AUTHOR=Xie Chang , Zhou Li , Wu Tiecheng , Liu Renwei , Zheng Sijie , Tsuprik Vladimir G. , Bekker Alexander TITLE=Resistance Performance of a Ship in Model-Scaled Brash Ice Fields Using CFD and DEM Coupling Model JOURNAL=Frontiers in Energy Research VOLUME=Volume 10 - 2022 YEAR=2022 URL=https://www.frontiersin.org/journals/energy-research/articles/10.3389/fenrg.2022.895948 DOI=10.3389/fenrg.2022.895948 ISSN=2296-598X ABSTRACT=The brash ice channel formed with icebreaker navigation is a normal working scenario for ice-going vessels. Therefore, it is necessary to study the brash ice resistance in this condition. In this paper, CFD and DEM coupling method was adopted to investigate the resistance performance of a ship sailing in model-scaled brash ice fields, considering the collision force and friction resistance among the brash ice, the water resistance, and the hydrodynamic force of brash ice, which make up the physical scenarios of navigation in the brash ice channel. To study the effect of parameters on the average total resistance, the time step, iteration, and brash ice stiffness were analyzed, we found that time step of0.02 s, iteration of 10, and brash ice stiffness of 1000 N/m showed better repeatability of the physical phenomenon, and it was used to reproduce the working conditions done in the HSVA ice tank test. The error between the numerical simulation results and the test results is less than 5%, which shows the robustness of the present coupling strategy. Finally, the effects of ship-ice friction coefficient, ice thickness, ice shape, brash ice channel width, and ice concentration on the resistance of the ship were investigated and verified with the published results.