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Electricity theft of low voltage (LV) users could result not only in the escalation of power loss
but also in dangerous electric shock. Since LV users are served by distribution
transformers, electricity theft of an LV user will cause line loss escalation of the
associated distribution serving zone (DTSZ). Therefore, it seems promising to identify
anomaly users of electricity theft with a Granger causality test to find out the user causing
an escalation of line loss in DTSZ with time series of users’ usage and line loss. However,
meters of LV users in severe environments occasionally suffer from communication failure
to upload metering data to the head end of advanced metering infrastructure (AMI), which
could distort the daily electricity usage of the associate user. Consequently, it could cause
false alarms unavoidably once we detect electricity theft with these distorted data. Since
the distribution transformer unit (DTU) collects metering data of LV users within associate
DTSZ without distortion, an edge computing–based electricity theft detection approach is
proposed in this article. The correlation between line loss of a DTSZ and electricity usage of
anomaly users of electricity theft is first analyzed. Thereafter, the Granger causality test is
used to identify anomaly users with authentic usage data with edge computing in DTU.
Finally, the abnormal data and the data repaired by different missing data filling algorithms
are used on the main station to detect electricity theft. Numerical simulation suggests that
although missing data completion could recover information in missing data partially, it
could result in notable false positive alarms in electricity theft, while the proposed method
based on edge computing can completely eliminate the data distortion caused by
communication failure.

Keywords: electricity theft, communication failure, edge computing, missing data completion, distribution
transformer terminal, attribution analysis

1 INTRODUCTION

Electricity theft of low voltage (LV) users could cause substantial revenue loss to power utilities.
Moreover, anomaly wire hooks result in numerous electric shocks to users. Therefore, it is highly
preferred to identify anomaly LV users (Wang Y. et al., 2019; Zhang et al., 2019; Partha et al., 2020).
Since there are millions of LV residential users with diversified usage patterns, it is rather difficult to
identify anomaly ones of electricity theft, and electricity detection of LV users remains a difficulty in
industrial applications (Li et al., 2018).

The extensive application of smart meters could provide substantial meter data on electricity
usage, which can lay a solid foundation for data-driven electric theft detection. Zheng et al. (2019)
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detected electricity theft with maximum information coefficient
and density peak fast clustering algorithm in combination.
Zhuang et al. (2016) and Sun et al. (2018) detected electricity
theft with fluctuation of multi-day usage, fluctuation of the SD of
usage, and trend of usage with an improved outlier identification
algorithm. Since extracted features play a key role in the precision
of anomaly detection, a stacked de-correlation auto-encoder is
employed (Hu et al., 2019) to extract highly condensed
independent features. Thereafter, a support vector machine is
used to identify anomaly users (Hu et al., 2019). Since power
utilities have limited market crews for onsite inspection, a false
positive rate (FPR) is key to evaluating the performance of
electricity theft (Jin et al., 2022). To prevent false positives
alarm, marketing crews implement onsite inspection of DTSZ
with a high loss ratio above 8%. Since there is an underlying
correlation between anomaly users of electricity theft and line loss
of associated feeder, a Granger causality analysis–based approach
is proposed by Jin et al. (2020) to detect users who cause
fluctuations in line loss. Since high line loss in a DTSZ is
usually caused by electricity theft, once we detect electricity
theft in DTSZ with a high loss rate, it could achieve a low
false alarm rate (Tang et al., 2020).

It should be pointed out that the meters of LV users
communicating via power line communication (PLC) could
suffer failure occasionally. Once a smart meter fails to upload
its usage data to the head end of AMI, it will upload it in the
following days. The head end calculates the daily line loss of a
DTSZ according to the daily served electricity and accumulation
of all users’ daily usage. Line loss of the DTSZ escalates on the
days when the meter fails and declines to even below zero in the
following days when meters upload usage data of communication
failure and that very day. Existing approaches to electricity
detection identify anomaly users with accurate metering data,
while false data cause misleading results inevitably.

To overcome the problem of detecting electricity theft with
metering data in the head end of AMI, an edge computing–based
electricity detection approach is proposed in this article. The rest
of the article is organized as follows. Existing approaches to
missing data completion are investigated in Section 2.
Correlation of anomaly users’ usage and line loss of associate
DTSZ in investigated and edge computing–based approach is
developed in Section 3. Numerical simulation of real-world
metering data is analyzed in Section 4 to demonstrate the
superiority of the proposed method to that of data restored
with various missing data completion algorithms. Section 5
concludes the article.

2 ELECTRICITY MISSING DATA
COMPLETION METHOD

Metering data could suffer interference and failure in the process
of data acquisition, conversion, and communication, and missing
data and false data are common for industrial applications of
power utilities. Traditionally, power systems are measured with
redundancy. Therefore, some missing data or false data can be
identified and corrected with state estimation. There are similar

missing data and false data in AMI. However, since these data are
not closely coupled with each other, they can be corrected and
filled with state estimation (Yang Y. et al., 2020). Traditionally,
missing data and false data of AMI are filled or corrected with the
mean of previous and following data, interpolation mode, closest
distance data, regression model, and maximum expectation based
algorithm (Sundararajan et al., 2019). However, most of them
implement data completion with statistic-based and mechanism-
based models and neglect underlying features of a single time
series and correlation among various time series. Data
completion with these approaches is not as satisfying as
expected (Chen et al., 2019; Yang et al., 2019).

Since missing data is rather common in various fields,
numerous researchers have researched missing data
completion and achieved notable progress in recent years
(Siamkaz et al., 2018; Song et al., 2019). Based on the inertial
effect of the measured data, Ruan deduced coarse values of pre-
attack measurements. Then, based on the deduced coarse values
and suggested state bounds, an optimization model is proposed to
recover the measurements (Ruan et al., 2022). The matrix filling
method used in the Netflix recommendation system is established
on the premise that the data matrix has low rank and sparsity. It
could reconstruct the original matrix precisely in the case of
partial loss of original data. The low-rank matrix completion
theory is based on the low rank of the data to recover the missing
data. It takes matrix rank minimization as the objective function.
The classical mathematical model of data recovery is expressed as
follows.

{min
K

‖K‖p
s.t. PΩ(M) � PΩ(K) (1)

PΩ(M) � {Mi,j (i, j) ∈ Ω
0 (i, j) ∉ Ω (2)

where ‖ · ‖p denote the matrix kernel norm; K denotes the
restored low-rank matrix; M denotes the matrix to be repaired
with only some elements observed; Ω denotes the set of positions
of non-empty elements in M. If Mi,j a member of matrix M is
observed, then (i, j) ∈ Ω;PΩ is the operator. Since there are
Gaussian noise, spikes, and other formal noise for the most
real-world system, the data recovery model can be depicted in
Eq. 3 as follows.

{ min
K, E,G

(‖K‖p + ρ‖E‖1 + δ‖G‖2F)
s.t. PΩ(M) � K + E + G +N

(3)

where E denotes peak outlier matrix, G denotes Gaussian noise
matrix, ρ and δ denote weight coefficients correspondingly, andN
denotes auxiliary matrix. The augmented Lagrange function in
Eq. 3 can be transformed into an unconstrained optimization
problem and solved with the alternating direction method of
multipliers (ADMM) according to literature (Yang T. et al., 2020).

Tensor completion is a high dimensional matrix completion.
Since the electricity usage of multiple users on different days may
have an underlying multi-dimensional internal correlation,
tensor completion could be utilized to recover missing or false
with high precision (Zhao et al., 2020). The fundamental principle
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of tensor completion is similar to matrix completion and could be
referred to (Zhao et al., 2020).

Unlike matrix completion and tensor completion to recover
missing data with low-rank data, generative adversarial
networks (GAN) is a data-driven approach which extracts
features from large amounts of unlabeled data through
GAN’s adversarial game. A discriminant model that can
accurately identify the authentic and false/missing data and
a generic model that can capture the potential features and
spatial and temporal features of the data are obtained.
Thereafter, the dual semantic perception constraint is
utilized to retrain the model to find the candidate data that
has the greatest similarity to the data to be reconstructed with
missing values (Wang S. et al., 2019). It should be pointed out
that the GAN based approach works on a large number of data,
and it is not appropriate for the date completion of limited LV
users in a DTSZ. Matrix completion and tensor completion are
utilized to recover false/missing data in this article.

3 DETECTION OF POWER THEFT IN LOW
VOLTAGE PLATFORM BASED ON EDGE
COMPUTING

3.1 Correlation Analysis of User Power
Quantity and Line Loss in Low Voltage
Station Area
Non-technical loss (NTL) in DTSZ is mainly caused by electricity
theft, and the NTL caused by anomaly users is usually correlated
to its metering data and associated NTL. Therefore, there is an
underlying correlation between the metering data of anomaly
users and the NTL of DTSZ. The correlation could be identified
with Granger causality analysis to find out the anomaly users
caused an escalation of loss of DTSZ.

Metering data of a real-world DTSZ is employed to analyze
the correlation between metering data and loss of DTSZ. Loss

of the DTSZ in 62 consecutive days is shown in Figure 1. There
are six industrial and commercial users and 33 low-voltage
residential users in the DTSZ. The served daily mean electricity
is about 1200 kWh, while the daily mean loss is about 100 kWh
in January and February 2020. The loss rate came up to 9.6%,
and it is highly suspected that there is an anomaly user of
electricity theft. Since electricity theft of industrial and
commercial users is contributing much more than average
residential users, electricity usage of six industrial and
commercial users within the DTSZ from 30 December 2019
to February 2020 is analyzed as follows.

The red line denotes the daily loss of DTSZ (G), and the
black line denotes the daily loss rate of DTSZ. The other six
lines denote the electricity consumption of six industrial and
commercial users, which are depicted as H1~H6 in the
following section. It can be observed that the loss profile of
DTSZ has a similar trend as that of users’ usage. Most of them
escalate in the beginning and then decline in the end.

3.2 Data Communication and Anomaly
Analysis in LV DTSZ
DTU is generally installed on the secondary side of the
distribution cabinet (Liu et al., 2020). It communicates via
protocol RS485 or PLC within the DTSZ and communicates
with the head end of AMI with wireless communication or optical
fiber. DTU collects metering data of the distribution transformer
and associates LV users within DTSZ and uploads it to the head
end of AMI (Huang et al., 2021; Zhong et al., 2021).
Communication architecture within a typical DTSZ is shown
in Figure 2.

In real-world AMI, meters of users operate in severe
environments and it could suffer communication
occasionally. Once it suffers communication failure, it could
upload daily metering data in the following days, which could
cause zero electricity usage on the previous day and electricity

FIGURE 1 | Electricity usage of users and loss of DTSZ with a high loss rate.
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usage of 2 days on the following day in the head end of AMI. In
order to demonstrate the impact of communication failure on
data quality of the head end of AMI, user one of DTSZ was
selected to report 0 electricity usage on 29 January 2020, and
the usage was accumulated and uploaded on the following day.
The usage of users and loss data of DTSZ is plotted as shown in
Figure 3. It can be observed that the loss and loss rate of DTSZ

escalated notably on 29 January 2020 due to communication
failure. While it decreases notably on the following day since
usage in two consecutive days is accumulated. As a
consequence, communication failure could distort the
underlying correlation between anomaly users’ electricity
usage and loss of DTSZ and result in misleading electricity
theft identification as a consequence.

FIGURE 2 | Basic communication diagram of the distribution area.

FIGURE 3 | Electricity usage of users and loss of DTSZ with communication failure.
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3.3 Edge Computing Based Electricity Theft
Detection in Distribution Serving Zone
Co-integration test and Granger causality analysis are commonly
used in economics to analyze the correlation among time series.
In general, a co-integration test is used to test whether there is a
long-term equilibrium among time series. Thereafter, Granger
causality analysis is used to determine whether a variable impacts
another variable (Zhu et al., 2017; Fan et al., 2019; Tian et al.,
2019). Since electricity usage of an anomaly user of electricity
theft is correlated to its usage in most theft modes, the fluctuation
of loss pf DTSZ caused by anomaly users has a similar profile as
time series of economic variables disturbed by other factors.
Therefore, the equilibrium relationship and causal relationship
between the loss of DTSZ and users’ metering data can be
analyzed to detect anomaly users.

Traditionally, field terminals, such as DTU, have limited
computing and storage resources. Complex functions such as
identification of anomaly users of electricity theft can only be
implemented in the head end of AMI. Communication failure
induced data missing could impact its performance notably
(Shi et al., 2016; Covi et al., 2021). In recent years, more and
more meters are being deployed in distribution systems with
the rapid development of Internet of Things (IoT) technology
(Deng et al., 2021). Since computing and storage resources of
concurrent IoT terminals escalate notably, it is technically
feasible to implement some of the complex functions in IoT
terminals with edge computing (Li et al., 2020; Wang et al.,
2020; Liu et al., 2022).

DTU could be utilized as a platform for edge computing in
DTSZ. Since it collects substantial data within the DTSZ, it can

provide loss analysis, power quality monitoring, and topology
analysis with edge computing. Since different vendors implement
different business functions in the diversified OS environment,
Docker technology is employed to provide an appropriate
container for the APP of various vendors on the same DTU
platform (Gong et al., 2018). Docker-based DTU is composed of a
system layer and an application (APP) layer. The APP layer is
divided into acquisition APP and business APP, which can
interact with each other through the message bus. The former
collects real-time operation data and load data; The latter accesses
the data center through the device bus, extracts the required data
for calculation and analysis, and implements edge computing of
business functions (Nie et al., 2020).

Electricity theft detection can be implemented in the DTU
with edge computing. The fundamental of the approach is that
the concentrator APP of DTU collects users’metering data within
the DTSZ. Loss analysis APP collects serving electricity and
calculates the loss of DTSZ. Thereafter, the electricity theft
detection APP identifies anomaly users with Granger causality
analysis with loss data andmetering data of associated users in the
DTSZ. The framework of the implementation process is shown in
Figure 4. The method proposed in this paper transfers the
detection of electricity theft from the head end of AMI to the
DTU in the edge, which can eliminate communication associated
data missing to identify anomaly users with lower fails
positive rate.

Granger causality analysis is first used to identify anomaly
users in DTSZ depicted in Section 1. Thereafter, the distorted
data and distorted data recovered with various data completion
approaches are analyzed in this section.

4 NUMERICAL SIMULATION

4.1 EdgeComputing–Based Electricity Theft
Detection
ADF unit root tests were performed for G and H1-H6, and their
differential sequences were on the edge side. With 5%
confidence as the standard, all the sequences were first-
order unitary sequences, and the test results are shown in
Table 1.

The Engle–Granger co-integration test was applied to G and
H1-H6, respectively. Thereafter, the stationarity test of residual
series was implemented with the ADF test. The stationarity test
results of the residual series are listed in Table 2, and the shaded
area in the table indicates that the result is less than the threshold
of −3.4363.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G � 22.9015 + 1.3434H4

T1 � 4.5562, T2 � 16.4799
R2 � 0.8190, �R2 � 0.8160
F � 271.5902, D � 1.4099

(4)

⎧⎪⎪⎪⎨⎪⎪⎪⎩
G � −0.6793 + 1.6065H5

T1 � −0.1428, T2 � 22.2943
R2 � 0.8923, �R2 � 0.8905
F � 497.0337, D � 0.9883

(5)

FIGURE 4 | Electricity theft detection framework with edge computing.
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
G � 13.0982 + 1.3801H6

T1 � 2.7918, T2 � 19.7185
R2 � 0.8663, �R2 � 0.8641
F � 388.8198, D � 1.0359

(6)

When the residual sequence is stationary, the regression
equation between the corresponding variables is shown as
above. In Eqs 4–6, T1 and T2 are the t-test values of
corresponding parameters, R2 denotes the determinability
coefficient, �R2 denotes the adjusted determinability coefficient,
F denotes the model test value, and D denotes the Dubin Watson
statistic. If F test value and T test value are significant, the
regression effect of the equation is better.

After constructing the least squares regression model for
H1–H6 and G, the co-integration test results show that the test
value in the stationarity test of residual sequences ofH1–H3 andG
is greater than the threshold while that in the stationarity test of
residual sequences of H4–H6 and G is less than the threshold,
which indicates H4–H6 has a co-integration relationship with G.
The subsequent Granger causality analysis can be continued, and
the threshold refers to the critical value of McKinnon’s co-
integration test (Pan, 2017). To further clarify the dynamic
relationship between H4~H6 and G, an error correction model
among H4~H6 and G is established, and the results are listed in
Eqs 7–9. It can be observed that when H4–H6 fluctuates
(increases) by 1% in the short term, H4–H6 will increase by
0.7040%, 1.2302%, and 1.1019%, respectively. According to the
coefficient of error correction term, when the short-term
fluctuation of H4–H6 and G deviates from the long-term
equilibrium relationship among them, the non-equilibrium
state among H4–H6 and G will be corrected to the equilibrium
state with the adjustment force of −0.5700, −0.4457, and −0.4409,
respectively.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔG � 0.7040ΔH4 − 0.5700et−1
T1 � 4.1511, T2 � −4.8494
R2 � 0.3567, �R2 � 0.3228
D � 2.1373

(7)

where et−1 � G(t−1) − 20.0735 − 1.3920H4(t−1), ΔG is the first-
order difference of G, ΔH4 is the first-order difference of H4,
G(t−1) is the first-order lag sequence of G, and H4(t−1) is the first-
order lag sequence of H4.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔG � 1.2302ΔH5 − 0.4457et−1
T1 � 10.0978, T2 � −4.1534
R2 � 0.6645, �R2 � 0.6469
D � 2.0424

, (8)

where et−1 � G(t−1) + 2.2644 − 1.6356H5(t−1), ΔH5 is the first-
order difference of H5, and H5(t−1) is the first-order lag
sequence of H5.

⎧⎪⎪⎪⎨⎪⎪⎪⎩
ΔG � 1.1019ΔH6 − 0.4409et−1
T1 � 7.3627, T2 � −3.6399
R2 � 0.5144, �R2 � 0.4888
D � 2.1190

(9)

where et−1 � G(t−1) − 17.0197 − 1.3225H6(t−1), ΔH6 is the first-
order difference of H6, and H6(t−1) is the first-order lag sequence
of H6.

The co-integration relationship among H4~H6 and G and the
error correction model were analyzed. It can be observed that the
error correction coefficients in the three error correction models
of H4~H6 and G all conform to the reverse adjustment
mechanism. Characteristics of long-term stability and the
dynamic relationship between H4~H6 and G with co-
integration relationship are further clarified. Since there is a
co-integration relationship between H4~H6 and G, the causal
relationship between their influences can be further analyzed with
Granger causality analysis. Granger causality analysis results of
edge computing are shown in Table 3. It can be observed that the
significance of “H4 is not the Granger cause of G″ is less than the
critical level of 5%, which indicates the null hypothesis is rejected.
Therefore, H4 is the cause of the change of G, and H4 can be

TABLE 1 | Results of stationary test for DTSZ with high loss rate.

Time series ADF 5% Confidence Stationary Time series ADF 5% Confidence Stationary

G −1.7940 0.3801 N △G −8.9978 0.0000 Y

H1 −2.4498 0.1328 N △H1 −9.7337 0.0000 Y

H2 −0.4467 0.5171 N △H2 −10.7129 0.0000 Y

H3 −1.9382 0.3130 N △H3 −7.9962 0.0000 Y

H4 −0.4595 0.5121 N △H4 −8.0350 0.0000 Y

H5 −1.8255 0.3650 N △H5 −9.3035 0.0000 Y

H6 −0.4429 0.5187 N △H6 −9.7269 0.0000 Y

TABLE 2 | Residual sequence smoothness test results of user and loss.

User Inspection results User Inspection results

H1 −3.1573 H4 −5.7480
H2 −3.3738 H5 −4.5032
H3 −2.9929 H6 −4.5394

TABLE 3 | Granger causality test results of edge computing.

Assuming Significance

G is not a Granger reason for H4 0.0137
H4 is not a Granger reason for G 0.0465
G is not a Granger reason for H5 0.5068
H5 is not a Granger reason for G 0.4232
G is not a Granger reason for H6 0.0275
H6 is not a Granger reason for G 0.7291
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regarded as the anomaly user of electricity theft in the DTSZ. This
has been verified by on-site inspection.

4.2 Master Station Detection Comparative
Experiment
When LV users suffer communication failure and upload
metering data on the following day, the data at the head
end of AMI is distorted with missing data and could cause
misleading electricity theft detection results. In order to verify
the superiority of the proposed approach, six industrial and
commercial users in DTSZ were set to upload zero usage on the
30th day (28 January 2020) and upload usage on two
consecutive days on the following day (29 January 2020).
Therefore, the loss of DTSZ increased on the first day and
decreased on the second day. The metered usage of each user
and loss of DTSZ are listed as shown in Table 4. Granger
causality test is used to test whether there is a correlation
between each user and the loss of DTSZ based on distorted
false data. The ultimate results of Granger causality analysis at
the head end of AMI are shown in Table 5.

It can be concluded from Table 5 and Schedules as follows.

• When users suffer communication failure and fail to upload
metering data, there is no co-integration relationship between the
user’s electricity usage and loss of DTSZ. Therefore, we cannot
analyze it with Granger causality analysis. The co-integration
relationship between electricity usage of other users and loss of
DTSZ remains, and they can be analyzed with Granger causality
analysis.

• Except for the user who suffers communication failure, all
other users could be identified as anomaly users of electricity
theft. Since user 4 has been confirmed to be the anomaly user of
electricity theft by onsite inspection, once we identify the anomaly
user of electricity theft with distorted data with data missing, the

false positive rate escalates to 80%, which is not acceptable for
industrial applications.

Missing data completion got broad research in recent years.
Yang Y. et al. (2020) proposed a low-rank matrix theory based on
matrix completion of power quality data. It designs a multi-norm
joint low-rank optimization model and solves it with an
alternating direction multiplier method. Zhao et al. (2020)
proposed a tension completion based approach to recover
missing data of multiple-user, and a low-rank tensor
completion model was employed to recover missing data in
DTSZ. It analyzes the characteristics of the LV data in DTSZ
and constructs the standard missing tensor.

In order to find outperformance of matrix completion and
Tensor completion, missing data of each user is recovered with
these two approaches. The authentic usage and recovered usage
with the two completion approaches are listed in Table 6. The
authentic loss on 29 January and 30 January is 115.30 and
118.13 kWh, respectively. According to the user usage data
recovered with correction, the loss of the DTSZ calculated
with recovered data is listed in Table 7.

It can be observed from Tables 6, 7 that although it is widely
supposed that matrix completion and tensor completion can
recover missing data ideally, its premise is that time series are
of low rank. Missing data cannot be recovered precisely once
there is no strong correlation between users’ usage data in the
DTSZ. The data recovered with these two approaches are used to
test whether the Granger causality test can accurately identify
anomaly users of electricity theft. The Granger causality analysis
results are listed in Table 8.

It can be concluded from Table 8 as follows.

• According to the data analysis with matrix completion,
Granger causality analysis cannot identify any anomaly user of
electricity theft once users H1–H3 or H6 suffer communication

TABLE 4 | Daily electricity usage of each anomaly user and loss of DTSZ.

Issue Date User 1 User 2 User 3 User 4 User 5 User 6

Daily metering usage 2020/1/29 0.00 0.00 0.00 0.00 0.00 0.00
2020/1/30 174.15 172.04 145.58 140.06 160.32 169.20

Loss of DTSZ 2020/1/29 210.34 205.93 192.97 193.00 195.55 201.10
2020/1/30 23.09 27.50 40.46 40.43 37.88 32.33

TABLE 5 | Result of Granger attribution test at the head end of AMI.

Missing user Stationary (loss
and electricity

usage)

Co-integration relationship
(loss and

electricity usage)

Significance test
results

Audit results

Edge computing Null First order differential stationary H4, H5, H6 H4 Correct
Detecting in the head end of AMI User 1 First order differential stationary H2, H3, H4, H5, H6 H2, H3, H4, H5, H6 Miscalculation

User 2 First order differential stationary H1, H3, H4, H5, H6 H1, H3, H4, H5, H6 Miscalculation
User 3 First order differential stationary H1, H2, H4, H5, H6 H1, H2, H4, H5, H6 Miscalculation
User 4 First order differential stationary H1, H2, H3, H5, H6 H1, H2, H3, H5, H6 Miscalculation
User 5 First order differential stationary H1, H2, H3, H4, H6 H1, H2, H3, H4, H6 Miscalculation
User 6 First order differential stationary H1, H2, H3, H4, H5 H1, H2, H3, H4, H5 Miscalculation
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failure and recover with matrix completion. User H4 is correctly
identified as an anomaly user of electricity theft once user H4

suffers communication failure and recovers with matrix
completion. User H5 is incorrectly identified as an anomaly
user once user H5 suffers communication failure and recovers
with matrix completion. The accuracy rate of electricity theft
detection with data in the head end of AMI declined to 16.6%.

• According to the data analysis after tensor completion,
Granger causality analysis cannot determine any anomaly user
of electricity theft once user H1 or H3 suffers communication
failure and recovers with tensor completion. User H4 can be
judged as an anomaly user once users H2, H4, or H5 suffer

communication failure and recover with tensor completion.
User H6 can be misjudged as an anomaly user once user H6

suffers communication failure and recovers with tensor
completion. The accuracy rate of electricity theft detection
with data in the head end of AMI declined to 50%.

• The goal of either matrix completion or tensor completion is
to get the minimum norm of low-rank matrix/tensor. They
recover data within a certain error range with higher linear
correlation for the low rank of the data. It can be observed
from Tables 5, 6 that there are notable errors in the recovered
data of both algorithms. According to the Granger causality
analysis by Jin et al. (2020), the one-to-one correspondence

TABLE 6 | Recovered electricity usage of each anomaly user.

Packing method Date Daily usage/(KWh)

H1 H2 H3 H4 H5 H6

Authentic usage 2020/1/29 95.04 90.63 77.66 77.70 80.25 85.80
2020/1/30 79.11 81.41 67.91 62.36 80.07 83.40

Matrix completion 2020/1/29 102.52 102.37 95.85 97.57 96.22 98.56
2020/1/30 97.45 95.63 90.46 90.75 92.81 91.38

Tensor completion 2020/1/29 107.39 108.31 79.33 79.14 85.41 86.79
2020/1/30 89.22 95.16 82.31 71.01 83.93 90.97

TABLE 7 | Calculated loss for each recovered anomaly user.

Data completion Date Loss of power/(KWh)

H1 H2 H3 H4 H5 H6

Matrix completion Recovered data on 29 January 104.37 103.15 100.64 97.12 99.27 106.31
Error of 29 January −9.48% −10.54% −12.71% −15.77% −13.90% −7.80%
Recovered data on 30 January 98.20 96.95 94.17 90.79 93.03 98.49
Error of 30 January −16.87% −17.93% −20.28% −23.14% −21.25% −16.63%

Tensor completion Recovered data on 29 January 102.65 106.38 105.85 102.97 103.47 107.23
Error of 29 January −10.97% −7.74% −8.20% −10.69% −10.26% −7.00%
Recovered data on 30 January 113.28 114.14 112.35 111.03 111.17 112.73
Error of 30 January −4.11% −3.38% −4.89% −6.01% −5.89% −4.57%

TABLE 8 | Results of Granger causality analysis of anomaly user with data recovery.

Edge of
the results

User with
missing data

Stationary (loss
and electricity

usage))

Co-integration relationship
(loss and

electricity usage)

Significance test
results

Audit results

Without data
missing

First-order differential
stationary

H4, H5,
H6

H4 T

Matrix fill User 1 First order differential stationary H1, H2, H4, H5, H6 NULL F
User 2 First order differential stationary H1, H2, H4, H5, H6 NULL F
User 3 First order differential stationary H1, H2, H3, H4, H5, H6 NULL F
User 4 First order differential stationary H1, H2, H4, H5, H6 H4 F
User 5 First order differential stationary H1, H2, H4, H5, H6 H5 False-positive
User 6 First order differential stationary H1, H2, H4, H5, H6 NULL Failure

Tensor completion User 1 First order differential stationary H1, H2, H4, H5, H6 NULL F
User 2 First order differential stationary H1, H2, H4, H5, H6 H4 T
User 3 First order differential stationary H1, H2, H3, H4, H5, H6 NULL F
User 4 First order differential stationary H1, H2, H4, H5, H6 H4 T
User 5 First order differential stationary H1, H2, H4, H5, H6 H4 T
User 6 First order differential stationary H1, H2, H4, H5, H6 H6 False-positive
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between electricity usage and loss of the detected user at the same
time has a great influence on the final result, while both
completion algorithms change correlation to a certain range,
which results in the failure of Granger causality analysis–based
approach.

In conclusion, both matrix completion and tensor completion
based approaches cannot recover data missing ideally and could
negatively impact the precision of Granger causality–based
electricity theft detection. The proposed approach to
implement electricity theft in DTU of DTSZ with edge
computing could eliminate the impact of communication
failure–induced difficulty and facilitate precise electricity theft
detection.

5 CONCLUSION

The article analyzes communication failure’s impact on data
missing in the head end of AMI and points out that the false
metering data could negatively impact electricity theft detection
of LV users in DTSZ. Edge computing–based approach is
proposed to detect electricity theft of DTSZ in DTU with edge
computing, which can identify anomaly users with authentic
metering data in the edge and mitigate the difficulty of data
recovery of missing/false data caused by communication failure.
The real world metering data of a DTSZ is employed to produce
distorted data caused by communication failure. Thereafter,
produced data is recovered with matrix completion and tensor
completion. Numerical simulation of these data shows that the
Granger causality analysis–based approach could identify
anomaly users of electricity precisely with authentic data in

the edge. However, all users are identified as anomaly users of
electricity theft once the false data in the head end system is
utilized. Once false/missing data are recovered with matrix
completion or tensor completion, the accuracy of the Granger
causality analysis–based approach declines to 16.7% or 50%.

It should be pointed out that there is an anomaly LV user
bypass meter, and its electricity usage is zero around the clock.
Since there are numerous vacant apartments without electricity
usage, it is rather difficult to detect these anomaly users since its
meter data do not provide any useful information. We cannot
detect these users precisely, even with authentic metering data.
The way to identify these users requires further investigation.
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