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In commercial buildings, the total consumption of central air conditioning accounts for
about 40%–50%. However, at present, the initial design value of building Heating
Ventilation and Air Conditioning (HVAC) is usually far greater than the actual
refrigeration value of refrigeration demand, which will lead to great energy consumption
waste. Moreover, the operation of HVAC affects the thermal comfort of users, so it is
necessary to establish a thermal model for the scene to control. The thermal model
describes the temperature of the scene in different environments. So it is very important to
design a thermal model to calculate the scene in real time. Because the flow of people, the
opening of windows, the ventilation of the scene and other parameters influence the
change of thermal state in the scene environment, these parameters are complicated to
model. Human disturbance will lead to the instability of the state of the scene environment.
The inconsistency of its thermal model will lead to energy allocation tracking strategies in
different regions. To solve this problem, We propose a thermal model for building thermal
comfort using a multimodal analysis framework. This paper analyzes multiple temperature
and humidity sensors and area image by multimodal combination and processes the
image and sensor data by combining CNN and LSTM. Our results show that when the
thermal model analyzed by this method is deployed in a building in the south of China, the
MSE accuracy of the local effect of temperature field prediction reaches 99%, and its
AMAX reaches 94%, so the running stability of the model in the scene is high. In addition,
the research shows that the thermal model analysis framework can make the Internet of
Things (IoT) in buildings more intelligent, and it can be combined with this thermal model to
improve human comfort, make it easier to deploy in each hot zone, and have a better
overall energy-saving effect.
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INTRODUCTION

Buildings account for about 30% of the total global energy consumption and carbon emissions, causing
serious energy and environmental problems (e.g., Yu et al., 2021). In addition, the energy demand of
buildings is expected to increase by 50% in the next 30 years (e.g., Sharma et al., 2019). With the increased
global focus on energy conservation and carbon emission reduction, improving energy utilization rates has
become the focus of many research works. Under the above background, the rise of intelligent buildings
makes it possible to improve the energy utilization rate.He can usemany advanced technologies, such as the
Internet of Things, cloud computing and deep learning analysis. Because the HVAC system accounts for
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30%–50% of total building energy usage (e.g., Chiara Delmastro and
Abergel, 2019), it is possible to provide energy-saving control such as
HVAC regulation for building users.

However, at present, the adjustment of HVAC in intelligent
buildings is based on the perception of the hot zone of the
building scene, such as thermal-comfort analysis, and
identification of the scene variables (number of people and
CO2). However, suppose there is no good perception and
frequency conversion control. In that case, these adjustments
will worsen human comfort in the building to a certain extent and
then affect the residents’ long-term health and work efficiency. In
thermal comfort analysis, we need to consider to many factors,
but in this paper, we take temperature as the main consideration.

For example, the widely used proportional integral differential
algorithm (e.g., Clifford and Stephenson, 1986) realizes the rule-based
heuristic control mechanism. Comfort is defined as the set point
temperature, such as 23°C. As long as the indoor temperature is not
much different from the set point, this strategy will optimize energy
efficiency. Similar works are also included in (e.g., Moon et al., 2013;
UZhang et al., 2018; Nagarathinam et al., 2020; Yu et al., 2020).
However, because this empirical assumption regarding comfort has
been repeatedly demonstrated to be incorrect, energy savings are
frequently realized at the expense of occupant satisfaction. However,
several studies (e.g., Ter Mors et al., 2011; Maiti, 2014; Khan and Pao,
2015) believe that these normative models are insufficient for
evaluating human thermal feelings. Their experimental results
indicate that these models frequently underestimate or exceed the
thermal comfort level of humans by a significant margin under
various climatic circumstances. Therefore, it is difficult to use the
thermal comfort analysis of the scene as the basis for control. Indeed,
our literature survey indicates that more parameters/signals related to
human thermal comfort have been investigated over the last
2 decades, including environmental parameters such as CO2
concentration (e.g., Seppänen et al., 1999; Kolokotsa et al., 2001),
vision (such as color), and acoustics (such as noise) (e.g., Frontczak
and Wargocki, 2011), and vital personal signs such as sex (e.g.,
Parsons, 2002; Karjalainen, 2007), age (e.g., Indraganti and Rao,
2010), heart rate (e.g., Epstein and Moran, 2006; Liu et al., 2008),
and skin temperature (e.g., Höppe, 2002). As a result, it is required to
reconsider the foundations andmethods of energy-saving control and
design a thermal model that precisely and effectively expresses the
thermal dynamics of buildings for building control.

At present, the indeterminacy of the control basis for HVAC in
intelligent buildings doesn’t explain why it should be controlled like
this, and many current control basis often didn’t consider the
disturbance in a large area, so it is very valuable to explain the
indoor air thermal model. There are two widely used thermal
building models in the literature: the first is the first principle
physics model, which employs thermal dynamics equations to
describe thermal equilibrium (e.g., Xu and Wang, 2008; Li et al.,
2009). This model is frequently used in building simulations (e.g.,
Crawley et al., 2001) and has shown a reliable result. The lumped-
parameter reduced order model (e.g., Laret, 2000; Gouda et al., 2002;
Fraisse et al., 2002; Rodríguez Jara et al., 2016. Resistance-
Capacitance models), which reduces the system’s representation
while still capturing the relevant physics of a first principle model, is
the second type of thermal model. For various reasons, both

approaches are challenging to apply in practice. For model
selection and parameter identification, domain knowledge is first
required. Second, themodel is zone-specific and time-specific, which
means that the model of each thermal zone in a building needs to be
manually configured by calibration alone and is challenging to use in
various environments. Third, these models cannot be altered to
match the environment’s real-time unctioning (e.g., Zhang et al.,
2019). Data-driven techniques have become increasingly popular as
a result of these factors. The author of Zhang et al. (2019) proposed
that machine learning be used to model and predict a single
temperature sensor in the scene, which could then be used to
control the system. On the other hand, existing data-driven
models either require analog data for testing or require
reasonably accurate time-series temperature data. Thus, in
practice, we require a thermal model capable of enhancing the
expression of real-time scenes.

In this research, to build the thermal model of the scene in real
time and utilize the sensors in the intelligent building appropriately
and economically. We propose a framework for the real-time
prediction of building thermal models using multimodal scene
data. It aims to automatically predict the thermal model of the
scene through the temperature of certain areas in the scene.
Therefore, we use multimodal scene data fusion to align the
monitored image data of the scene in the building with the
locally deployed temperature and humidity sensors according to
the position. It can take a scene area as one of the agents of the
smart building, and the control of frequency conversion can
control the thermal model analysis results of each agent. The
paper proposes a learning model for a building’s thermal model in
a hot zone. The monitored image data is analyzed using CNN. The
temperature and humidity sensor data in each area are encoded
using encoder. Finally, the encoded data of each time step and the
features extracted by CNN are fused and then analyzed by LSTM.
The analysis results from the above two methods are aligned with
the hot zone’s actual location to predict the hot zone’s overall
thermal model. The framework is easy to integrate with various
smart buildings’ Internet of Things systems (IoT). The proposed
framework only relies on the data collected by surveillance cameras
and a few temperature and humidity sensor in hot areas for
learning, which is affordable for most building owners.
Additionally, we developed and deployed the framework in the
actual building and quantified the temperature prediction error of
each indoor overall thermal model area based on the learned
model. Therefore, this paper is expected to provide insights for the
quantification of indoor air thermal models and the basic
development of HVAC control in intelligent buildings and help
to enable and popularize advanced HVAC control in intelligent
building applications based on the Internet of Things (IoT).

The rest of the paper is arranged as follows: Section 2
introduces the architecture and Internet of Things platform
deployed in this work. The Section 3 introduces the principles
of building an indoor air thermal model. The Section 4 describes
multimodal scene data’s thermal model learning framework,
including data preparation, preprocessing, and training. In the
Section 5, a case study based on an actual building is conducted to
verify the framework and evaluate the final thermal model. Section
6 summarizes the current research focus and future work.
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CONSTRUCTION AND INSTALLATION OF
AN INTERNET OF THINGS PLATFORM AT
AN EXPERIMENTAL SITE
The experimental space for this paper’s thermal model is a
teaching classroom 205 on the campus of Wuyi University in
Jiangmen City, Guangdong Province, China. The space’s length,

width, and height are 1262, 1671.5, and 451.7 cm, with a podium
and a table, and the camera is placed at the door. The three-
dimensional composition of the space is shown in Figure 1, with
a total area of 160 square meters.

In this paper, in order to more accurately measure the indoor
temperature and observe the temperature change, we use gambit
software to establish the roommodel and use fluent for numerical
calculation, take the average temperature of the room working
area as the temperature of the whole working area, obtain the
temperatures of multiple measuring points in the room working
area, and study the best location of the indoor temperature
sensor. Five sensors are deployed in an area of 160 square
meters, Using the sensors as a prediction device for model
building, it shows the three-dimensional situation of its layout
from Figure 1B.

The Internet of Things system (IoT) is a software platform that
enables the monitoring, control, and intelligent application of
equipment in buildings, with the goal of optimizing the
management of building energy use and indoor comfort. The
proposed framework for learning can be used as a proxy service
throughout the entire building system. Similar to the
communication function of the mobile phone application on
the mobile operating system, the management system provides
lower-level services [for example, interfaces with Internet of
Things (IoT) devices and historical data storage in each hot
zone in the building] and focuses on solving some specific
problems (for example, learning the thermal model of the air
scene in each hot zone). In this study, the multiarea proxy energy
management system based on the Internet of Things (IoT) is
deployed in the test hot zone of the building and runs on the edge
equipment.

In order to collect heat-related data and monitoring data in
the scene, the temperature and humidity data are
communicated by Bluetooth to a wireless network gateway,
and the current data of each minute is collected from the
sensor and stored in the MySQL database of the server. The
image data of common visual camera is transmitted to
the nodes of the processing server through TCP, and the
temperature and humidity data along with the image data
are used to align the areas. Then, the thermal model of
the hot zone is analyzed through the platform, and the
control of frequency conversion is given to the decision
service. The ready-made intelligent temperature controller
in each hot zone is used to control the hot zone’s decision
service HVAC fan control unit through Lora communication.
The server terminal processes the whole building, the
equipment in each hot zone comes from the original
equipment, so the equipment price is relatively more
economical. Because the platform supports a variety of
control schemes, their large-scale deployment in intelligent
buildings has a high return on investment. In order to improve
the perception of the thermal model in the hot zone and learn
the thermal model in the hot zone from local sensors and
monitoring data. As discussed in the third chapter, a thermal
model in the hot zone based on multimodal scene data is
established.

FIGURE 1 | This picture shows the distribution of the scene. (A) shows
the 3Dmodel of the scene, (B) shows the actual map of the scene, and Figure
(C) shows the detailed bird’s eye view of the scene.
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GRID SEGMENTATION AND DATA SET OF
THERMAL MODEL CONSTRUCTION IN
HOT ZONE
In this section, we describe the analysis and construction of data-
driven thermal model in hot zone. Please note that data drives the
experiment in this paper, and the results of sensors directly guide

all the data. Therefore, although the experiment in this paper was
conducted in autumn, the proposed framework can also be used
directly in winter, and only the trained model needs to be updated.

Grid Segmentation in Hot Zone
In this paper, the experimental scene of the building is segmented
according to the ratio of 10*10*10, and the total number of segmented
blocks is 1000. This segmented grid is used as the thermal model
analysis of the scene, and the temperature field is constructed and
analyzed. Five sensors are deployed in an area of 160 square meters,
and the deployment positions are randomly determined. Using one of
the sensors as a prediction device for model building, it shows the
three-dimensional situation of its layout from Figure 1.

Situation With the Data Set
The temperature and humidity sensor samples once every
minute, and the time of sampling is aligned with the image, so
that the multimodal scene data at that time can be obtained.

The temperature and humidity sensor is a Bluetooth sensor
with SHT20 chip produced by the Jaalee manufacturer. Its small
size will not affect its daily use. Its temperature measurement
range is from −40°C to +60°C, its accuracy is + −0.3°C, the
humidity range is 0%–100%, and its accuracy is + −3%, which
can meet the annual data collection in this area.

Themonitor image data is collected every second, which is a zoom
webcam with a 4K camera, which can collect full-coverage images of
hot spots. It is transmitted to thememory through FRP. If themodel is

FIGURE 2 | The figure is a visualization of the data, the left area is the monitoring image, and the right area is the data collected by the sensor, namely dewpoint
(°C),VPD(kPa), humidity (%) and temperature (°C).

FIGURE 3 | Thermal model learning process.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8955344

Li et al. Scene Thermal Model Modeling

https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


needed to analyze and predict the temperature field in real time, it can
be obtained by obtaining the network address of thewebcam.Figure 2
is the visualization of surveillance images and sensor acquisition data.

LEARNING FRAMEWORK OF THE HOT
ZONE THERMAL MODEL FOR
MULTIMODAL SCENE DATA
This chapter describes the architecture of school framework for
building thermal model by using scene data and the hardware
used to realize it.

The Thermal Model Learning Channel
Figure 3 shows the flow of thermal model learning, it includes
three main steps: collecting data from multiple temperature and
humidity sensors; using an edge device or cloud platform for

thermal model learning; and delivering the learned model to
other intelligent control applications. The whole process is
entirely automatic, and there is no intervention. The learning
process begins with data preprocessing. That is, historical
temperature sensor and image data from the previous few
days is used and cleaned as a training data set. This research
is data-driven.

Figure 4 shows the overall training process. The model
inputs the temperature values and images with the specific
continuous time steps average. The model’s label is the sum
average of the temperature values with the range of 2 in the
fixed position in the 10*10*10 matrix as the label, which is sent
to the second step as described in section B of chapter 3.

Model Frame
The model uses the CNN framework to process visual data and
the LSTM framework to process temperature and humidity data.

FIGURE 4 | Training process design.

FIGURE 5 | Overall design of deep learning model.
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As shown in the in the Figure 5, CNN is used to extract features
from input images, and embedding is used to encode data
continuously collected by multiple sensors. Then, at each time
step, the features extracted by CNN are spliced into the time
dimension to be input to LSTM. In this way, the model can use
successive frames of information and then decode the output
temperature field by the decoder.

Data Preprocessing
Before training, the data is preprocessed. The preprocessing steps
of the training data and the preprocessing steps of the test data are
shown in Figure 6. After the preprocessing, the data is provided
to the model. When the model obtains the data, The preprocessed
input data is learned every 10 time steps by a sliding window
algorithm.

Fitness Metrics
The MSE (e.g., Chen et al., 2020) and AMAX (e.g., Chen et al.,
2021) error metrics, which are the mean value (MSE) of the sum

of squares of the errors between the predicted and original data
points, and the Absolute Error of the Maximum Temperature,
respectively, were used to evaluate and compare the performance
of the created algorithms (AMAX)

MSE � 1
M

∑M

m�1(ym − ŷm)
2 (1)

AMAX � 1
M

∣∣∣∣∣max(Ŷ) −max(Y)
∣∣∣∣∣ (2)

CNN-LSTM Structure
In terms of CNN, the deeper the network is, the more practical
information can be obtained. However, with the deepening of the
network, the optimization effect worsens because the deepening
of the network will cause gradient explosion and disappearance.
In order to avoid the loss of important information, this paper
designs an improved CNN, which is suitable for extracting the
thermal model of the image. When designing the improved CNN
model, the following parameters shown in in the Figure 7 were
considered.

FIGURE 6 | Data preprocessing.

FIGURE 7 | CNN module design.
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The CNN of this paper adopts the structure of DenseNet (e.g.,
Huang et al., 2017). DenseNet network is used as the upper-layer
network, and DenseNet classifies images at pixel level, thus solving
the problem of image segmentation at semantic level. Different from
the classic CNN classificationmethod in which the feature vectors of
all connected layers get a fixed degree after the convolution layer,
DenseNet can accept the output image of any size, and uses the
deconvolution layer to upsample the feature map of the last
convolution layer to restore it to the same scale as the output
image, so that each pixel can be predicted. At the same time, the
spatial information in the original output image is retained. After the
exported image passes through the backbone network, the image
features are getting smaller and smaller, and the resolution gets lower
and lower. After that, DenseNet and others unpooling the features
by transpose convolution, and reduced the image features to the size
of the original image. At the same time, to capture the shallow
features, the skip structure was used appropriately to predict the
temperature field. In addition, although some algorithms use
multiscale feature fusion, they usually use fused features to make
predictions. However, the difference in this paper is that the
predictions are made independently in different feature layers,
and the network structure of skip connection is also used to fuse
features of different depths to obtain more detailed image features.
Simply put, the features generated in the last step are used to predict
the temperature field after multiple upsampling and feature fusion.

LSTM is the lower layer of CNN-LSTM, which stores the time
information of the scene and is multi-modal data running in the
whole. The structure of LSTM is shown in Figure 8 below. LSTM
provides a solution to preserve long-term memory by
consolidating storage units to update the apparent hidden
state. This function makes it easy to understand the time
relationship of long-term series. The output value from the
previous cable news network layer is passed to the gate unit.
The LSTM network is very suitable for predicting the thermal
model of real-time scenes by solving the explosive and
disappearing gradient problems that may occur when learning
traditional neural networks. The fused part is processed by the

LSTM network, using basic LSTM, Bi-LSTM, and LSTM multi
layers bi. The CSALSTM used in this article uses a self-attention
mechanism at the input layer, which is a two-way, two-layer, and
the output layer also adopts a self-attention LSTM to learn
attention weights in different time steps.

Architecture
CNN-LSTM is basically composed of a convolution layer, a
convergence layer, an LSTM layer, and a dense layer. The
convolution layer uses densenet as the backbone network,
because the monitoring image represents a lot of information
in the scene, such as the mobility of people and the location of
people in the scene. By extracting the features of the scene in the
convolution layer, and coding the sensor, the convolution
features and codes are converged and input into LSTM for
prediction. Because LSTM structure has the ability to
memorize long-term and short-term information, Because the
prediction of the thermal model is influenced by time, the time
that the human body stays in the scene will affect the prediction
effect of the thermal model. The longer the human body stays, the
thermal model will tend to be stable at this time. Therefore, LSTM
structure is used to learn its changes due to time. The running
data is a multivariate time series, preprocessed to a window of 10-
time steps by a sliding window algorithm. Data passes through
the convolution and aggregation layers and then through LSTM.
We designed the parameters of CNN-LSTM, as shown in Table 1.
This table shows the number of filters in each convolution layer,
the size and steps of the convolution layer, the core of the pooling
layer, and the number of parameters of the whole layer, including
the LSTM layer.

CASE STUDY

Data Introduction
This section discusses the data collection and testing process of
learning model framework in the construction of test platform.

FIGURE 8 | LSTM module design.
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The temperature and humidity sensor readings used in this
study were collected in October, November, and December
2021. The temperature data and monitoring image data
collected by five temperature sensors are recorded on the
platform, and the aligned data reaches 46,285 pieces, as
shown in Table 2.

Among them, data time is the timestamp, Zp is the address of
the monitoring image, 1 device number 1_tp is the temperature
value of the device in degrees Celsius. Example of images are
shown in Table 2.

The equipment is modeled in a matrix of 10*10*10 in the
scene. The location is shown in Figure 1C.

Model Training
In the training process, the input batch is 16, the input size is
scaled for data efficiency, and 32 consecutive frames are used. The
optimization algorithm selects SGD. The network is trained by
cosine learning rate decay. The initial learning rate is 0.025, Due
to the large amount of data, the mse dropped to a stable state in
the first epoch, so we trained the epoch to be 10. The loss function
is MSE. The implementation was based on the public PyTorch
platform. The training and testing bed was Windows 10 system
with two NVIDIA GeForce RTX 2070 SPUER graphics card.

Thermal Evaluation Results
We have done tests to confirm that the suggested strategy is
superior than previous deep learning-based models. Table 3
covers the performance of deep learning models for
forecasting energy usage. LSTM-Densenet, Bi-LSTM-Densenet,
and Attention LSTM-Densenet are used for time series
prediction. The findings are assessed in two error measures
like MSE and AMAX. Experimental findings reveal that the
proposed CNN-LSTM model provides higher performance
than the standard deep learning approaches for power.

DISCUSSION

In order to establish an accurate and effective building thermal
model in hot zone. In this paper, the method of data-driven and

TABLE 1 | Parameters of the model.

Layer Name Input size Output
size (batch_sz = 1,length = 10)

Param#

0 Image input 1*10*3*256*256
1 Image densenet 10*3*256*256 10*1*256*256 775,004
2 Image Linear 10*65536 10*128 2,688
3 Image ReLU 10*128 1*10*128
4 Airdata input 1*10*20
5 Airdata Linear 10*20 10*128 8,388,736
6 Airdata ReLU 1*10*128 1*10*128
7 Mix 1*10*128 and 1*10*128 1*10*512
8 LSTM 1*10*512 1*10*512 2,629,632
9 UpSample 10*512*1*1 10*10*10*10 512,010
10 Conv2d 1*100*10*10 1*10*10*10 1,010

Total params 12,309,120

TABLE 2 | Sample data set.

Datatime Zp 1_tp 2_tp 3_tp 4_tp 5_tp

Data acquisition
time

Photo address Temperature
value of No.1

Temperature
value of No.2

Temperature
value of No.3

Temperature
value of No.4

Temperature
value of No.5

1 1633943041 Ji/
1633943041.jpg

28.7083 28.3866 28.0112 28.215 27.314

2 1633942863 Ji/
1633942863.jpg

28.7298 28.3866 28.0755 28.2364 27.3355

3 1633942922 Ji/
1633942922.jpg

28.719 28.3973 28.0541 28.2257 27.3355

4 1633942802 Ji/
1633942802.jpg

28.719 28.3866 28.0863 28.2364 27.3355

5 1633942981 Ji/
1633942981.jpg

28.6976 28.3866 28.0219 28.2257 27.3033

TABLE 3 | Results of each model combination.

Method MSE AMAX

LSTMbasic-densenet 0.0007309953 0.12202705
LSTM_mullti_layers-densenet 0.00052716304 0.040377643
LSTM_multi_layers_bi-densenet 0.0000005978632 0.0054738726
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Internet of things is used to study and model the hot zone
thermal model, and a learning framework based on multimodal
scene data is established. The framework aims to learn the
thermal model of the building scene from the data collected
by multiple sensors in the scene, predict the temperature and
humidity of the scene in real time and accurately, facilitate the
subsequent energy-saving control and provide the
corresponding basis.

A case study based on the data of real-life buildings shows that
The MSE error of local temperature field prediction is 99%, and
the average relative error is 90% by using this thermal model
learning framework. This means that the learned model can be
used to provide reliable thermal comfort evaluation when
implementing intelligent control. The framework is easy to
integrate with the Internet of Things (IoT) systems of various
intelligent buildings, providing a convenient way to integrate.

Generally speaking, this real-time prediction framework of
thermal model can explain the reasons for fine scene control in
intelligent buildings, and can analyze the real-time thermal model
when someone walks in the area. It enriches the physical data of
the scene and provides a solution for the perceptual digital
twinning of the scene. This real-time prediction framework
can avoid the difficulty of real-time energy distribution
tracking in CFD modeling, so as to greatly speed up the listing
process of technology and make more buildings adopt advanced
control. The future work of this topic includes: 1) exploring the
application effect in other complex types of buildings; 2) The

model is used to track energy distribution and realize on-demand
supply.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be
directed to the corresponding authors.

AUTHOR CONTRIBUTIONS

Conceptualization: YL, QP, and JL. Methodology: YL, QP, JL, and
YP. Validation: YM and SL. Data curation: YL, QP, JL, YP, YM,
and SL. Writing—original draft preparation: YL, QP, JL, and YM.
Supervision: YM and SL. Project administration: YM and SL. All
authors have read and agreed to the submitted version of the
manuscript.

FUNDING

This work was supported by the National University Students
Innovation and Entrepreneurship Training Program project
No.202011349003S and Guangdong climbing plan project No.
pdjh2021b0507.

REFERENCES

Chen, X., Zhao, X., Gong, Z., Zhang, J., Zhou, W., Chen, X., et al. (2021). A Deep
Neural Network Surrogate Modeling Benchmark for Temperature Field
Prediction of Heat Source Layout. Sci. China Phys. Mech. Astron. 64 (11),
1–30. doi:10.1007/s11433-021-1755-6

Chen, Y., Zheng, Y., and Samuelson, H. (2020). “Fast Adaptation of Thermal
Dynamics Model for Predictive Control of HVAC and Natural Ventilation
Using Transfer Learning with Deep Neural Networks[C],” in 2020 American
Control Conference (ACC).(IEEE), 2345–2350.

Chiara Delmastro, J. D., and Abergel, T. (2019). Cooling: Tracking Clean Energy
Progress. Available at: http://www.iea.org/tcep/buildings/cooling/(Accessed on
April 14, 2020).

Clifford, J., and Stephenson, W. (1986). “An Introduction To[J]. Wisdom
Literature in Mesopotamia and Israel, 1986. Author 1, A.B.; Author 2, C.D.;
Author 3, E.F. Title of Presentation,” in Proceedings of the Name of the
Conference, Location of Conference, Country, Date of Conference. (Day
Month Year).

Crawley, D. B., Lawrie, L. K., Winkelmann, F. C., Buhl, W. F., Huang, Y. J.,
Pedersen, C. O., et al. (2001). EnergyPlus: Creating a New-Generation Building
Energy Simulation Program. Energy Build. 33 (4), 319–331. doi:10.1016/s0378-
7788(00)00114-6

Epstein, Y., andMoran, D. S. (2006). Thermal Comfort and the Heat Stress Indices.
Ind. Health 44 (3), 388–398. doi:10.2486/indhealth.44.388

Fraisse, G., Viardot, C., Lafabrie, O., and Achard, G. (2002). Development of a
Simplified and Accurate Building Model Based on Electrical Analogy. Energy
Build. 34 (10), 1017–1031. doi:10.1016/s0378-7788(02)00019-1

Frontczak, M., and Wargocki, P. (2011). Literature Survey on How Different
Factors Influence Human Comfort in Indoor Environments. Build. Environ. 46
(4), 922–937. doi:10.1016/j.buildenv.2010.10.021

Gouda, M.M., Danaher, S., and Underwood, C. P. (2002). Building Thermal Model
Reduction Using Nonlinear Constrained Optimization. Build. Environ. 37 (12),
1255–1265. doi:10.1016/s0360-1323(01)00121-4

Höppe, P. (2002). Different Aspects of Assessing Indoor and Outdoor Thermal
Comfort[J]. Energy Build. 34 (6), 661–665. F[20].

Huang, G., Liu, Z., Van Der Maaten, L., and Weinberger, K. Q. (2017). “Densely
Connected Convolutional Networks[C],” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 4700–4708.

Indraganti, M., and Rao, K. D. (2010). Effect of Age, Gender, Economic Group and
Tenure on Thermal Comfort: A Field Study in Residential Buildings in Hot and
Dry Climate with Seasonal Variations. Energy Build. 42 (3), 273–281. doi:10.
1016/j.enbuild.2009.09.003

Karjalainen, S. (2007). Gender Differences in Thermal Comfort and Use of
Thermostats in Everyday Thermal Environments. Build. Environ. 42 (4),
1594–1603. doi:10.1016/j.buildenv.2006.01.009

Khan, M. H., and Pao, W. (2015). Thermal Comfort Analysis of PMV Model
Prediction in Air Conditioned and Naturally Ventilated Buildings[J]. Energy
Procedia 75, 1373–1379. doi:10.1016/j.egypro.2015.07.218

Kolokotsa, D., Tsiavos, D., Stavrakakis, G. S., Kalaitzakis, K., and Antonidakis, E.
(2001). Advanced Fuzzy Logic Controllers Design and Evaluation for Buildings’
Occupants Thermal-Visual Comfort and Indoor Air Quality Satisfaction.
Energy Build. 33 (6), 531–543. doi:10.1016/s0378-7788(00)00098-0

Laret, L. (2000). “Use of General Models with a Small Number of Parameters,
Part 1: Theoretical Analysis[C],” in Proceedings of Conference Clima,
263–276.

Li, X. Q., Chen, Y., Spitler, J. D., and Fisher, D. (2009). Applicability of Calculation
Methods for Conduction Transfer Function of Building Constructions. Int.
J. Therm. Sci. 48 (7), 1441–1451. doi:10.1016/j.ijthermalsci.2008.11.006

Liu, W., Lian, Z., and Liu, Y. (2008). Heart Rate Variability at Different Thermal
Comfort Levels. Eur. J. Appl. Physiol. 103 (3), 361–366. doi:10.1007/s00421-
008-0718-6

Maiti, R. (2014). PMV Model Is Insufficient to Capture Subjective Thermal
Response from Indians. Int. J. Industrial Ergonomics 44 (3), 349–361.
doi:10.1016/j.ergon.2014.01.005

Moon, J. W., Yoon, S.-H., and Kim, S. (2013). Development of an Artificial Neural
Network Model Based Thermal Control Logic for Double Skin Envelopes in
Winter. Build. Environ. 61, 149–159. doi:10.1016/j.buildenv.2012.12.010

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 8955349

Li et al. Scene Thermal Model Modeling

https://doi.org/10.1007/s11433-021-1755-6
http://www.iea.org/tcep/buildings/cooling/
https://doi.org/10.1016/s0378-7788(00)00114-6
https://doi.org/10.1016/s0378-7788(00)00114-6
https://doi.org/10.2486/indhealth.44.388
https://doi.org/10.1016/s0378-7788(02)00019-1
https://doi.org/10.1016/j.buildenv.2010.10.021
https://doi.org/10.1016/s0360-1323(01)00121-4
https://doi.org/10.1016/j.enbuild.2009.09.003
https://doi.org/10.1016/j.enbuild.2009.09.003
https://doi.org/10.1016/j.buildenv.2006.01.009
https://doi.org/10.1016/j.egypro.2015.07.218
https://doi.org/10.1016/s0378-7788(00)00098-0
https://doi.org/10.1016/j.ijthermalsci.2008.11.006
https://doi.org/10.1007/s00421-008-0718-6
https://doi.org/10.1007/s00421-008-0718-6
https://doi.org/10.1016/j.ergon.2014.01.005
https://doi.org/10.1016/j.buildenv.2012.12.010
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles


Mors, S. t., Hensen, J. L. M., Loomans, M. G. L. C., and Boerstra, A. C. (2011).
Adaptive Thermal Comfort in Primary School Classrooms: Creating and
Validating PMV-Based Comfort Charts. Build. Environ. 46 (12), 2454–2461.
doi:10.1016/j.buildenv.2011.05.025

Nagarathinam, S., Menon, V., Vasan, A., and Anand, S. (2020). “Marco-multi-
agent Reinforcement Learning Based Control of Building Hvac Systems[C],” in
Proceedings of the Eleventh ACM International Conference on Future Energy
Systems, 57–67. H[8]. doi:10.1145/3396851.3397694

Parsons, K. C. (2002). The Effects of Gender, Acclimation State, the Opportunity to
Adjust Clothing and Physical Disability on Requirements for Thermal Comfort.
Energy Build. 34 (6), 593–599. doi:10.1016/s0378-7788(02)00009-9

Rodríguez Jara, E. Á., Sánchez de la Flor, F. J., Álvarez Domínguez, S., Molina Félix,
J. L., and Salmerón Lissén, J. M. (2016). A New Analytical Approach for
Simplified Thermal Modelling of Buildings: Self-Adjusting RC-NetworkModel.
Energy Build. 130, 85–97. doi:10.1016/j.enbuild.2016.08.039

Seppänen, O. A., Fisk, W. J., and Mendell, M. J. (1999). Association of Ventilation
Rates and CO2 Concentrations with Health Andother Responses in
Commercial and Institutional Buildings[J]. Indoor air 9 (4), 226–252.
doi:10.1111/j.1600-0668.1999.00003.x

Sharma, S., Xu, Y., Verma, A., and Panigrahi, B. K. (2019). Time-Coordinated
Multienergy Management of Smart Buildings under Uncertainties. IEEE Trans.
Ind. Inf. 15 (8), 4788–4798. Author 1, A.; Author 2, B. Book Title, 3rd ed.; Publisher:
Publisher Location, Country, 2008; pp. 154–196. doi:10.1109/tii.2019.2901120

UZhang, Z., Chong, A., and Pan, Y. (2018). “A Deep Reinforcement Learning
Approach toUsingWhole Building EnergyModel for HvacOptimal Control[C],”
in 2018 Building Performance Analysis Conference and SimBuild, 22–23.3

Xu, X., and Wang, S. (2008). A Simplified Dynamic Model for Existing Buildings
Using CTF and Thermal Network Models. Int. J. Therm. Sci. 47 (9), 1249–1262.
doi:10.1016/j.ijthermalsci.2007.10.011

Yu, L., Qin, S., Zhang, M., Chao, S., Tao, J., and Guan, X. (2021). A Review of
Deep Reinforcement Learning for Smart Building Energy Management
[J]. IEEE Internet Things J. 8, 12046–12063.doi:10.1109/JIOT.2021.
3078462

Yu, L., Sun, Y., Xu, Z., Shen, C., Yue, D., Tao, J., et al. (2020). Multi-agent
Deep Reinforcement Learning for HVAC Control in Commercial
Buildings[J]. IEEE Trans. Smart Grid 12 (1), 407–419. doi:10.1109/
TSG.2020.3011739

Zhang, X., Pipattanasomporn, M., Chen, T., and Saifur, R. (2019). An IoT-Based
Thermal Model Learning Framework for Smart Buildings[J]. IEEE Internet
Things J. 7 (1), 518–527. doi:10.1109/JIOT.2019.2951106

Conflict of Interest: The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be construed as a
potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors
and do not necessarily represent those of their affiliated organizations, or those of
the publisher, the editors and the reviewers. Any product that may be evaluated in
this article, or claim that may be made by its manufacturer, is not guaranteed or
endorsed by the publisher.

Copyright © 2022 Li, Peng, Lin, Peng, Mai and Liang. This is an open-access article
distributed under the terms of the Creative Commons Attribution License (CC BY).
The use, distribution or reproduction in other forums is permitted, provided the
original author(s) and the copyright owner(s) are credited and that the original
publication in this journal is cited, in accordance with accepted academic practice.
No use, distribution or reproduction is permitted which does not comply with
these terms.

Frontiers in Energy Research | www.frontiersin.org June 2022 | Volume 10 | Article 89553410

Li et al. Scene Thermal Model Modeling

https://doi.org/10.1016/j.buildenv.2011.05.025
https://doi.org/10.1145/3396851.3397694
https://doi.org/10.1016/s0378-7788(02)00009-9
https://doi.org/10.1016/j.enbuild.2016.08.039
https://doi.org/10.1111/j.1600-0668.1999.00003.x
https://doi.org/10.1109/tii.2019.2901120
https://doi.org/10.1016/j.ijthermalsci.2007.10.011
https://doi.org/10.1109/JIOT.2021.3078462
https://doi.org/10.1109/JIOT.2021.3078462
https://doi.org/10.1109/TSG.2020.3011739
https://doi.org/10.1109/TSG.2020.3011739
https://doi.org/10.1109/JIOT.2019.2951106
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/energy-research
www.frontiersin.org
https://www.frontiersin.org/journals/energy-research#articles

	Real-Time Construction of Thermal Model Based on Multimodal Scene Data
	Introduction
	Construction and Installation of an Internet of Things Platform at an Experimental Site
	Grid Segmentation and Data Set of Thermal Model Construction in Hot Zone
	Grid Segmentation in Hot Zone
	Situation With the Data Set

	Learning Framework of the Hot Zone Thermal Model for Multimodal Scene Data
	The Thermal Model Learning Channel
	Model Frame
	Data Preprocessing
	Fitness Metrics
	CNN-LSTM Structure
	Architecture

	Case Study
	Data Introduction
	Model Training
	Thermal Evaluation Results

	Discussion
	Data Availability Statement
	Author Contributions
	Funding
	References


