumptions S1 and S2, we have L =
diag{1,1,1,1}, τ = 2.3, and μ = 0.5.

Now, by fixing the parameters k = 1000, ξ = 0.001, and
ϑ = 0.001 in Theorem 1 and substituting the matrices A,B,D,W̃
into the linear matrix inequalities (Eq. 11), we get a positive
definite diagonal matrix

P = diag {0.0499,0.0499,0.0499,0.0499} ,

namely, by Theorem 1, the equilibrium point of the MRNN
(Eq. 1) is globally exponentially stable.

The initial values of the neural network (Eq. 1) are set at
(0.1,0.1,0.1,0.1)T, (0.5,0.5,0.5,0.5)T, and (0.9,0.9,0.9,0.9)T. The
solution trajectories of Eq. 1 are illustrated in Figure 1. From
Figure 1, we see that the equilibrium point of the MRNN is
globally exponentially stable, which shows the validation of the
obtained result fromTheorem 1.

FIGURE 1 | Solution trajectories of the MRNN (1).

4 AN ALGORITHM TO DESIGN THE
MRNN-BASED CIRCUIT WITH STABLE
VOLTAGES

Note that the stable voltage is a necessary prerequisite for
obtaining high-quality electric energy in power systems. In
this section, the two linear inequalities in Theorem 1 are used
to design the MRNN-based circuit with globally exponentially
stable voltages, which make it possible to apply the MRNN
to power converters. The design process is described by the
following four steps:
Step 1: Fix the values of capacitor Ci, external input Ii, and the
resistors Rfij and Rgij in Eq. 1 for i, j = 1,2,…,n.
Step 2: For the given time-varying delay τi(t) and the activation
functions fi,gi, calculate the matrices Lf,Lg in the assumption S1
and the parameters τ and μ in the assumption S2.
Step 3: Determine the parameters W′i and W′′i in the

memductance Wi(xi(t)) of the i− th memristor in Eq. 1 for
i = 1,2,…,n.

• Fix a matrix P > 0 and the parameters k, ξ, and ϑ in
Theorem 1.
• Substitute Ci, Ii, Rfij , and Rgij into aij, bij, and Ui in Eq. 6 to

obtain matrices A, B, D, and U.
• Substitute the matrices P, D, A, B, and U into the linear

matrix inequalities (11).
• Solve Eq. 11 to obtain the matrix W̃ .
• CalculateW′i andW′′i by the di and W̃i in Eq. 5.

Step 4: By substitutingCi, Ii,Rfij ,Rgij ,W
′
i , andW

′′
i into Eq. 1, the

MRNN-based circuit with stable voltages is obtained.
Remark 3. From Step 3, the parameters W′i and W′′i in the

MRNN (Eq. 1) can be determined at the same time by the
parameter di and W̃i for i = 1,2,…,n in (6). Consequently, we can
select or make thememristor guarantee theMRNN-based circuit
with stable voltage when the other elements are given beforehand
by means of the proposed algorithm.

Next, we will design an MRNN-based circuit with four
stable voltages by the proposed algorithm, where the activation
functions and some of the parameters in theMRNN-based circuit
in this example are the same as those in the first example.

Example 2. It is declared that the activation functions fi(xi(t)),
gi(xi(t)), the time-varying delay τi(t), and the values of parameters
Ci, Ii, Rfij , and Rgij for the MRNN-based circuit are the same as
those in the first example. Next, by Step 3, we determine the
values of W′i and W′′i in the memductance Wi[xi(t)] of the i− th
memristor in Eq. 1 for i, j = 1,2,3,4.

• Fix the values of parameters k = 1000, ξ = 0.001, and
ϑ = 0.001 in Theorem 1 and a matrix P = diag{5,5,5,5} > 0
and D = diag{30,20,25,10}. Substitute the matrices P, D, B,
and U into the linear matrix inequalities (11). Then, solve
Eq. 11 to obtain the matrix W̃ :

W̃ = {25.5148,15.9082,20.7115,6.3017} .

• Calculate W′i and W′′i by di and W̃i in Eq. 6,
especially W′′1 = 60.9574, W′′2 = 56.3541, W′′3 = 47.3558,
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FIGURE 2 | Solution trajectories of the designed MRNN-based circuit.

W′′4 = 17.1508; W′1 = 35.4426, W′2 = 40.4459, W′3 =
26.6443, andW′4 = 10.8492.

By Step 4, substituting Ci, Ii, Rfij , Rgij ,W
′
i , andW′′i into Eq. 1,

we obtain the MRNN-based circuit with stable voltages. The
initial values of Eq. 1 are given as same as those in Example 1.
The solution trajectories of the designed MRNN-based circuit
are depicted in Figure 2, which means that we obtain a MRNN-
based circuit with stable voltages through selecting the suitable
parameter values in the memductance of the memristor.

5 CONCLUSION

In this study, the global exponential stability of the equilibrium
point of theMRNN is investigated for a class of general activation
functions. A sufficient condition with the form of linear matrix

inequalities is obtained for the global exponential stability.
Furthermore, the proposed results are applied to design the
MRNN-based circuits with stable voltages. From the view of
the MRNN-based circuit, some elements of the MRNN-based
circuit with stable voltages can be determined by the proposed
algorithm. Note that the earth’s environmental pollution and
the lack of energy restrict the survival and development of the
human society.Wind energy, an environment-friendly renewable
resource, has become one of the effective ways to solve these
two difficulties. The conversion of wind energy into electric
energy can rely on wind power converters. The mathematical
model of the power system of new wind turbines was described
by a recurrent network. Thus, further research will focus on
transforming the output voltage of the wind power converter to
ensure the stable amplitude of its output voltage based onMRNN
with stability.
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