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Conventional fuels for vehicular applications generate hazardous pollutants which have an
adverse effect on the environment. Therefore, there is a high demand to shift towards
environment-friendly vehicles for the present mobility sector. This paper highlights
sustainable mobility and specifically sustainable transportation as a solution to reduce
GHG emissions. Thus, hydrogen fuel-based vehicular technologies have started blooming
and have gained significance following the zero-emission policy, focusing on various types
of sustainable motilities and their limitations. Serving an incredible deliverance of energy by
hydrogen fuel combustion engines, hydrogen can revolution various transportation
sectors. In this study, the aspects of hydrogen as a fuel for sustainable mobility
sectors have been investigated. In order to reduce the GHG (Green House Gas)
emission from fossil fuel vehicles, researchers have paid their focus for research and
development on hydrogen fuel vehicles and proton exchange fuel cells. Also, its
development and progress in all mobility sectors in various countries have been
scrutinized to measure the feasibility of sustainable mobility as a future. This, paper is
an inclusive review of hydrogen-based mobility in various sectors of transportation, in
particular fuel cell cars, that provides information on various technologies adapted with
time to add more towards perfection. When compared to electric vehicles with a 200-mile
range, fuel cell cars have a lower driving cost in all of the 2035 and 2050 scenarios. To
stimulate the use of hydrogen as a passenger automobile fuel, the cost of a hydrogen fuel
cell vehicle (FCV) must be brought down to at least the same level as an electric vehicle.
Compared to gasoline cars, fuel cell vehicles use 43% less energy and generate 40%
less CO2.
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1 INTRODUCTION

Sustainable mobility is described as a transportation system that is ubiquitous, effective, clean, and
ecologically beneficial. Whilst transportation is not having its own sustainable development goals
(SDGs), it is critical for accomplishing other SDGs in order to reach desired growth and
development. Top-scoring countries for the SDGs have more robust and long-term mobility
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policies in place, whilst countries with the lowest scores are
chastised for having inadequate transportation infrastructure
(Sum4all.org, 2021). Figure 1 depicts the SDGs that are
directly or indirectly met by sustainable transportation.

The origin of “sustainable mobility” is from the broader
definition of “Sustainable development”. “Sustainable
development” is “development that meets current needs
without jeopardizing the ability of future generations to meet
their own needs” (World Commission on Environment and
Development, 1987). The infographic (Figure 2) depicts the
broad benefits of sustainable mobility (Ransformative-Mobility,
2021), which include energy security, economic development,
environmental sustainability, and social wellbeing.

The literature has a number of researches on sustainable
mobility. The scope of technology in fostering a change in
behaviour toward sustainable transportation has been
investigated (Klecha and Gianni, 2018; Chng, 2021). Gonzales
Green port strategies for reducing negative externalities in the
countryside has been investigated (Gonzalez Aregall et al., 2018).
Table 1 lists the results of several studies on sustainable mobility.

1.1 Hydrogen: The Most Reliable Form of
Energy
The global need for energy has risen intensely with the growth of
the world’s population. This is because energy is required for all
activities. The great majority of energy is imitative from fossil
fuels, which are non-renewable resources that take longer to
recharge or reoccurrence to their previous capacity. Energy
imitative from fossil fuels is less costly; however, it has
shortcomings when compared to renewable energy sources
(Rohith et al., 2016).

Hydrogen is an emerging and almost established fuel source
for cars (Apostolou and Xydis, 2019; Staffell et al., 2019; Falcone
et al., 2021). The present state of the art and future possibilities
of the burgeoning hydrogen-based market in road
transportation, as well as an examination of existing
hydrogen refuelling station technologies, have been explored
(Apostolou and Xydis, 2019). The hydrogen economy offers a
multi-sectoral view of low-cost clean energy and thorough
decarbonization in process sectors. The ability to store
hydrogen or derivatives is a game changer for the integration
of high renewable energy source shares, resulting in beneficial
effects on various SDGs through lower GHG and air pollution
emissions (Falcone et al., 2021). Along with biofuels and electric
cars, hydrogen is one of three key low-carbon transportation
choices (EVs). Hydrogen avoids the negative effects of biofuels
on land usage and air pollution, as well as the restricted range
and long recharge periods associated with electric vehicles
(Staffell et al., 2019). Hydrogen automobiles have been
shown to have a threefold lower potential for global warming
than other alternative technologies (Bicer and Dincer, 2017;
Dincer, 2020; Apostolou and Welcher, 2021). In Denmark,
variables that may influence public acceptability of hydrogen-
powered cars have been explored. To that purpose, four primary
hypotheses were proposed, assuming that variables such as
technical and environmental knowledge, financial standing,

and infrastructure have a direct impact on the societal
acceptability of hydrogen-powered private road cars in the
transportation sector. Most of the hypotheses, such as
environmental awareness, limited refuelling infrastructure,
and media backing for this sector, were supported by the
findings (Apostolou and Welcher, 2021). To explore the
effects of alternative cars on the environment and human
health, a life cycle evaluation of methanol, hydrogen, and
electric vehicles is done. The findings of this study
demonstrate that owing to the manufacturing and
maintenance phases, electric cars have higher human toxicity
ratings. Because hydrogen has a higher energy density than
methanol, hydrogen-powered cars are a more environmental
sustainable alternative in terms of global warming and ozone
layer depletion (Bicer and Dincer, 2017). The Covid-19
coronavirus has made it more important than ever for people
to breathe cleaner air, drink cleaner water, eat cleaner food, and
use cleaner energy. We were in a carbon age with hydrocarbon
fuels until the coronavirus outbreak juncture in 2020, and now
we must continue to change the driver to hydrogen, which is the
start of the hydrogen age, in which the use of hydrocarbon fuels
(fossil fuels) will decrease exponentially while the use of
hydrogen energy will increase (Dincer, 2020). The Covid-19
has thrown the transition from the carbon (C) age to the
emerging hydrogen (H2) age into disarray (Apostolou et al.,
2018).

As a result, renewable resources, particularly hydrogen energy,
are the most promising choices for meeting energy demands.
Hydrogen is found mainly in plant materials and is rare in nature.
Hydrogen is a non-metallic, nontoxic fuel that can provide more
energy per unit of mass than gasoline (Abdalla et al., 2018).
However, a substantial study is required to investigate and design
onboard applications in order to use hydrogen as a fuel.

FIGURE 1 | Targeted SDGs addressed by sustainable mobility.
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Hydrogen has lately emerged as a prospective energy carrier,
and the organic chemical hydride approach offers significant
advantages in terms of transportability and handling (Morel et al.,
2015). The possibilities for combining stochastic power
generation with hydrogen production, storage, and
consumption is explained in (Korpas and Gjengedal, 2006).

1.2 Hydrogen as a Fuel in the Transportation
Sector
“Centralized” production, where hydrogen is produced on a large
scale and supplied to customers via truck or pipeline. “On-site” or
“distributed” production, is where hydrogen is produced at the

end-use site, generally through small-scale electrolysis or steam
methane reforming (Meraj et al., 2020).

Hydrogen can also be converted to other energy carriers like
electricity, methane, or liquid fuels, which incurs conversion costs
and efficiency losses but allows access to existing energy
distribution networks without requiring the construction of an
extensive hydrogen distribution infrastructure. The relative cost
of regional basic resources for hydrogen generation and policies is
vital in determining the ideal hydrogen supply pathway.
Transportation of hydrogen can be done using.

1) Pipelines (Weinmann, 1999).
2) Mobile by trucks, trains, vessels (Domashenko, 2002).

TABLE 1 | Investigating research on sustainable mobility.

Cited reference Year of publication Investigated on

Ren et al. (2019) 2020 Green and sustainable logistics
Kumar and Alok, (2020) 2020 Prospects for sustainability
López et al. (2019) 2019 The impact of technological advances in bus transportation on environmental and social sustainability
Tirachini, (2020) 2019 Travel behaviour and sustainable mobility
Holden et al. (2019) 2019 Aspects of sustainable mobility in 2030
Martínez-Díaz et al. (2019) 2019 Future of autonomous driving
Letnik et al. (2018) 2018 Sustainable and energy-efficient urban transportation policies and initiatives
Ranieri et al. (2018) 2018 Logistics innovations in cost reduction vision
Taiebat et al. (2018) 2018 Automated vehicles’ energy, environmental, and sustainability consequences
(Ferrero et al., 2018; Santos, 2018) 2018 Shared mobility
Biresselioglu et al. (2018) 2018 Electric mobility
Pojani and Stead, (2018) 2018 Policy design for sustainable urban transport

FIGURE 2 | Benefits of sustainable mobility.
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The use of hydrogen in onboard vehicles has hurdles owing to
the high weight, volume, and cost of hydrogen. Furthermore, as
the refuelling process continues, the life cycle of hydrides
shortens, reducing the vehicles’ efficiency. Another
disadvantage is the lack of adequate hydrogen storage system
standards and protocols. The infrastructure to distribute
hydrogen to the user requires entirely new infrastructure; the
production and delivery systems must be integrated to reduce the
cost of hydrogen delivery and distribution costs. At the moment,
hydrogen transportation, storage, and delivery to the site of
consumption are all related with inefficient energy use. Despite
having some notable disadvantages, hydrogen is heavily used in
several industries such as the transportation industry, power
generation industry, and building industry instead of
conventional fossil fuels (Reddy et al., 2020).

This paper aims to present the future of hydrogen energy as a
solution to sustainable mobility. Existing literatures are mainly
focusing on utilization of hydrogen for a particular sector of
transportation; the overall transportation sector is not addressed.
In detail analysis of techno-economic-environmental aspects of
Hydrogen as sustainable mobility solution is missing in recent
literature. The goal of this research is to evaluate the potential of
hydrogen energy as a solution for sustainable transportation and
to analyse its environmental and social consequences. This review
aims to introduce the preparation processes, storage method, and
critical technical issues of its application in vehicles and related
mobility sectors in a systematic manner, providing exciting
insights into hydrogen-based energy, the potential large-scale
deployment process on a global scale including techno-economic
aspects, selected implemented projects, policies and challenges.
The paper helps the policymakers and industries decide on
choosing hydrogen as the future of sustainable mobility.

This paper is structured as follows. Section 2 provides an in-
depth review of hydrogen as a fuel for transportation in many
sectors and its environmental and technical elements. Section 3
deals with the generation and storage of hydrogen energy. Section
4 concludes the in-depth analysis to suggest the scope of
hydrogen to be adopted as the future of sustainable mobility.

2 ENVIRONMENTAL ASPECTS

Considering the fact of depletion of energy resources and the rise
in global warming, challenges are encountered with the
combustion of energy due to the transportation sector in the
present time. Green House Gas (GHG) emissions are caused by
the dominant conventional road transportations, which have
existed for more than a century and has reached its upper
saturation level. As per the International Energy Agency
regulations, global carbon dioxide emissions must be decreased
to limit the consequences of climate change (Zhao et al., 2020). To
enhance the technology that has zero pollutant discharge and
zero climate change effect, hydrogen Fuel cell-based vehicles
production is being promoted by automotive industries. The
government of various countries like the United States, Japan
and South Korea have encouraged the production of Hydrogen
vehicles since 2018 (Meng et al., 2021). The upcoming

subsections discuss the environmental and technical aspects of
hydrogen in the mobility sector and its scope.

Transportation is the second-largest source of pollution in
terms of GHG emissions, posing a serious threat to human health
(Roadmap to a Single European Transport Area-Towards a
competitive and resource efficient transport system, 2021). The
transportation sector accounts for 23% of total CO2 emissions.
According to the report, the transportation sector would continue
to rely on petroleum-based services for 90% of its fleet, with
renewable energy sources accounting for only 10%. By 2050,
carbon emissions from the transportation industry are predicted
to be 33% more than they were in 1990 (Le Quéré et al., 2020).

2.1 Climatic Change and Greenhouse Gas
Emissions
Climate change is the central point of focus in the present era due
to the advancement of technologies in various sectors, including
the transportation industries. The combustion of biofuels for
transportation has captured the mobility sector for the last two
centuries. Traditional combustion fuels by vehicles lead to the
generation of pollutants and GHGs to the environment, which
has various adverse effects (Engel, 2012; Zhongfu et al., 2015).
Hydrogen is a carrier, like electricity, rather than an energy
source, and the notion of “hydricity,” or the inherent
interchangeability of electricity and hydrogen, has been
established (Engel, 2012). Anthropogenic GHG emissions are
directly linked to the global warming trend. Climate change
caused by GHG emissions is one of the most serious
environmental issues confronting modern society (Ding et al.,
2018). In order to stabilize the climate, it is the need of the time to
reduce the emissions significantly (Liu et al., 2019). CO2 is the
major GHG contributor with a value of 76%, methane, while
Nitrous Oxide and fluorinated gases together contributes the rest
24% (Global-Greenhouse-Gas-Emissions-Data, 2021). As
illustrated in Figure 3, the global CO2 concentration is
growing rapidly.

The concentration of CO2 in the atmosphere is currently at
414.00 ppm, the highest in the previous 800 k years, and it is
closely connected to global temperature. The world has
committed to keeping global warming below 2°C, and this goal
can be met with a minimal carbon budget. According to
researchers, mankind can only emit 565 Gt of CO2 more and
still meet the 2°C target—a limit that would be exhausted in
15 years if emissions continue at their current rate of 36.6 Gt CO2

per year (Liu et al., 2019). It is also predicted that seven million
people die each year as a result of illnesses caused by air pollution
(Global-Energy-Related-Co2-Emissions, 2021).

During COVID-19, there is a temporary decline in daily global
CO2 emissions due to forced confinement. By early April 2020,
daily global CO2 emissions had decreased by 17% compared to
the mean levels in 2019, with surface traffic accounting for half of
the decline (Saleem et al., 2021). However, in the post-COVID-19
scenario, things will be different. As a result, adopting a
sustainable transportation strategy is critical.

Although GHGs are released by a variety of sources, those
produced by automobiles can be reduced by employing

Frontiers in Energy Research | www.frontiersin.org May 2022 | Volume 10 | Article 8934754

Chakraborty et al. Hydrogen for Sustainable Mobility

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


alternative fuel vehicles (AFVs) or green vehicles. Advanced
alternative fuel technologies have the potential to halve
gasoline use while also cutting CO2 emissions and their
associated environmental consequences. Although fuel-efficient
technologies help vehicles perform better in terms of
environmental performance, they cannot assist cut overall
emissions. This is ought to the fact that technology cannot
change consumer habits on its own. So, framing a strategy
that encourages consumers to choose energy-efficient vehicles
over traditional one is critical, as is ensuring the use of AFVs that
complies with environmental pollution-reduction measures like
carpooling and using low-CO2-emitting vehicles, public
transportation, or bicycles to save fuel (Oliveira and Dias,
2020; García-Melero et al., 2021; Apostolou and Xydis, 2019).

2.2 Hydrogen as a Zero-Emission Source
Hydrogen energy follows a zero-emission policy towards the
environment, making it a fundamental attraction for
researchers and industries to study and develop hydrogen
transport technologies. Additionally, hydrogen has become a
truly sustainable energy resource because of the zero climate
change effect, as hydrogen is a highly efficient, reliable, and
soundless source of power.

The evaluation of hydrogen fuel transportation cannot be
alone evaluated based upon the tailpipe gas emissions. The
environmental aspects can be accounted for based on the
vehicle’s wheel to tank evaluation (Concawe and JRC, 2007;
Yang and Ogden, 2007; Bethoux, 2020). Natural hydrogen
may become a viable economic option, making fuel cell
vehicles a viable and ecologically acceptable alternative to
battery electric vehicles (Bethoux, 2020). The European
Commission’s Joint Research Centre, EUCAR, and
CONCAWE have assessed the tank-to-wheels (TTW) energy
usage and greenhouse gas emissions for a variety of future fuel
and powertrain alternatives (Concawe and JRC, 2007). Moving
our transportation sector away from petroleum-derived gasoline
and diesel fuels and toward hydrogen derived from domestic
primary energy resources can have a number of societal benefits,
including lower well-to-wheels greenhouse gas emissions, zero
point-of-use criteria air pollutant emissions, and less imported
petroleum from politically sensitive areas (Yang and Ogden,
2007). Therefore, the accountability of hydrogen vehicles
towards environmental effect has been studied and reported
through one tool known as Ecoscore. The tool has been

developed by the commission of the Flemish government
(Sergeant. et al., 2009). This measurement is based upon the
GHGs emissions, regulation of air quality and sound pollution.
Apart from the three major aspects, two indirect aspects,
including human lifecycle and ecosystem maintenance, are
also included in the Ecoscore measurement scale (Van Mierlo
et al., 2004). Environmental aspects of hydrogen vehicles are
presented in Figure 4.

3 TECHNICAL ASPECTS

The study about hydrogen fuel vehicles has major issues related to
high-pressure hydrogen storage. To tackle the problem of
hydrogen storage, researchers have proposed the onboard
hydrogen generation engines (Frenette and Forthoffer, 2009;
Shusheng et al., 2020). The fuel cell electric vehicle is an
onboard hydrogen-generation type in the design scheme that
provides rapid hydrogen supply. Moreover, a self-heating
reforming technology combining methanol vapour reforming
and partial oxidation reforming being utilized (Özcan and
Garip, 2020). The car is powered by a hybrid system that
includes a lithium battery and a hydrogen fuel cell. The
aforesaid approach is different from hydrogen storage fuel cell
vehicles. It eliminates the hydrogenation process and the high-
pressure hydrogen storage device, and drives the motor with the
fuel cell as the primary power source, while the lithium battery as
a backup. Based on the structure of the fuel cell electric vehicle
designed in the literature (Li et al., 2016; Shusheng et al., 2020),
the vehicle’s critical components, such as a hydrogen production
system, electric drive system, auxiliary power supply, and
management system, were evaluated, and their management
and control techniques were described.

3.1 Production of Hydrogen
Hydrogen may be produced using both renewable and fossil fuel
technologies. Steam reforming, partial oxidation, auto thermal
oxidation, and gasification are all methods for producing
hydrogen from fossil fuels. By gasifying biomass/biofuels and

FIGURE 3 | Concentration of CO2 in atmosphere in ppm (Climate-
Change-Atmospheric-Carbon-Dioxide, 2021; Health-Topics, 2021)

FIGURE 4 | Environmental aspect of hydrogen vehicle.
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splitting water with solar or wind energy, hydrogen can be
synthesized from renewable energy sources (Apostolou, 2020).
The Hydrogen production sources and technologies are shown in
Figure 5.

The extraction of hydrogen from coal is the highest among all
sources, approximately 21.5 billion tons/year, which need to be
replaced by renewable resources.

3.1.1 Categorization of Hydrogen Based on the Source
of Generation
By the adaptation of different technology and considered sources,
hydrogen production has been categorized into three types
according to the literature and study reports (von Döllen
et al., 2021; Noussan et al., 2021). The utilization of major
sources for the production of hydrogen has introduced the
color conceptualization. By the application of fossil fuel for the
generation of hydrogen leads to the emission of CO2 and
greenhouse gases. This technology of hydrogen production
and its utilized source refers to grey hydrogen (Ivanenko,
2020). Blue hydrogen was introduced, while the grey hydrogen
production approach was used to lower the quantity of
greenhouse gas emissions in hydrogen production (Mari et al.,
2016; Dickel, 2020). The utilization of fossil fuel, industrial gas,
by-product gas, natural gas for hydrogen production for
sustainable mobility as energy resources generally emit
pollutants, and greenhouse gases to the environment (Jovan
and Dolanc, 2020; Luo et al., 2020; Schiro et al., 2020). In a
case study of a Slovenian hydro power plant, the possibility for
green hydrogen generation was examined. If it is not burdened by
different environmental fees, hydrogen can be competitive in the
transportation sector (Jovan and Dolanc, 2020). Renewable
hydrogen generation is a reliable alternative since this energy
vector can be quickly created from electricity and injected into
existing natural gas infrastructure, allowing for storage and
transit (Schiro et al., 2020). The economic analysis of
hydrogen was applied to hydrogen produced by natural gas,
coal, and water electrolysis and conveyed in the form of high-
pressure hydrogen gas or cryogenic liquid hydrogen. The cost of
hydrogen produced from natural gas and coal is now cheaper, but
it is heavily influenced by the cost of hydrogen purification and
the price of carbon trading. Given the impact of future production
technologies, raw material costs, and rising demands for
sustainable energy development on hydrogen energy costs, it is

suggested that renewable energy curtailment be used as a source
of electricity and multi-stack system electrolyzers be used as
large-scale electrolysis equipment, in combination with
cryogenic liquid hydrogen transportation or on-site hydrogen
production (Luo et al., 2020). To reduce these pollutants affecting
the atmosphere, literature has reported various technological
modifications for hydrogen generation. Therefore, the
utilization of renewable energy resources for hydrogen
generation has been reported in recent works of literature
(Boretti, 2020; Manna et al., 2021; Rabiee et al., 2021). Green
hydrogen is also resultants of electrolyzers produced by
renewable energies. It has been also noticed that green
hydrogen can be also produced from bioenergy such as
biomethane and biomass combustion. As the green hydrogen
generated from various methodologies has net-zero gas emission,
researchers and industries have more attention towards its
production advancement (Manna et al., 2021; Rabiee et al.,
2021). Categories of Hydrogen generation is presented in
Figure 6.

Hydrogen production from different sources and emission
from it is tabulated in Table 2.

At present, coal is the primary source of hydrogen extraction,
but the process emits GHGs. Hydrogen extraction through
photocatalytic water decomposition with solar energy is the
least popular process, with 1.8 billion tons of hydrogen
annually. Table 2, concludes that the hydrogen production
from photocatalytic water decomposition with solar energy is
emission-free and the most sustainable path.

3.1.2 Water Electrolysis to Generate Hydrogen
Water as a feedstock is one of the most environmentally beneficial
ways to produce hydrogen as it releases only oxygen as a by-
product during processing. Green hydrogen is hydrogen
produced by the breakdown of water using renewable energy
sources. Electrolysis is currently the most established
commercially accessible process for producing hydrogen from
water. Water electrolysis is the process of breaking down water
(H2O) into its constituent’s hydrogen (H2) and oxygen (O2) using
electric current (Hydrogen-Production-Through-Electrolysis,
1927). Positive ions (H+) are drawn to the cathode, whereas
negative ions (OH-) are drawn to the anode by the electric
potential. Alkaline water electrolysis (AEL), proton exchange
membrane (PEM) water electrolysis, solid oxide water
electrolysis (SOE), and alkaline anion exchange membrane
(AEM) water electrolysis are some of the water electrolysis
procedures (Chi and Yu, 2018) as depicted in Figure 7.

Comparative analysis of different water electrolysis processes
to generate hydrogen (Hydrogen-Production-By-Electrolysis-
Ann-Cornell, 2017; Hydrogen-Production-Through-
Electrolysis, 2017; Articlelanding, 2020) is tabulated in Table 3.

Use of AEMwater electrolysis could allow low-cost transition
metals to replace traditional noble metal electrocatalysts (Pt, Pd,
Ru, and Ir). AEM electrolysis has garnered special interest due to
its high power efficiency, membrane stability, durability, ease of
handling, and low-cost hydrogen-production method (Vincent
and Bessarabov, 2018), despite being a developing technology.
Aside from the high energy consumption induced by the rise in

FIGURE 5 | Hydrogen production sources (Arat and Sürer, 2017)
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electrolysis voltage generated by the bubbles developed during
the electrolysis process (Hu et al., 2019), high energy
consumption is another barrier of hydrogen synthesis from
water electrolysis. Hydrocarbons can be used in water
electrolysis to reduce energy usage. Cheap metals or
nonmetal composite materials, such as Ni, should be the
electrodes’ likely future direction.

The following are the major future directions to be investigated in
the water electrolysis process of hydrogen generation:

• In-depth investigation of the reaction process in order to
improve hydrogen generation efficiency and achieve
conversion by combining chemical and electrical energy;

• Reduction in energy intake in the electrolysis process of
water using renewable energy;

• In-depth investigation of the reaction process in order to
improve the efficiency of hydrogen production;

• Improvements in electrode stability and corrosion
resistance for increased longevity and lower electrode costs;

• Development of new catalytic electrodes and catalysts to
improve reaction efficiency (Gao et al., 2019; Huang et al.,
2019).

Hydrogen power is a promising technique for storing
fluctuating Renewable Energy (RE) to establish a 100%
renewable and sustainable hydrogen economy (Dawood et al.,
2020). Hydrogen can be stored as gas or liquid form. High-

pressure tanks (350.00–700.00 bar tank pressure) are primarily
used to store hydrogen as a gas. Cryogenic temperatures are
required to store hydrogen as a liquid (Hydrogen Storage, 2021).
Sapru (2002) have given an summary on hydrogen storage
systems, based on storage tanks integrated with fuel cells.

3.2 Hydrogen Storage
Hydrogen holds excellent potential to be an energy carrier,
especially for fuel cell applications. With high calorific value, it
is also termed as regenerative and environmentally friendly fuel.
Additionally, it has energy density of 142 ML/kg, which is three
times of petroleum (47 MJ/kg) (Kaur et al., 2016). This makes
hydrogen as the most efficient fuel to replace petroleum-based
vehicular. Thus, fossil fuel reliability can be reduced to fulfil all the
global energy demands (Muir and Yao, 2011). Carbon and
Hydrogen cycle are shown in Figure 8. The combustion
process is shown below in blue arrows. The cycle shows how
CO2 released causes global warming (presented by black arrows).
On the other hand, the hydrogen cycle is presented by green
arrows and pointing towards renewable energy sources (Kaur
et al., 2019).

Hydrogen energy has also been projected as a widespread
resolution for a secure energy future to increase energy security
and strengthen developing countries’ economies (Marrero-
Alfonso et al., 2009). Various technological, significant
scientific, and economic challenges must be overcome before
hydrogen can be used as a clean fuel source and the transition

FIGURE 6 | Categories of hydrogen.

TABLE 2 | Hydrogen production from different sources and emissions.

Hydrogen extraction source Quantity (billion
tons/year)

Technical details Emission Ref no.

Coal 21.5 Homogeneous and high-speed reaction ought to
its special physical and chemical process

GHG emission (Li et al., 2010; Hui et al., 2017; Wang
et al., 2020; Sun et al., 2021)

Industrial gas 12.5 Physical and chemical process GHG emission
with pollutants

(Vialetto et al., 2019; Ates and Ozcan,
2020; Okolie et al., 2021)

By product gas 7.07 Physical and chemical process GHG emission (Vialetto et al., 2019; Okolie et al., 2021)
Natural gas 4.6 Chemical process Pollutants (Perdikaris et al., 2010; Bicer and Khalid,

2020; Mayrhofer et al., 2021)
Electrolyzed water 2.1 Chemical process Pollutants (Mayrhofer et al., 2021; Sun et al., 2021)
Photocatalytic water
decomposition with solar
energy

1.8 Photocatalytic process No GHG emission (Jiang et al., 2013; Yan et al., 2013; Zhang
et al., 2013; Tasleem and Tahir, 2020)

Biological H2 production 2.05 Microorganisms and their metabolic mechanisms Pollutants (Bi et al., 2010; Cormos, 2012; Cao et al.,
2020)
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from a carbon-based fossil fuel energy system to a hydrogen-
based economy can be completed (Shashikala, 152012).

Additionally, in the transportation sector, hydrogen storage
technologies are in consideration and gradually move towards
designing highly efficient systems. For example, specific criteria
are looked into, such as thermal stability of the system,
gravimetric and volumetric densities and cost of the operating
systems. Many of these sectors are being worked on, and
improvements in hydrogen production and storage for various

automotive applications have been made and deployed (Shang
and Chen, 2006).

3.2.1 Hydrogen Storage Methods
Hydrogen storage methods can be categorized into three groups, as
shown in Figure 9. Molecular hydrogen can be stored as (1) a gas or a
liquid without any significant physical or chemical bonding to other
materials; (2) molecular hydrogen can be adsorbed onto or into
material and held in place by relatively weak physical van der Waals

FIGURE 7 | Different types of water electrolysis processes to generate hydrogen.

TABLE 3 | Comparative analysis of different types of water electrolysis process to generate hydrogen.

Technology AEL PEM SOE AEM

Electrolyte Aqueous KOH
(20–40 wt%)

Proton exchange ionomer (e.g.,
Nafion)

solid-oxide Anion exchange ionomer (e.g., AS-4) + optional dilute
caustic solution

Cathode Ni, Ni–Mo alloys Pt, Pt–Pd Ni-YSZ (yttria-stabilized
zirconia)

Ni and Ni alloys

Anode Ni, Ni–Co alloys RuO2, IrO2 Lanthanum strontium
manganate

Ni, Fe, Co oxides

Charge carriers OH-, K+ H+ O2- OH-

Operating
temperature

100°–150°C 70°–90°C 700°C –800°C 50°C –60°C

Cell voltage (V) 1.8–2.4 1.8–2.2 1.6–1.8 1.8–2.2

Technology status Mature Commercial Not yet commercial Pilot
scale

R&D
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bonds; (3) atomic hydrogen can be covalently bound (absorbed). The
spread of hydrogen fueling stations across the transportation
network, as well as investment in hydrogen fueling stations, can
lead to increased profits (El-Taweel et al., 2019).

3.2.1.1 Compressed/Physical Hydrogen Storage
Hydrogen is stored at high pressure and in compressed form and
specifically designed hydrogen cylinders reinforced by carbon
fibre that can withstand very high pressure. Various concerns
should be handled before using this technology, like high-
pressure requirements, low volumetric density, energy required
to compress hydrogen gas, and cylinder weight and to reduce the
overall cost (Sakintuna et al., 2007).

Hydrogen can also be stored in cyro-compressed form by
cooling hydrogen gas to −253°C; this process increases the
volumetric storage capacity of hydrogen gas by 4 times.
However, this process is highly energy intensive due to energy
requirements for compressing and liquifying hydrogen gas. There
are further limitations, such as liquid hydrogen being very volatile
and potentially forming an explosive combination with air if
evaporated. Thus, this system should be designed to cover all the
safety concerns (Sakintuna et al., 2007). Figure 10 shows
hydrogen gas in the form of compressed gas and cryogenic liquid.

The weight, volume, cost, efficiency, codes, and standards are
the primary problems in hydrogen storage. New materials,
particularly polymers, must be developed as barrier materials
to limit hydrogen leakage in storage tanks with high energy-to-
weight ratios (Macher et al., 2021).

3.2.1.2 Material Based Hydrogen Storage
In materials, hydrogen is generally stored as absorption,
adsorption, and chemical reaction. If hydrogen is stored on
the surface, then the phenomenon is called adsorption, and if it
is stored within the solids, it is called absorption. The main
difference is in the density as it increases from adsorption to
absorption. Adsorption is further divided into chemisorption
and physisorption based on their mechanism. Physiosorbed
hydrogen is weakly bonded than chemisorbed hydrogen
molecules. Also, it involves highly porous materials with high
surface areas to efficiently uptake and release hydrogen
molecules from the materials, such as metal hydride
hydrogen storage.

However, absorption involves hydrogen atoms attached with
strong bonds within the chemicals. Here, hydrogen is stored in
large amounts with small quantities of materials also could be
released at low temperature and pressure. For example, in
complex and chemical hydrides, hydrogen is absorbed in the
materials, as shown in Figure 11 (Klanchar et al., 2004).

3.2.1.3 Chemical Hydrogen Storage Pathway
When hydrogen is generated and released through the chemical
reaction, then the storage technology is defined as chemical hydrogen
storage. The basic reactions involve the reaction of chemical hydrides
with water and alcohols. However, this technology suffers lack of
reversible onboard reactions and require spent fuel and by-products
to be removed off-board. Here, hydrogen is strongly bonded as
hydrogen atoms within the molecular structures of the chemical
compounds, as presented in Figure 12. Therefore, for hydrogen
generation and storage, a chemical reaction is required.

FIGURE 8 | Carbon and hydrogen cycle (Muir and Yao, 2011)

FIGURE 9 | Hydrogen storage technologies (Andersson and Grönkvist,
2019; Lototskyy et al., 2017)

FIGURE 10 | (A) Compressed hydrogen gas storage and (B) cryo-
compressed hydrogen gas storage (Sakintuna et al., 2007)

FIGURE 11 | (A) Surface adsorption and (B) Surface absorption
(Klanchar et al., 2004)
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As hydrogen is stored in chemical hydrides, these hydrides in the
form of materials have high gravimetric and volumetric densities.
Thus, hydrogen is released in the form of chemical reactions. There
are two methods of hydrogen release; the first is hydrolysis, and the
second is thermolysis. The former one requires low temperature and
pressure, and the theoretical storage efficiency is very high. The latter
one involves highly sophisticated technologies and energy
requirements to break the hydrides by thermal pathways.
Considering that few common chemical hydrides that release
hydrogen by hydrolysis pathway are sodium, lithium, magnesium,
calcium, titanium hydrides, and few of complex hydrides are sodium
borohydride, lithium aluminium hydride and lithium borohydride
(Klanchar et al., 2004).

Figure 13 presents various hydrides per their volumetric
storage densities, with AlH3 having the highest value and
pressurized tanks with the lowest values (Graetz, 2012). As
shown in Figure 14.

The catalyst for the reaction is supplied in the form of an
aqueous solution of NaBH4 as a chemical hydride. This solution is
run through a separator, which separates the pure hydrogen gas
from the rest of the mixture. This pure hydrogen gas is then
pumped into the fuel cell, where it can be used. After the recycling
procedure, the by-products might be returned to the liquid
reservoir and used again (Demirci and Miele, 2009).

As a clean resource, hydrogen energy might minimise energy
savings and emissions caused by the use of fossil fuels, and it will likely
play an increasingly important role in the future (Zhang et al., 2019a).
In recent decades, the PEMFC (proton exchange membrane fuel cell
or polymer electrolyte membrane fuel cell), which effectively
transforms the chemical energy inherent in hydrogen into
electricity without producing pollutants, has piqued interest in
automotive applications (Ogungbemi et al., 2021).

3.3 Proton Exchange Fuel Cells
FCVs (fuel cell vehicles) powered by PEMFC have recently
reached mass production, such as Toyota’s Mirai, Honda’s
Clarity, and Hyundai’s NEXO. Performance should be
increased at a cheaper cost to improve its commercial uses.

The European Union and the US alone stand out alone in the
majority to consume all petroleum products and energy demands.
This has led to the development of alternative energy sources,
with the best ones stated as hydrogen, synthetic fuels and biofuels.
These energy sources are investigated for their suitability to
sustain a clean form of energy (Ogungbemi et al., 2021). The
source where hydrogen is produced from renewable energy to
electricity by PEM fuel cells are under investigation. The PEM
cells are capable of producing sufficient power to sustain
commercial and residential usage under varying temperatures.

FIGURE 12 | (A,B): Absorption in complex chemical hydrides (Klanchar
et al., 2004).

FIGURE 13 | Volumetric hydrogen density of various hydrogen storage
methods (Graetz, 2012).

FIGURE 14 | Flow diagram of solid-state hydrogen generation system
(Demirci and Miele, 2009).
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For example, a PEM fuel cell generator with Na metal and water
chemical reaction generated hydrogen with minimum emissions
and noise. This have extended its use to medium and high duty
vehicular applications. Despite all such uses, PEM fuel cells face
few disadvantages (Ijaodola et al., 2019) and studies are in
progress based on economics, policy framework and
advancements in electrolysis process to facilitate the use of
PEM fuel cells for vehicular and general use. Due to myriads
of advantages like low operating temperature, solid electrolyte
and high power density, durability and reliability proton
exchange, fuel cells can be used in several areas like on-site
hydrogen generation, automotive, and portable electronic
devices as discussed. The parameters of PEM fuel cells are
based on operating conditions, and to accurately estimate its
characteristics; research is also in progress with efficient
mathematical modelling. It can disclose more about operating
parameters linked with the PEM fuel cells (Rao et al., 2019a;
Kandidayeni et al., 2019). Studies are also in progress to study the
dynamic loading on the performance of PEMFC (Zhang et al.,
2019b; Huang et al., 2020). The situation arises when
unreasonable loading conditions increase and could even lead
to failure (Mayyas et al., 2014) thus, adding to the disadvantages
of the fuel cells. This could be explained as when PEM FC is used
as a mechanical power source, it undergoes dynamic loading and
response voltage becomes lower than the steady-state conditions;
subsequently, the voltage increases gradually. This could lead to
unfavourable operations of PEM fuel cells, and thus, dynamic
performance needs to be studied.

Proton Exchange fuel cells have wide application in various
sectors like power plants, transportation, digital devices etc.
However, the short life span due to the degradation and
reusability of fuel cells limits its applications in the
commercial sector (Chen et al., 2019). Considering the lifespan
of fuel cells in mobile applications, it is 3,000 h, but the demand
rises to 5000 h to be used commercially. As per DOE
(United States Department of Energy), the set future goals for
transportation and stationary applications of PEM fuel cells as
5,000 h and 40000 h, respectively, by 2020 with performance
degradation that should be less than 10% (Ren et al., 2020).
The considerable difference between stationary and
transportation can be attributed to different designs as fuel
cells in vehicles encounters harsh conditions like the open-
circuit voltage, dynamic load, startup and shutdown, overload
and freezing thaw. Thus, the decay of fuel cells in vehicular
applications is also thoroughly studied by developing various test
protocols. With the performance of fuel cells, cost factors are also
in consideration like The Strategic Analysis Inc. studied the most
influencing factors on the cost of FC’s in 2012 and 2017 (Li et al.,
2020). The report (2012) concluded that the fuel cell stack and
platinum loading are the most important factors which affect the
cost of the fuel cells. Since then, the study has also focused on a
low Pt-based catalyst that made significant development in Pt-M
alloys, Pt-based core shell, and Pt-based nanostructure. Gradually
this development led to Pt-free catalysts like carbon alloy catalysts
in commercial markets in Japan. Thus, it can be stated that PEM
fuel cells holds the potential to establish a hydrogen economy for
a secure and sustainable future.

4 HYDROGEN BASED MOBILITY

Promotion of hydrogen vehicles as the future transportation
platform has been chosen due to its zero-pollutant discharge
characteristic. Hydrogen fuel cell vehicle technology has the scope
to various categories of mobility sectors. This technology can
replace lightweight vehicles, heavy goods vehicles, heavy
passenger vehicles, trains, and unmanned vehicles. Adopting
the concept of hydrogen fuel for heavy vehicles has attracted
New Zealand and Paris to meet the zero climate change
commitments. As reported in (MBIE, 2019), the proper
examination of feasibility for adopting clean hydrogen for
heavy vehicles exceeds 30 tons has been discussed in (Concept
Consulting Group, 2021; Perez et al., 2021).

Apart from the development of hydrogen fuel, heavy and very
heavy-duty vehicles, public lightweight vehicles, and passenger buses
require a shift towards utilization of clean hydrogen (Topler and
Lordache, 2017; Air Liquide Will Build the First High-pressure
Hydrogen Refueling Station for Long-haul Trucks, 2021). Air
Liquide has announced the opening of Europe’s first high-
pressure hydrogen filling station, which will support the first fleet
of long-haul hydrogen vehicles (Air Liquide Will Build the First
High-pressure Hydrogen Refueling Station for Long-haul Trucks,
2021). This investment is in line with the Group’s objective of
accelerating hydrogen energy adoption through large-scale
initiatives, notably in the heavy vehicle category. Vulnerabilities of
Hydrogen Energy in Emerging Markets describes strategies and
developments for hydrogen civilization efforts implemented by
various stakeholders in different countries and at different stages
of the development cycle, including authorities, institutes, research,
industry, and individuals (Topler and Lordache, 2017). Considering
these facts, Germany has taken the lead in the global market for the
commercialization ofHydrogen vehicles, along with the collaborators
from Japan, Korea and the United States (Galich and Marz, 2012;
Trencher and Edianto, 2021). Hydrogen and fuel cell technologies
have the potential to help create a more environmentally friendly and
emission-free transportation and energy system (Galich and Marz,
2012). Policymakers and automotive players throughout the world
attempt to expedite the electrification of road transport using
hydrogen (Trencher and Edianto, 2021). They examined and
contrasted the factors impacting the production and market
penetration of privately owned fuel cell electric passenger vehicles
(FCEVs) and fuel cell electric buses (FCEBs) in public transportation
fleets.

4.1 Hydrogen Vehicles
In the present time, railway is the most economical transportation
preferred by the common citizen as well as it is also used for goods
transportation. The conventional railway depends upon the fossil
fuels leads to the emission of GHGs and the generation of sound
pollution. In the line, to meet zero-emission and zero sound railway
transportation, InnoTrans in 2016 of Berlin developed the Coradia
iLint. This has been commercialized and launched in 2020 to run for
100 km between Cuxhaven, Bremerhaven, Bremervoerde and
Buxtehude in northern Germany (Low et al., 2020).
Understanding the requirement and need for replacing clean
hydrogen fuel transportation with the second largest railway
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network in the world, the Indian Railway has also started developing
and testing passenger fuel cell train set (Jhunjhunwala et al., 2018).

Conventional fuel engines utilized in the shipping industries
release the air pollutants and GHGs into the environment. In the
regulation of these harmful gases, International Maritime
Organization (IMO) has passed an article to prevent pollution
from the ships under (World’s First Hydrogen Train Runs Route
in Germany, 2021; Traction: India to trial fuel cell trainset, 2021).
Enhanced efficiency of themarine fuel cells for various applications of
onboard ships has motivated the researchers to focus on hydrogen
fuel-based marine engines. Electricity generation, emergency power
supply and power propulsion are the major power requirement in an
onboard ship, which can be generated through clean hydrogen fuel
cells by replacing conventional fuels (Sattler, 2000; IMO, 2012a; IMO,
2012b). Fuel cells have a lot of potential for usage on ships. Fuel cells
onmerchant ships and naval surface ships can be used for a variety of
purposes, including: (1) emergency power generation; (2) electric
energy generation, particularly in waters and harbours with strict
environmental regulations; (3) small power output for propulsion in
special operating modes (e.g., very quiet run); and (4) electric power
generation for the ship’s network and, if necessary, the propulsion
network on ships equipped with fuel cells (e.g., naval vessels as all-
electric ships, AES) (Sattler, 2000). The actual requirement,
replacement and advantage of combustion fuel engine by clean
hydrogen fuel cell-based engine have been discussed in detail in
(Leo et al., 2010; Tronstad et al., 2017). Submarines are now the most
common marine use of fuel cells. In this industry, hydrogen/oxygen
polymer electrolytemembrane (PEM) fuel cells are often utilized (Leo
et al., 2010). The scope of hydrogen fuel in differentmobility sectors is
depicted in Figure 15.

The target to achieve limited emission fuel to protect the
climate, world aviation industries have also focused on clean
hydrogen as an efficient candidate for short and long-range
aviation and space transportation (de-Troya et al., 2016). The
research and development in aviation and space sector industries
have reported continuous progress for choosing clean hydrogen
fuel. The aviation and space industries of the United States

(Committee on Air Force and Department of Defense
Aerospace Propulsion Needs, 2006; Cecere et al., 2014; van
Biert et al., 2016), Japan (Dawson, 2004; Dale Reed and Lister,
2011), Europe (Negoro, 2007), India (Sekigawa and Mecham,
1996; Chopinet et al., 2011), China (Rao et al., 2019b) and Russia
(Lele, 2006) have already reported the developmental progress for
hydrogen fuel technology adaptation.

The advancement of transportation in different segments and
requirements has led to the development of unmanned vehicles.
The most popular sector under this category is unmanned cars
and unmanned Arial vehicles (UAV) (Tan, 2013). For UAV
applications, various countries have focused the efficiency to
cover longer distances and enhanced performance by replacing
conventional fuel with clean hydrogen fuels (Sergienko, 1993;
Wang et al., 2013). The development of Hydrogen mobility in
different sectors are tabulated in Table 4.

It has been studied and reported that utilization of hydrogen
fuel cell vehicles has been pointed in the United States and 5,899
hydrogen vehicles developed for commercialization (Bayrak et al.,
2020). For the promotion of hydrogen utilized vehicles,
companies like Toyota Mirai, Honda Clarity, Renault–Nissan,
General Motors and Honda have formed alliances for the joint
production (Giacoppo et al., 2017; Dudek et al., 2021).

4.2 Fuel Cells Electronic Vehicles
Vehicle manufacturers began producing hydrogen fuel passenger
vehicles in 2002 (Tanç et al., 2018) due to an increase in the
number of researchers interested in Fuel Cell Electronic Vehicles
(FCEVs). They’ve been manufacturing a variety of models up to
now. In addition to passenger automobiles (Lee et al., 2019; Tanç
et al., 2020), these manufacturers are known to work with light
commercial vehicles (Matulić et al., 2019), buses (de Miranda
et al., 2017), and trucks (Lee et al., 2018). Table 5, lists all
commercially available FCEVs, as well as their manufacturers
and special features.

In recent years, the majority of passenger car manufacturers have
started developing FCEVs. General Motors, Toyota, and Honda
produce their own FC stacks, whereas Ford, Mazda,
DaimlerChrysler, Mazda, Hyundai, Fiat, and Volkswagen purchase
them fromFCmanufacturers. It is apparent from the specifications of
available FCEVs that battery hybridization is currently favoured.
Furthermore, automakers such as Honda, Hyundai, and Mercedes
have recently developed plug-in FCEVs. Proton Exchange
Membrane Fuel Cell is the most prevalent FC stack, and its
efficiency for FCEVs is improving continuously. Detail
specifications of the commercialized presently dominating FCEV
for sale or leasing (Wasserstoffautos, 2021) are tabulated in Table 6.

For a shift from a carbon-based (fossil fuel) energy system to a
hydrogen-based economy, three key technological hurdles
(Chang et al., 2019) must be overcome that are as follows.

1) To compete with other options, the cost of efficient and
sustainable hydrogen generation and transport must be
considerably decreased.

2) In order to, offer an appropriate driving range, new
generations of hydrogen storage technologies for vehicle
applications must be created.

FIGURE 15 | Scope of hydrogen fuel in different mobility sectors.
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3) Fuel-cell and other hydrogen-based technologies must be less
expensive while having a longer useful life.

In this context, the future market of hydrogen transportation
and distribution are determined mainly by four factors (Edwards
et al., 2008; Olabi et al., 2021): (a) Cost of hydrogen in future, (b)
the rate of advancement of various hydrogen-based technologies,
(c) restriction in GHG emission, and (d) the cost of competing for
alternative transportation systems. Hydrogen has the potential to
be a long-term option for sustainable mobility with several social,
economic, and environmental benefits (Forsberg, 2005). It can

minimize reliance/dependency on fossil fuels and reduce carbon
emissions from the transportation industry in the long run.

4.3 Techno Economic Aspects
The cost and performance competitiveness of fuel cell electric vehicles
(FCEV) in the car industry will determine their future. FCEV
adoption in the present transportation industry is still modest.
Many governments have yet to take a firm stance on hydrogen
for transportation. In this regard, comprehensive energy plans for the
road transportation sector are required. The use of energy systems
modelling (ESM) to support energy planning is frequently advised in

TABLE 4 | Development of Hydrogen Mobility in different sectors.

Mobility type Country Status Ref no.

Heavy Duty Vehicles New Zealand • Examination of feasibility (MBIE, 2019; Concept Consulting Group, 2021; Perez et al., 2021)
• Energy strategy
• Assessment of Potential

Paris • Development of Vehicles Air Liquide Will Build the First High-pressure Hydrogen Refueling Station
for Long-haul Trucks, (2021)

• Fuel Station
Light weight vehicles Germany • Development (Galich and Marz, 2012; Topler and Lordache, 2017; Trencher and

Edianto, 2021)• Commercialization
Japan • Development of cars by 2030 Low et al. (2020)
South Korea • Development Low et al. (2020)

• Commercialization
US • Development Low et al. (2020)

• Commercialization

Railway transportation India • Development Jhunjhunwala et al. (2018)
• Research

Northern
Germany

• Commercialized (Germany) World’s First Hydrogen Train Runs Route in Germany, (2021)

India • Developmental (India) [137]

• Commercialization Process

Shipping industries United Kingdom • Developmental stage (Sattler, 2000; IMO, 2012a; IMO, 2012b)

Norway • Risk & Safety aspects Analysis (Tronstad et al., 2017; Leo et al., 2010; de-Troya et al., 2016; van Biert
et al., 2016)

Aviation and Space United states • Developmental Progress (Dawson, 2004; Committee on Air Force and Department of Defense
Aerospace Propulsion Needs, 2006; Dale Reed and Lister, 2011)

Japan • Progress, Testing and Safety
Assessment

Negoro, (2007)

India • Developmental Progress (Lele, 2006; Rao et al., 2019b)
Europe • Testing Tan, (2013)
China • Testing Wang et al. (2013)
Russia • Testing Sergienko, (1993)

Unmanned Cars, Unmanned Arial
vehicles

Turkey • Developmental Progress (Sergienko, 1993; Tan, 2013; Wang et al., 2013)
Italy • Progress, Testing and Safety

Assessment
(Giacoppo et al., 2017; Bayrak et al., 2020)

China • Developmental Progress Chang et al. (2019)
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TABLE 5 | Commercially available FCEVs.

Model Manufacturer Appearance Type Range
(km)

Top
speed
(km/h)

FC (type) Interval
(Year)

Leased/
Marked in

Ref no.

Gumpert
Nathalie

Gumpert
Aiways
Automobile
(RG)

FC and
Battery
hybridization

820 300 Direct
Methanol
Fuel Cell
(DMFC)

2021 Germany,
China

Rolandgumpert, (2021)

Hyundai
Nexo

Hyundai FC, Battery
and UC
hybridization

600 179 PEMFC 2018-
Present

South Korea,
California, and
Europe

Hyundai, (2021)

Toyota
Mirai

Toyota FC and
Battery
hybridization

502 160 PEMFC 2015-
Present

Japan,
California,
Europe,
Québec and
United Arab
Emirates

Energy.Gov, (2021)

Honda
Clarity

Honda FC and
Battery
hybridization

590 178 PEMFC 2016–2021 Japan,
Southern
California,
Europe

Automobiles.Honda,
(2021)

Hyundai
ix35 FCEV

Hyundai FC and
Battery
hybridization

594 160 PEMFC 2014–2018 South Korea,
California,
Europe and
Vancouver

Environment
Hydrogen-Fuel-Cell,
(2021)

Mercedes-
Benz
F-Cell (B
class)

Daimler AG FC and
Battery
hybridization

402 132 PEMFC 2010–14 southern
California

Mercedes-Benz,
(2021)

Honda
FCX Clarity

Honda FC and
Battery
hybridization

560 160 PEMFC 2008–2015 United States,
Europe and
Japan

Matsunaga et al. (2009)

Chevrolet
Equinox
FC

General
Motors

FC and
Battery
hybridization

320 141 PEMFC 2007–2009 California and
New York

Eberle et al. (2016)

(Continued on following page)
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this context, since it provides a scientific basis for the prospective
evaluation of energy systems based on technical and economic factors
across time (Bhattacharyya and Timilsina, 2010). Furthermore, by
using life-cycle sustainability variables in the future evaluation, ESM
studies might be improved (García-Gusano et al., 2016). A variety of
pathways and important conversion technologies for biomass and
organic solid waste to hydrogen have been investigated (Aziz, 2021).
The potential for a techno-economic and environmental assessment

of the hydrogen production mix that might meet the hydrogen
demand for road transport under various scenarios for FCEV
penetration in Spain has been addressed (Navas-Anguita et al.,
2020). Due to the reasonable costs of natural gas and the maturity
of the technology, the hydrogen demand associated with the eventual
penetration of FCEV in the Spanish road transport system may be
totally met by conventional steam reforming of natural gas. The
worldwide view on hydrogen energy systems, on the other hand,

TABLE 6 | Technical specifications of FCEVs which are presently dominating the market.

Model Type Range (km) Electric motor
(kW)

Tank capacity
(kg)

Fuel consumption
(H2) Kg/100 km

Toyota MIRAI II Fuel cell vehicle 650 135 5.6 0.76
Hyundai NEXO Fuel cell vehicle-5th generation 756 120 6.33 0.84
Mercedes-Benz GLC F-CELL Electric vehicle with fuel cell and li-ion battery 478 141.557 (Li-ion battery 13.8 kWh) 4.4 0.97
Honda Clarity Fuel Cell Fuel cell vehicle 589 130 5
Hyundai ix35 4th generation Fuel cell vehicle 594 100 5.64 1

TABLE 5 | (Continued) Commercially available FCEVs.

Model Manufacturer Appearance Type Range
(km)

Top
speed
(km/h)

FC (type) Interval
(Year)

Leased/
Marked in

Ref no.

Mercedes-
Benz
F-Cell
(A-Class
based)

Daimler AG Full FCEV 160–180 132 PEMFC 2005–2007 United States,
Europe,
Singapore and
Japan

Mercedes-Benz-Cars,
(2021)

Nissan
X-Trail
FCV (2005
Model)

Nissan FC, Battery
and UC
hybridization

500 150 PEFC 2003–2013 Japan and
California

Nissan-Global, (2021)

2003
Model

FC and
Battery
hybridization

350 145 PEFC

Ford
Focus FCV

Ford FC and
Battery
hybridization

320 129 PEMFC 2003–2006 California,
Florida and
Canada

Hydrogencarsnow,
(2021)

Honda
FCX-V4

Honda FC and UC
hybridization

315 140 PEMFC 2002–2007 America,
Japan

Global.Honda, (2021)
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refers to a hydrogen economy based on environmentally friendly
solutions. Lin et al. (Lin et al., 2013) used a cost-based consumer
choice model to examine the market adoption and social advantages
of FCEVs from 2015 to 2050. For the Indian urban driving cycle,
Shakdwipee and Banerjee compared fuel cell cars against petrol and
CNG automobiles (Manish Shakdwipee, 2006). Primary energy
consumption (MJ/km), CO2 emissions (kg CO2/km), and cost
(Rs./km) were used as comparison criteria. Fuel cell vehicles, they
discovered, are more energy efficient and environmentally friendlier
than gasoline automobiles. Fuel cell vehicles consume 43% less energy
and emit 40% less CO2 than gasoline automobiles. A techno-
economic analysis is conducted to assess the feasibility of
deploying Fuel Cell Electric Trucks (FCET) on the Oslo-
Trondheim route in Norway (Diva-Portal, 2022). The output of
the infrastructure’s techno-economic model, which included various
configurations and combinations of both hydrogen producing units
(HPU) and hydrogen refuelling stations (HRS), was given in the form
of a cost curve function based on the FCET’s fleet size. The cheapest
set-up was found, consisting of a 350-bar HRS for a type 3 onboard
tank with hydrogen production connected directly to it. Future cost
curves for FCETs and infrastructure that indicate development in
2030 were investigated. Chen andMelaina (Chen andMelaina, 2019)
established a techno-economic analysis framework to analyse the cost
and performance of main vehicle technologies (internal combustion,
hybrid, plug-in hybrid, battery and fuel cell electric) under various
advancement scenarios for the years 2035 and 2050. Based on a 5-
years or 15-years ownership term, their findings suggest that the
prices permile for FCEVs are 36% or 22%more than those of regular
gasoline automobiles in the 2035 scenarios. FCEVs have 15-years
ownership costs that are equivalent to gasoline automobiles with
comparable engineering performance in 2050 scenarios. Fuel cell cars
have a cheaper driving cost in all of the 2035 and 2050 scenarios when
compared to electric vehicles with a 200-mile range. To encourage the
use of hydrogen as a passenger car fuel, the cost of an FCV must be
reduced to at least the same level as that of an electric vehicle.

4.4 Selected Implemented Projects, Policies
and Challenges
Throughout the world many demonstration projects are
implemented on hydrogen mobility. Some important
implemented projects are discussed here. Han (2014)
investigated the hydrogen fuel cell car demonstration projects
in China, as well as their marketing methods. Their research
indicated that hydrogen fuel cells are the most promising
technology for reducing urban air pollution, saving energy,
achieving sustainable mobility, and promoting technical
change in the automobile sector. The Chinese government has
adopted an ambitious strategy and is providing significant
financial assistance for the development of hydrogen and
related technologies. Aditiya and Aziz examined the possibility
of establishing an inter-state hydrogen energy system on selected
countries in the Asia-Pacific region, based on individual
evaluations from the nexus of technology, social, and
economic perspectives, and utilising the respective strengths to
identify an inter-state hydrogen network strategy in the Asia-
Pacific region, dubbed the “Asia-Pacific Hydrogen Valley”

(Aditiya and Aziz, 2021). Indonesia, Malaysia, Brunei
Darussalam, the Philippines, Singapore, Vietnam, Thailand,
Japan, South Korea, Australia, and New Zealand are among
the countries assessed. According to the findings, countries
with active hydrogen policies and high R&D capacity may lead
the strategy, whilst countries with high primary energy supply
capacity and an economic edge would aid the group in catering
energy and commercial resources, respectively. The feasibility of
using hydrogen cars in various modes of transportation,
including personal automobiles, taxis, and shared mobility,
was investigated (Turon., 2020). Hype is the first hydrogen-
powered taxi fleet in the world. The first five cars were
introduced to the system on 7 December 2015 at COP 21 by
Société du Taxi Electrique Parisien (“STEP”) (Hype, 2019). The
fleet now consists of about 100 cars. Before the end of 2020, 600
cars are expected to be in use. The system’s taxis have a range of
more than 500 km. As a result, their charging time might be as
long as 5 min (Hype, 2019). In 2016, the first attempts were made
to develop a car-sharing system based on hydrogen-powered
vehicles. The Linde Group commenced operations at that time by
launching a service under the BeeZero brand in Munich,
Germany. The system has a 50-vehicle fleet. Unfortunately, the
system failed to work in June 2018 after 2 years of operation (Gas
World Portal, 2018). The corporation claims that economic
unprofitability was the cause for its demise. Unfortunately, one
of the issues that car-sharing companies face is this type of issue
(Gas World Portal, 2018). This is because car-sharing is a new
type of urban transportation that is now being developed among
today’s communities that are accustomed to owning rather than
renting a car (Turoń and Cokorilo, 2018). The introduction of
hydrogen automobiles in the form of zero-emission buses is
another alternative that allows the vehicle to reach the biggest
number of people. A bus that uses electric energy generated by
hydrogen in fuel cells or merely the engine whose cycle does not
result in the production of greenhouse gases or other substances
covered by the greenhouse gas emission management system
(Polish Electromobility Act, 2018). An operator operating in
Cologne or Wuppertal, Germany, is an example of how this
type of bus may be implemented. Furthermore, this mode of
transportation was so well received that a tender for the supply of
a fleet of 40 cars was signed. Despite numerous dubious appraisals
and public worries, primarily due to ignorance, hydrogen-
powered cars appear to have a chance to becoming a viable
alternative to conventional automobiles. The current condition of
such vehicle use in various nations reflects a growing interest in
green transportation technology and the hunt for diverse
solutions that can assist transportation’s long-term growth.

Many nations have strong hydrogen support policies, and
hydrogen energy will become an essential element of the future
global energy plan. Japan, the European Union, the United States,
and South Korea all responded enthusiastically and pushed
aggressively, with national policy support focusing on
hydrogen energy fuel cell cars. Foreign subsidy programmes
primarily targeted the consumption connection and were paid
in the form of a purchase tax credit or a purchase subsidy. The
United States is the first country to use hydrogen and fuel cells as
an energy source. It first proposed the notion of “hydrogen
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economy” in 1970, and in 1990, it passed the Hydrogen Research,
Development, and Demonstration Act. The National Roadmap
for Hydrogen Energy Development was announced by the US
Department of Energy in November 2002, kicking off the
methodical execution of the National Hydrogen Energy Plan
(Wang et al., 2015). The United States of America designated
October 8 as National Hydrogen and Fuel Cell Day of
Remembrance in 2018. The total number of fuel-cell cars sold
and leased in the United States as of 1 April 2020 was 8,285. Japan
has implemented a variety of beneficial regulations aimed at
speeding up the commercialization of hydrogen energy and fuel
cells, with encouraging outcomes. Japan was the first country in
the world to establish a comprehensive government strategy for
the development of hydrogen and fuel cell technology, and the
Basic Hydrogen Energy Strategy 2017 recommended that the
government prepare for hydrogen and fuel cell development.
Japan aims to build 320 hydrogen refuelling stations in 2025 and
900 in 2030, according to the Basic Hydrogen Energy Strategy
issued in late 2017 (Wei and Chen, 2020). The Japanese
government has spent hundreds of billions of yen on
development and promotion of hydrogen and fuel cell
technologies during the last 30 years. The EU sees hydrogen
energy as a critical component of energy security and
transformation. The EU Fuel Cell and Hydrogen Joint Action
Plan (FCH JU) initiative offers major funding for the
development and promotion of national energy and fuel cells
across Europe. For the years 2014–2020, the entire budget was
€665 million (European Commission, 2020). In Europe, there
were 152 hydrogen refuelling stations in service by the end of
2018, with expectations to increase to 770 in 2025 and 1,500 in
2030, with roughly 1,080 fuel cell passenger cars being deployed.
Since 2014, China has enacted a number of policies and measures
reflecting the country’s commitment to the growth of the
hydrogen and fuel cell industries, as well as the obvious trend
of Chinese policies supporting the hydrogen industry’s
development. According to the Ministry of Industry and
Information Technology’s (MIIT) 2018 fuel cell vehicle
subsidy criteria, the state provides up to 200,000, 300,000, and
500,000 yuan in subsidies for fuel cell passenger cars, medium
commercial vehicles, and large commercial vehicles, respectively
(Liu and Zhong, 2019). As a first step toward the National
Hydrogen Mission, the Indian government announced the first
phase of its Green Hydrogen Policy in 2021. The mission’s goal is
to turn India into a green hydrogen centre that will assist the
country reach its climate goals. It aims to produce five million
metric tonnes per annum (MMTPA) of green hydrogen by 2030,
as well as build renewable energy capacity in the process (Power-
Technology, 2022).

Successful implementation of Hydrogen policy required
extensive R&D to overcome the technical challenges to
expedite the acceptance of hydrogen as future of sustainable
mobility. The majority of hydrogen is now generated in a
traditional manner, coming from the burning of fossil fuels,
which emits a significant quantity of CO2. As a result, the
primary difficulty is to create hydrogen utilising sustainable
energy sources. This is a major step forward in the direction
of green hydrogen. Only a few recharge stations exist across the

world. Even though some governments are willing to invest in the
building of hydrogen charging stations, demand remains low, and
these terminals do not now make enough profit. Hydrogen
produced from renewable sources is highly costly and
inefficient when compared to hydrogen produced from natural
gas. Furthermore, hydrogen is still exceedingly explosive. It must
be kept and transported in big containers under pressure. This
creates security, logistical, and financial issues that continue to
obstruct its usage (Solarimpulse, 2022). According to hydrogen
features and behaviour, hydrogen monitoring needs, including
international partnerships and formal agreements, legislation,
codes, and standards, Foorginezhad et al. (Foorginezhad, 2021)
investigated the safety difficulties with hydrogen fuel cell cars.
The detection performance of hydrogen sensor types relevant to
fuel cell cars, such as catalytic hydrogen, electrochemical, semi-
conductive metal-oxide, thermal conductivity, optical, palladium
(alloy) film-based, and combination technology-based sensors, is
also reviewed. Finally, future options for sensing and monitoring
technologies, as well as obstacles ahead in the use of hydrogen fuel
cells in automobiles as a replacement for traditional equivalents,
are presented.

5 CONCLUSION

To reduce climate change and the adverse effect of pollutants
from conventional fuel vehicles, sustainable transportation
development and commercialization have evolved rapidly in
the last few years. The purpose of this study is to draw
attention towards the sustainable mobility and implementation
of sustainable development since there is substantial potential for
establishing convergence between climate change mitigation
efforts and sustainable development goals in the transportation
sector. Focusing on the rise in environmental concerns like
greenhouse gas emissions and environmental sustainability,
hydrogen energy-based technology is considered the potential
for future transportation. Technical aspects presenting hydrogen
generation and storage methods reveal that hydrogen is the only
future fuel satisfying the criteria for sustainable mobility and
designing hydrogen-based vehicles.

The review also presents exciting insights into hydrogen-based
vehicles in the marine, railways and aerospace industry and
concludes that hydrogen-based fuel cell vehicles should be
commercialized worldwide. The review findings would also
guide academia about various technical features of fuel cell
electric vehicles, and they would benefit from recommending
more advanced technologies for the coming future. However, the
transportation and distribution of hydrogen is another significant
challenge, and this is a crucial consideration while transitioning
to a hydrogen economy. Investigation into hydrogen fuel vehicles
and their utilization in different mobility sectors have been
rigorously reviewed. Undeveloped hydrogen technologies have
a high implementation cost for proper commercialization,
discouraging vehicle manufacturers from adopting the
technology.

Nevertheless, a potentially significant advantage in terms of
zero-emission to climate has attracted the researchers for its
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early development and progress to enhance more widespread.
Different nations’ governments must coordinate their energy
requirements for the future to increase the use of hydrogen as a
transportation fuel. Policy and regulatory measures and
increased worldwide funding for research and
commercialization initiatives would undoubtedly pave the
way for taking the first steps toward a hydrogen economy,
which guarantees energy security. Hydrogen holds much
promise in the transportation industry if the appropriate
steps and procedures are taken to make it safe, dependable,
and robust.
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