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Synechococcus sp. PCC 7002 is a unicellular cyanobacterium capable of fast growth and
tolerance to high light intensity and high salinity. These attributes along with genetic
tractability make Synechococcus sp. PCC 7002 an attractive candidate for industrial scale
production of specialty and commodity chemicals. Synechococcus sp. PCC 7002 LS
(Davies et al., Front Bioeng Biotechnol, 2014, 2, 21–11) produces limonene, an energy
dense diesel jet fuel drop-in additive, at a titer of 4 mg/L over a 4-day incubation period. In
this study, we use the state-of-the-art whole-cell characterization tool, isotopically non-
stationary 13C metabolic flux analysis (INST-13CMFA) to determine intracellular fluxes
through the pathways of central metabolism for the limonene producing strain and wild
type strain of Synechococcus sp. PCC 7002. We find similar flux distribution in the Calvin-
Benson-Bassham cycle, photorespiration, oxidative pentose phosphate pathway, and
oxidative tricarboxylic acid cycle. The key difference between strains is observed in the
production of pyruvate. The limonene producing strain displays significantly higher flux
through the amphibolic pathways of phosphoenolpyruvate carboxylase and the malic
enzyme to synthesize pyruvate, while the wild type strain uses pyruvate kinase in a single
step. Our findings suggest that this flux distribution is a mechanism to recover a
physiologically optimal ratio of ATP to NADPH. The upregulation of this amphibolic
pathway may act to restore the physiological ATP:NADPH ratio that has been
disturbed by limonene biosynthesis. This study demonstrates the value of INST-
13CMFA as a tool for cyanobacterial strain engineering and provides new avenues of
research for improving limonene production in Synechococcus.
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INTRODUCTION

Amid growing concerns over climate change and increasing
anthropogenic carbon emissions, cyanobacteria have emerged
as a promising platform for the sustainable production of a wide
range of specialty and commodity chemicals. Cyanobacteria
utilize the Calvin-Benson-Bassham cycle (CBB) to fix
atmospheric carbon dioxide into biomass, metabolites, and
important industrially relevant chemicals and fuels using only
light and trace minerals as additional inputs. Cyanobacterial cell
factories are naturally capable of producing a wide variety of
products: sugars, alcohols, acids, alkanes, alkenes, ketones, fatty
acids, and terpenoids (Khan et al., 2019). The efficacy of
sustainable chemical production by cyanobacteria is
strengthened by their genetic tractability as well as higher
photosynthetic efficiency and growth rates compared to land
plants (Ducat et al., 2011; Berla et al., 2013). Synechococcus sp.
PCC 7002 (hereafter Synechococcus 7002) is an attractive
candidate for production of sustainable industrially relevant
chemicals to displace petrochemicals due to a short doubling
time of only 2.6 h when provided reduced nitrogen (Ludwig and
Bryant, 2012). Synechococcus 7002 can also tolerate high salinity
and light intensity (Batterton and Baalen, 1971; Nomura et al.,
2006).

Two strains are studied here, the wild type (WT)
Synechococcus 7002 strain and a limonene producing (LS)
strain, engineered by Davies et al. (Davies et al., 2014). The
Synechococcus 7002 LS strain produces 4 mg L−1 of the terpenoid
limonene over a 96 h growth period (Davies et al., 2014). Briefly,
L-limonene is synthesized in cyanobacterial cells via the
methylerythritol 4-phosphate (MEP) pathway, a linear seven-
step pathway beginning with the condensation of glyceraldehyde
3-phosphate (GAP) and pyruvate (PYR) and ending with the
production of either isopentenyl diphosphate (IPP) or
dimethylallyl diphosphate (DMAPP), which condense to form
limonene with the expression of a heterologous enzyme
(limonene synthase). Limonene is an energy dense molecule,
which is why it is an attractive candidate as a drop-in biodiesel jet
fuel additive. Few studies have been conducted to understand the
energetic burden on cyanobacterial metabolism when producing
such energy dense molecules as limonene. Many attempts,
however, have been made to increase flux through the MEP
pathway toward terpenoids such as limonene through the
overexpression of bottlenecks (Gao et al., 2016; Englund et al.,
2018) and by alleviating competition for carbon with sinks such
as glycogen (Davies et al., 2014; Hendry et al., 2017). However,
titers of terpenoid products including limonene by Synechococcus
7002 LS remain infeasible for economical industrial production of
biofuel molecules.

The allocation of carbon through cyanobacterial metabolism
and consequences of the additional energetic burden imposed by
manufacture of terpenes must be understood if we are to
significantly further increase production of terpenoids.
Isotopically nonstationary 13C metabolic flux analysis (INST-
13CMFA) is a state-of-the-art tool that we utilized to investigate
these unknowns. INST-13CMFA uses isotopically labeled carbon
to produce time-dependent mass isotopomer distributions

(MIDs) of key metabolites in central metabolism, from which
flux values can be estimated for a network of reactions by
iteratively solving and adjusting parameters between simulated
and experimental 13C labeling profiles. INST- 13CMFA has been
utilized to elucidate metabolic phenotypes in Synechococcus 7002
(Hendry et al., 2017; Qian et al., 2018; Abernathy et al., 2019),
Synechocystis sp. PCC 6803 (You et al., 2014; Adebiyi et al., 2015;
Nakajima et al., 2017; Yu et al., 2019), and Synechococcus
elongatus PCC 7942 (or the closely related species UTEX
2973) (Abernathy et al., 2017; Jazmin et al., 2017; Cheah
et al., 2020). In this study, we use INST-13CMFA to
characterize the central metabolism of the Synechococcus
7002 WT and LS strains to glean information about
phenotypic differences induced by the production of
limonene. We find significant carbon redistribution in
central carbon metabolism between the two strains. This
redistribution of carbon flux appears to be induced not by
the need for carbon reallocation, but for recovering the
physiologically optimal ratio of ATP to NADPH needed for
biomass accumulation.

METHODS

Strains and Cultivation Conditions
Synechococcus 7002 cultures were obtained from the American
Type Culture Collection and the limonene producing strain (LS)
was provided by Dr. Davies (Davies et al., 2014). Synechococcus
7002 cultures were grown in BG11 medium supplemented with
8.26 mM Trizma base (chemicals supplied by Sigma-Aldrich,
unless otherwise noted) titrated to a pH of 8.2 and maintained
on solid BG11 medium plates containing 1.5% (w/v) agar (Difco).
A final concentration of 50 μg/ml spectinomycin was added to
cultures of the limonene producing strain. Liquid cultures were
propagated and grown in 250 and 500 ml beveled Erlenmeyer
flasks with 100 and 200 ml of medium, respectively. Flasks were
shaken at 180 rpm in an INFORS HT Minitron shake plate
incubator at ambient CO2 conditions (<0.1%) and 37°C. The
approximate light intensity was 80 μmol photons m−2 s−1 in
continuous illumination by white fluorescent bulbs. Cell
growth was monitored using spectrophotometric optical
density (OD750).

Dynamic Labeling and Quenching
Experiment
The labeling experiment was performed on a benchtop flask
shaker under 20 μmol photons m−2 s−1 light from white
fluorescent lights. The cultures were first grown to mid-
exponential phase (OD750~0.8) at the conditions previously
described. Before the addition of the label, 15 ml of culture
was pipetted out and immediately quenched in 30 ml of
partially frozen saline quench solution in a 50 ml conical
centrifuge tube, as described in Sake et al. (Sake et al., 2020).
This sample corresponded to the zero timepoint sample (t =
0). Then a 5 ml bolus of 0.8 M13C sodium bicarbonate (98
atom % 13C, 99% purity, Sigma-Aldrich, United States) was
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injected into the flask at time t = 0. Fifteen ml samples were
rapidly quenched at 20 s, 40 s, 1, 2, 4, 6, 10, 15, 20, 40, and
60 min.

The quenched samples were centrifuged in an Eppendorf
5810R swinging bucket centrifuge at 4,000 rpm for 15 min at
−2°C, and the supernatant was decanted. The pellet was washed in
2 ml chilled quenching solution, transferred to a 2 ml
microcentrifuge tube, and centrifuged again at 8,000×g on a
tabletop centrifuge at −2°C. The pellet was stored at −20°C for
later extraction. It is important to note that this experiment was
performed without the addition of a dodecane overlay in the case
of both the WT and LS strains, due to the need to sample
throughout the 60-min experiment. Oxygen evolution is used
to verify that photosystem II is not negatively affected by
limonene in the absence of a dodecane overlay to extract the
molecule from the growth media (Supplementary Figure S4).
Other conditions were changed relative to the experiments
performed in Davies et al. (Davies et al., 2014), such as light
intensity, CO2 availability, and media composition, all controlled
for by the WT condition.

Metabolite Extraction
Intracellular metabolites were extracted from the frozen cell
pellets using a methanol extraction (Sake et al., 2020). Cell
pellets were resuspended in 500 μl pure methanol and spiked
with ribitol and PIPES internal standards for final concentrations
of 150 and 50 ppb, respectively. Samples were frozen in liquid
nitrogen, thawed on ice, and vortexed at 0°C for 5 min and
1,000 rpm. This freeze/thaw/vortex cycle was repeated twice
more, and samples were centrifuged at 8,000 × g for 5 min at
−9°C in a Sorvall Legend Micro 17R (Thermo Scientific). The
supernatant (extract) was collected in a new tube and stored at
−20°C. The extraction process was repeated twice more with
500 μl of 50% methanol, each time adding the collected
extract to the first portion. All samples were then dried
overnight under vacuum at 45°C in a Savant SPD131DDA
SpeedVac (Thermo Scientific). Dried extracts were
resuspended in 150 μl optima water and filtered with nylon
filter tubes (Spin-X, Costar). Filters were rinsed with an
additional 50 μl optima water for a total concentrated
extract volume of 200 μl. Finally, the samples were filtered
through a 3 kDa filter (Spin Filter 3K, VWR) and collected for
LC-MS/MS analysis.

LC/MS-MS Quantitation of Metabolites
Metabolite extracts were analyzed using an LC-MS/MS method
adapted from Young et al. (2011). Analysis was performed using a
Phenomenex 150mm × 2mm Synergi Hydro-RP column
connected to a Shimadzu HPLC system and coupled to a hybrid
quadrupole-TOF MS/MS system (5,600 Triple TOF, AB Sciex
Instruments). LC was performed with an injection volume of
10 μl, using gradient elution of 10 mM tributylamine and 15mM
acetic acid (aqueous phase) with methanol (organic phase) at a
constant flow rate of 0.3 ml/min. The gradient profile of the organic
phase is as follows: 0% B (0min), 8% B (10min), 16% B (15min),
30% B (21min), 95% B (23min), 95% B (28min), 0% B (30min),
and 0% B (35min).

Data acquisition was performed on the Sciex Analyst 1.7
software. Metabolite pool sizes were quantified using Sciex
MultiQuant 3.0.3 software. MSConvert was used to process
data files into an open-source format, and isotope labeling
profiles were processed using a combination of pyOpenMS
and SciPy packages in Python.

Isotopically Non-Stationary 13C Metabolic
Flux Analysis
We used a previously published model of the central metabolic
network of Synechococcus 7002 (Adebiyi et al., 2015; Abernathy
et al., 2017; Hendry et al., 2017; Abernathy et al., 2019). Models
for the wild type and LS strains were constrained to match the
composition reported by Abernathy et al. for Synechococcus 7002
in photoautotrophic conditions (Abernathy et al., 2019). We
assumed the biomass formation equation to remain constant
between strains, given the low limonene titers (4 mg/L) found by
Davies et al. (Davies et al., 2014). We constrained each network to
the biomass accumulation rate calculated during the growth
phase of the experiment (Supplementary Figure S2).

The flux network and atom transitions for this study were
taken from previous studies on Synechococcus 7002 and closely
related strains (Adebiyi et al., 2015; Abernathy et al., 2017;
Hendry et al., 2017; Abernathy et al., 2019), including the
Calvin-Benson- Bassham cycle, photorespiration pathway,
oxidative pentose phosphate pathway, tricarboxylic acid (TCA)
cycle, and amphibolic reactions. The full metabolic network and
atom transitions can be found in Supplementary Table S3. The
MEP condensed pathway to limonene was constructed based on
gene annotations from the KEGG database (Kanehisa and Goto,
2000; Kanehisa et al., 2014). We used a lumped biomass equation
based on biomass composition analysis in Synechococcus 7002
(Abernathy et al., 2019). The MATLAB-based INCA toolbox
(Young, 2014) was used to construct the network, and INST-
13CMFA computations were run to calculate reaction fluxes and
metabolite pool sizes by minimizing the difference between
simulated and measured mass isotopomer distributions
provided to the model. Data used to produce MID figures in
Supplementary Figure S1 are tabulated in Supplementary
Tables S1, S2. The parameter continuation method provided
by INCA estimated 95% confidence intervals around each
estimated parameter. Dilution parameters were applied to
metabolites as needed to account for labeling dilutions from
metabolically inactive pools (Young et al., 2011)
(Supplementary Tables S3, S4).

Cryogenic Fluorometry for Quantification of
Intracellular NAD(P)H Concentrations
Intracellular NAD(P)H concentrations were measured
fluorometrically using an adapted protocol from Wang et al.,
2016 (Wang et al., 2016) with the addition of a liquid nitrogen
quenching step. Cells were grown at the conditions previously
described, and 0.75ml of cell culture were quenched in 0.25ml
frozen methanol in a liquid nitrogen bath under 80 μmol photons
m−2 s−1 using a P1500 overhead full spectrum LED lighting system
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(Viparspectra). Quenched samples were maintained below 0 °C until
measured in aHoriba Jobin YvonNanoLog spectrofluorometer at an
excitation wavelength of 340 nm, with emissions recorded at
460 nm, and normalized to cell density (OD750).

Oxygen Evolution
In vivo O2-photoproduction rates were determined using a
custom-built Pt-Ag/AgCl polarographic electrode system
(ALGI, United States) as described previously (Weissman
et al., 2018). 1.5 ml of cell culture diluted at a concentration of
1 μg ml−1 of total chlorophyll was purged with 99% He/1% CO2

followed by the addition of 6 μL 1 M potassium bicarbonate to
avoid any CO2 limitation during the assay. 1 ml of the sample was
then rapidly injected into the glass sample cell and sealed. For
determination of O2-evolution, an 80 μmol photons m−2 s−1 light
intensity (Luxeon III Star, Lumileds, United States) was applied
for 10 min after an initial 5 min dark period. Net O2-production
rates were measured by the slope of the linear fit of the
illumination periods. The temperature was maintained at 37°C
throughout the experiment. Electrodes were calibrated before
each measurement using atmospherically equilibrated growth
medium and deoxygenated medium.

RESULTS AND DISCUSSION

Differential 13C Enrichment
Isotopic labeling was measured in 11 key metabolites (Figure 1), and
time dependent mass isotopomer distributions show the dynamics of
metabolite labeling (Supplementary Figure S1). To account for low
enrichment, dilution pools were provided to the model for 3PG,
Ru5P, PEP, GAP, and DHAP (Supplementary Table S3). Dilution
pools representmechanisms in the cell that prevent certainmetabolite
pools from reaching expected enrichment, due to phenomena like
metabolite channeling that cause intermediates to proceed through
multiple reactions without mixing with entire metabolite pool
(Ishikawa et al., 2004; Broddrick et al., 2016; Abernathy et al., 2019).

We noticed interesting behavior in the PEP node. The final
enrichment (Figure 1) shows a lower overall enrichment of the
PEP metabolite pool in the LS strain compared to the WT strain.
In theWT strain we measured the steady state PEP enrichment of
nearly 60%, which is significantly different from the LS
enrichment of 42% (p = 0.023). This difference necessitated
the use of a dilution pool for the LS PEP pool in the INCA
model to account for the low labeling and was required for this
model’s SSR to fall within the accepted error range.

Flux Measurements for the Wild Type and
Limonene Producing Strain
TheWT fluxmapwas solved by the INCApackage inMATLAB to an
acceptable sum of squared residuals (SSR) of 482.1, within the range of
472.8–601.0. Likewise, the LSfluxmapwas solved to an acceptable SSR
of 538.4 within the range of 435.2–558.5. The resulting fluxmaps were
assigned 95% confidence intervals for each network reaction
(Supplementary Table S4). The general distribution of flux
throughout central metabolism concurs with previous INST-
13CMFA studies on Synechococcus 7002 and similar cyanobacterial
strains (Adebiyi et al., 2015; Abernathy et al., 2017; Hendry et al., 2017;
Abernathy et al., 2019), with a large proportion of flux directed through
the CBB cycle for carbon fixation, relatively low flux through the TCA
cycle, and carbon allocation toward glycogen for storage (Figure 2).

Our model allowed for an active photorespiration pathway, but
the flux was determined to be negligible. This is likely due to the high
bicarbonate concentration accumulated inside the cells after a bolus
of 13C bicarbonate was added at the start of the labeling experiment.
Cyanobacteria are able to rapidly transport available bicarbonate
into the cell (Colman, 1989), validating both the suppression of
photorespiration as well as the establishment of an intracellular
dissolved inorganic carbon pool dominated by 13C. Both 13C and
12C CO2 pools were made available to the model for transport in
simulations, but only the 13C pool was utilized by the network
(Supplementary Table S2).

Metabolic Flux Analysis Reveals Increased
Flux Through Phosphoenolpyruvate
Carboxylase
The solved flux maps describe differing usage of the two separate
pyruvate synthesis pathways. The one-step pathway from PEP to

FIGURE 1 | Final 13C enrichment of the 11 metabolites used to inform
the flux distributions through the Synechococcus 7002 central metabolic
network. Final enrichment values correspond to MID data at the 60 min
timepoint (Supplementary Figure S1). Error bars represent standard
error (n = 3). A paired two-tail Student’s t-test was performed and metabolites
with a statistically significant difference (p < 0.05) are indicated with p

(Supplementary Table S5).
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PYR proceeds through pyruvate kinase (PK), reacting ADP and
PEP together to form ATP and PYR. Alternatively,
phosphoenolpyruvate carboxylase (PEPc), malate
dehydrogenase (MDH), and the malic enzyme (ME) synthesize
PYR from PEP in an amphibolic loop by first reacting PEP and
CO2 to OAA at the expense of an ATP, then reducing OAA to

MAL at the expense of the oxidation of NADH to NAD+, before
decarboxylating and oxidizing MAL to PYR while reducing
NADP+ to NADPH (Figure 3). The three-step pathway forms
part of the reductive TCA cycle. In the bifurcated structure of the
cyanobacterial TCA cycle, the reductive portion supports higher
flux than the oxidative portion, which is suppressed in light

FIGURE 2 |Metabolic flux maps for Synechococcus 7002 (A)WT and (B) LS. Net fluxes are shown in the form M ± SE where M is the calculated flux and SE is the
standard error of the 95% confidence interval, calculated using upper and lower flux bounds from parameter continuation analysis. Arrow thickness is proportional to the
logarithm of the flux through the given reaction, and dotted lines indicate no significant flux. Flux values for every reaction in the network, upper and lower bounds of their
respective 95% confidence intervals, and dilution parameters are listed in Supplementary Table S4.

FIGURE 3 | Fluxes of pyruvate synthesis from phosphoenolpyruvate. The flux distribution between the one-step, pyruvate kinase mediated reaction from PEP to
PYR versus the three-step amphibolic pathway, involving phosphoenolpyruvate carboxylase, malate dehydrogenase, and the malic enzyme differ significantly between
WT and LS strains. Energy molecule cofactors aiding in each reaction are depicted in red. Thickness of the black arrows is proportional to relative flux values, provided in
the form M ± SE where M is the calculated flux and SE is the standard error of the 95% confidence interval.
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conditions (Zhang and Bryant, 2011; Xiong et al., 2017); this is
typically paired with low flux through TCA intermediates like
CIT and AKG and more flux for supplying OAA and MAL
directly from PEP (Iijima et al., 2021), which is additionally
supplemented by FUM through purine synthesis (Knoop et al.,
2010). As expected, we see low fluxes in Figure 2 for the oxidative
TCA cycle, driven by the production of biomass precursors
(i.e., AKG).

The flux maps reveal significant differences in the reductive TCA
cycle between the WT and LS strains. In the WT strain, PEPc fixes
2.5±0.7 μmol/gDW/hr CO2 into oxaloacetate, of which only 0.9 ±
0.4 μmol/gDW/hr is cycled through the malic enzyme, resulting in
minimal production of PYR fromPEP compared to the PK route. The
limonene strain fixes 14.0±3.1 μmol/gDW/hr of CO2 by PEPc activity,
ultimately sending higher flux through the malic enzyme as well,
measuring 12.5 ± 3.1 μmol/gDW/hr. This significant difference influx
distribution is the direct result of differential labeling at the PEP node,
which can likely be attributed to metabolite channeling. Labeling
suggests that the PEP pool is more homogenous in the WT strain,
where PYR production is dominated by the PK route. Alternatively,
metabolite channeling through PEPc and neighboring enzymes in the
amphibolic loop prevents PEP directed toward MAL from mixing
homogenously within the cell. INST-13CMFA has previously been
used to identify subcellular organization and provide evidence of
metabolite channeling on metabolite labeling patterns in
Synechococcus 7002 (Abernathy et al., 2019). The traditional view
of prokaryotic cyanobacteria as spatially unorganized with no
subcellular compartmentalization has been challenged by other
studies as well (Ishikawa et al., 2004; Broddrick et al., 2016).

Global Regulation of the ATP:NADPH
Balance May Be Responsible for Flux
Redistribution
Limonene is an energy dense molecule, with a molecular formula of
C10H16, that includes two double bonds. To biosynthesize 1mol of
limonene through the native cyanobacterial MEP pathway, 36mol of
ATP and 28mol of NADPH are consumed, a 1.29:1 ATP:NADPH
ratio. The CBB cycle demands nine ATP and six NADPH to fix three
CO2 molecules (Sun et al., 2018), resulting in one 3PG. 3PG is
converted into GAP and PYR, producing one ATP in the process,
assuming the pyruvate kinase enzyme catalyzes the reaction. TheMEP
pathway consumes two NADPH and one ATP to produce the
precursors to limonene, IPP and DMAPP, two of which are
condensed together to synthesize one limonene molecule (Pattanaik
and Lindberg, 2015). This ratio of consumption is almost exactly the
ratio in which ATP and NADPH are produced from linear electron
flow in photosynthetic systems, a 9:7 ratio of ATP:NADPH (Alric
et al., 2010; Kramer and Evans, 2011). However, it is estimated that the
optimal ATP:NADPH ratio for biomass accumulation in
cyanobacteria is greater than 1.5:1 (Alric et al., 2010; Erdrich et al.,
2014; Hendry et al., 2016). Alternative electron flows account for the
additional production of energy molecules and are tightly regulated
(Trost and Lemaire, 2013; Wilde and Hihara, 2016).

Limonene synthesis requires a higher input of NADPH
compared to ATP, relative to the optimal ratio required for
biomass accumulation. We hypothesize that even at small

titers (4 mg L−1) this disruption of the relative abundance of
ATP to NADPH triggers a global regulatory response aimed at
recovering the optimal ratio. While PYR synthesis by PK
produces an ATP, expending an ATP by rerouting carbon
down PEPc results in the production of NADPH, at the
additional cost of a molecule of NADH as well, from the
reduction of OAA to MAL. This exchange of ATP and NADH
for NADPH counteracts the relatively high NADPH
consumption needed for limonene synthesis. Utilization of this
amphibolic pathway adjusts the ATP:NADPH ratio needed for
limonene synthesis from 1.29:1 (36 ATP and 28 NADPH) to 1.54:
1 (40 ATP and 26 NADPH), a value which is closer to the optimal
ratio. Although regulation of cyanobacterial NADPH
homeostasis is generally poorly understood (Ishikawa and
Kawai-Yamada, 2019), the malic enzyme route is known in
bacteria and archaea as an NADPH generating reaction (Singh
et al., 2008; Negi et al., 2015; Spaans et al., 2015).

To test for the generation of redox molecules, we measured
intracellular NAD(P)H concentrations using a protocol adapted
from Wang et al. (Wang et al., 2016), with the addition of a liquid
nitrogen quenching step. Both WT and LS strains were tested at the
same OD750 at which the labeling experiment was performed. We
found no significant differences between the strains (Supplementary
Figure S3), with aWTNAD(P)H concentration of 12.88 ± 1.80 μmol
L−1 OD750

−1, compared to LS values of 14.00 ± 1.31 μmol L−1 OD750
−1

(p > 0.05). This, along with the flux redistribution, suggests that cells
are utilizing NADH pools to supplement the redox state of NADPH
but not gaining or losing significant amounts of redox potential
overall. Limonene is being produced at a rate of 0.02 μmol/gDW/hr.
Normalized to the values in the flux map, this translates to an ATP
consumption of 0.80 μmol/gDW/hr and anNADPH consumption of
0.52 μmol/gDW/hr, assuming all limonene is produced through the
malic enzyme route. This value agrees with the overall NAD(P)H
consumption observed in the network, in which 245.5 ± 8.6 μmol/
gDW/hr and 243.1 ± 13.9 μmol/gDW/hr are consumed by the WT
and LS strains, respectively. The change in NADPH production
through the malic enzyme route to pyruvate is much higher than
theNADPHneeds of limonene synthesis, so it is reasonable to assume
that there are also differences in fluxes through transhydrogenases to
control the redox state of the cell.

Interestingly, other studies conducted on terpenoid production
strains observe that the introduction of a terpenoid based carbon
sink does not increase photosynthetic efficiency (Wang et al., 2016).
This contrasts findings inwhich sucrose production in cyanobacteria
is accompanied by increases in photosynthetic efficiency and
increased biomass accumulation rates (Abramson et al., 2016;
Abramson et al., 2018; Lin et al., 2020). We hypothesize that the
increase in photosynthetic efficiency in response to the addition of a
sucrose carbon sink can be attributed to the fact that sucrose
production does not affect intracellular ATP:NADPH equilibrium
(Thiel et al., 2019). Production of molecules like ethanol, isobutanol,
lactate, isoprene, and many others require a much lower ATP:
NADPH ratio for biosynthesis than the optimal cellular ratio for
biomass accumulation, similar to limonene. We find a slight increase
in oxygen evolution, but decreases in biomass accumulation rates in
the LS strain compared to theWT strain (Supplementary Figures S2,
S4, respectively).
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Our findings suggest that limonene is indeed causing a cellular
imbalance of ATP:NADPH, and physiological changes are occurring
in central metabolism in order to correct this imbalance. We observe
the conversion of PEP to PYR as an important control mechanism to
tune the ATP:NADPH ratio back to the physiologically optimal value,
allowing the LS strain to recover biomass accumulation rates similar
to theWT strain.We show that the effects of genetic modifications to
theMEP pathway are not confined there, but drive flux redistribution
in central metabolic pathways, such as PK, PEPc and the malic
enzyme. We hypothesize that ATP:NADPH affects the PK enzyme
directly through the abundance of ATP, a known PK inhibitor
(Knowles et al., 2001), and indirectly by CP12, a regulatory
protein that is sensitive to the redox state of the cell,
downregulating portions of the CBB cycle in response to low
NADPH levels (Tamoi et al., 2005). PK is allosterically activated
by hexose monophosphates and ribose 5-phosphate, both of which
would be downregulated in lowNADPH conditions.More research is
needed to elucidate the regulatory mechanisms controlling the two
pathways for PYR conversion from PEP.

Along with PK regulation, this study also provides a direction for
future study to investigate the effects of pyruvate synthesis on biofuel
production strains. Optimizing the distribution of flux from the PEP
node through overexpression or suppression of PEPc and PK could
increase limonene titers and lead to increased photosynthetic
efficiency through optimization of the ATP:NADPH ratio.
Alternatively, co-expression of enzymes for products that require a
relatively high ATP:NADPH ratio could offset the disturbance caused
by limonene production. Future analyses focused on energy molecule
balancing would benefit from fluorometric or assay-based tracking of
molecules such as ATP, NADPH, and NADH in vivo, given that they
could effectively control for the fast turnover rate of these
metabolite pools.

INST-13CMFA has the unique ability to identify bottlenecks and
inefficiencies in metabolic networks (Sake et al., 2019) and visualize
changes to metabolism at a whole-cell level. This technique has
already been used in cyanobacteria to distinguish phenotypes of
related strains (Abernathy et al., 2017), quantify flux redistributions
in knockout strains (Hendry et al., 2017), and quantify the effects of
subcellular compartmentalization (Abernathy et al., 2019). Moving
forward, INST-13CMFA will serve as a valuable tool to unravel
cyanobacterial metabolism and understand the mechanisms behind
carbon partitioning (Shabestary et al., 2018; Li et al., 2022), enhanced
photosynthesis (Shinde et al., 2022), and regulator engineering (Cui
et al., 2021), all of which are vital to the production of economically
viable cyanobacterial production strains.

CONCLUSION

To characterize the phenotype of a limonene producing strain of
Synechococcus 7002, INST-13CMFA was performed on the LS strain,
and compared against the results of the WT strain. Results depicted
similarflux distribution in theCBB cycle, oxidative pentose phosphate
pathway, and the oxidative TCA cycle, however flux maps revealed
differential flux through pyruvate biosynthesis pathways. The LS

strain redirects carbon flux from PEP to the reductive TCA cycle
rather than directly to pyruvate. This redistribution appears to be due
to disturbance of the physiologically optimal ATP:NADPH ratio
caused by limonene synthesis: the estimated ATP:NADPH ratio is
closer to the physiological optimal value when synthesized via the
amphibolic loop rather than directly through pyruvate kinase.
Additionally, we find evidence of metabolite channeling in
Synechococcus 7002 in the amphibolic loop involving PEP
carboxylase, malate dehydrogenase, and the malic enzyme. This
study provides a new avenue for increasing titers of terpenoid
products in the amphibolic reactions by proposing ATP:NADPH
ratios as an important consideration for limonene production and
characterizes a cellular mechanism for recovery of the optimal ratio in
response to the production of limonene. We also highlight the
advantages of INST-13CMFA as an essential analytical tool for
characterizing and understanding cyanobacterial phenotypes from
a central metabolic perspective.
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NOMENCLATURE

Metabolites
2PG 2-phosphoglycolyate

2PGA 2-phosphoglycerate

3PG 3-phosphoglycerate

ACA acetyl-CoA

ADP adenosine diphosphate

AKG alpha-ketoglutarate

ATP adenosine triphosphate

CIT citrate

DHAP dihydroxyacetone phosphate

DMAPP dimethylallyl pyrophosphate

DOXP deoxyxylulose 5-phosphate

E4P erythrose 4-phosphate

F6P fructose 6-phosphate

FBP fructose 1,6-bisphosphate

FUM Fumarate

G1P glucose 1-phosphate

G6P glucose 6-phosphate

GAP glyceraldehyde 3-phosphate

GLYC glycolate

GOX glyoxylate

ICI isocitrate

IPP isopentenyl pyrophosphate

LIM limonene

MAL malate

NAD+
nicotinamide adenine dinucleotide

NADH nicotinamide adenine dinucleotide hydride

NADP+
nicotinamide adenine dinucleotide phosphate

NADPH nicotinamide adenine dinucleotide phosphate hydride

OAA oxaloacetate

PEP phosphoenolpyruvate

PYR pyruvate

R5P ribose 5-phosphate

RU5P ribulose 5-phosphate

RUBP ribulose 1,5-bisphosphate

S7P sedoheptulose 7-phosphate

SBP sedoheptulose 1,7-bisphosphate

SSA succinic semialdehyde

SUC succinate

X5P xylulose 5-phosphate

Enzymes

LS limonene synthase

MDH malate dehydrogenase

ME malic enzyme

PEPc phosphoenolpyruvate carboxylase

PK pyruvate kinase
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