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Over the past decade, Na-ion batteries (NIBs) have gained a substantial interest within the
research community and relevant industry. NIBs are now emerging as a cost-effective and
sustainable alternative to modern Li-ion batteries (LIBs). Similar to the parent LIB
technology, NIB requires a new set of materials, which can boost battery capacity
without sacrificing cycling stability, rate capabilities, and other performance targets. In
NIB chemistry, anodes have received less attention compared to cathode chemistry,
leaving hard carbon as a primary anode material, although its intercalation/adsorption
mechanism limits the allowed number of Na-ions. Promising alternative groups of anodes
are materials that undergo the combined conversion and alloying reactions
(i.e., conversion-alloying anodes), due to the beneficial high theoretical capacity and
good cycling stability. The conversion reaction in conversion-alloying anodes can be
either reversible or irreversible, each possessing its advantages. However, the complexity
of their operating mechanism(s) severely impedes their development. The present mini-
review provides a survey of the recent developments of conversion-alloying-type anode
materials for Na-ion batteries discussed in the context of their operation mechanism(s).
Considering the chemical complexity of the conversion-alloying materials, the suggestions
and guidance on characterization are provided along with theoretical considerations.
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INTRODUCTION

Na-ion batteries (NIBs) represent a cost-effective and sustainable alternative to Li-ion batteries
(LIBs), promising for application in large-scale stationary energy storage systems (Vaalma et al.,
2018; Hasa et al., 2021). While operating under the same rocking-chair principle as LIBs, the
conventional anode materials used for LIBs, graphite and Si, are not suited for the use in NIBs
(Moriwake et al., 2017; Zhang et al., 2017). Studies of hard carbon materials (most common anode
material) are still in progress, but additional research efforts are focused on the other anode materials
that follow different operating mechanisms, such as alloying and conversion (Wu et al., 2018; Usiskin
et al., 2021; Zheng et al., 2021).

Conversion-based anode materials (Figure 1A) are mainly composed of transition metal oxides,
sulfides, selenides, and phosphides, while elements from groups 14 and 15 (Si, Ge, Sn, P Sb, Bi, or binary
alloys of these, e.g., BiSb, etc.) represent the most common alloying-based anode materials (Figure 1B)
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(Zhang H. et al., 2018). Both the alloying- and the conversion-based
materials exhibit high theoretical capacities ranging between 300-
2000mA h g−1 (Wang L. et al., 2019). However, as the chemical
bonding structure andmorphology constantly are altered during the
(de)sodiation process (Figures 1A,B), both the conversion- and
alloying-type anodes suffer from large volume expansion/
contraction (Yao et al., 2017; Chen et al., 2019). This often leads
to poor cycling stability (Tan et al., 2019; Wang L. et al., 2019; Fang
et al., 2021; Villevieille, 2022). Moreover, before the (de)sodiation
process reaches the final state, the varying intermediate alloy
compositions are formed as crystalline (Figure 1C), of which
metastability is determined within the energy of 70 meV/atom
above the convex hull (ground state) (Sun et al., 2016). In
addition, the mechanical stress by extensive volume variation
limits the electronic contact and causes the electrode
pulverization in the pure conversion and alloying process.
Consequently, their thermodynamic change, which is caused by
the kinetic factor after cycling, increases the free energy barrier and
results in performance loss (Hudak et al., 2014; Huang et al., 2020).

Conversion-alloying materials (CAMs) offer a new strategy
paving the diversity of available compounds for an innovative

anode material (Wang L. et al., 2019; Fang et al., 2021). CAMs can
potentially deliver high specific capacities without the structural
degradation mentioned above. Additionally, CAMs can also offer
a reduction of the average working potential compared to pure
conversion anodes and therefore increase the energy density in a
full cell. CAMs combine the conversion and alloying mechanisms
(Figure 1, Eq. 1).

(x + y)Na+ + (x + y)e− +MX →M + NaxX + yNa+

+ ye− ⇋NayM + NaxX (1)
The conversion reaction in these materials can be either

reversible or irreversible. A reversible conversion reaction
provides significantly higher capacities but suffers from the
same problems as pure conversion reactions. Therefore, most
studies on CAMs are with an irreversible conversion reaction and
these will be the focus of this review. The initial irreversible
conversion reaction results in the formation of electrochemically
active nanoparticles dispersed within amatrix comprised of NanX
(X = O, S, Se, Te, P, oxometallates). The formed active
nanoparticles or clusters then participate in the reaction with

FIGURE 1 | Schematic illustration of (A) conversion-, (B) alloying-, and (a+b) conversion-alloying-type reaction modes; and (C) high free energy barrier by the
cycling-induced disorder. The first sodiation process of the conversion-alloying anode is highlighted in green.
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Na-ions through a reversible alloying mechanism. The formed
matrix is capable of conducting Na-ions, and together with the
active nanoparticles, which have high electronic conductivity,
they secure a bi-continuous network beneficial for the electron-
and Na+-transport that translates into enhanced performance at
high cycling rates (Kim et al., 2016; Durai et al., 2017; Lu et al.,
2019). The beneficial role of entropy stabilization can be expected
in enhancing the cycling performance of the anode during the
redox phenomena (Wang Q. et al., 2019; Ghigna et al., 2020). The
NanXmatrix can accommodate the volumetric changes occurring
during cycling and provide a physical separation between formed
nanoparticles/clusters essentially prohibiting agglomeration/
electrochemical sintering of active components as well as
particle pulverization. A good compromise between high
capacity and cycling stability makes CAMs promising for
implementation in next-generation NIBs.

CONVERSION-ALLOYING MATERIALS

CAMsmust include an element that should be capable of alloying
with Na-ions in its pure form. Therefore, CAMs for NIBs are
based on elements from groups 14 or 15 (e.g., Ge, Sn, Sb, or Bi).
CAMs require one or more elements that can participate in the
conversion reaction, resulting in two classes: binary or ternary.
Binary materials, primarily represented by Ge-, Sn-, Sb-, and Bi-
based oxides, chalcogenides, and phosphides are the most
investigated CAMs (Gu et al., 2013; Sottmann et al., 2016b; Li
et al., 2019; Li C. C. et al., 2020; Wu et al., 2020; Shi et al., 2021).
The oxides generally adopt a non-layered structure, while the
chalcogenides tend to form layered structures due to the
increased polarization of the electron cloud of the anions (Tan
et al., 2019). In addition to the conversion and alloying reaction,
the layered CAMs also include intercalation in the reaction
mechanism. The performance of binary CAMs have been
extensively reviewed elsewhere (Zhang H. et al., 2018; Fang
et al., 2021).

Compared to binary CAMs, ternary materials are significantly
less studied, however, several examples based on Bi- and Sb-based
oxometallates of transition metals (BiFeO3, Bi2(MoO4)3, BiVO4,
Sb2MoO6, SbVO4, Bi2MoO6) were reported (Durai et al., 2017;
Sottmann et al., 2017; Lu et al., 2019; Pan et al., 2019; Brennhagen
et al., 2022; Surendran et al., 2022). The choice of the second
cation (Fe, Mo, V, etc.) is driven by the ability of the element to
form a stable matrix without affecting gravimetric capacity. The
large number of transition metals introduces the possibility to
produce a variety of ternary CAMs.

The work reported by Sottmann et al., illustrates the benefits of
CAMs by comparing three Bi-based anodes: Bi-metal, BiVO4, and
Bi2(MoO4)3 (Sottmann et al., 2016a; Sottmann et al., 2017). Bi-
metal had a high initial capacity (~500 mAh g−1), rapidly
decaying after 100 cycles to ~300 mAh g−1. BiVO4 and
Bi2(MoO4)3 showed stable capacities of ~350 mAh g−1 during
the first 100 cycles. Sb2MoO6 exhibited stable capacities of ~
600 mAh g−1 for 100 cycles when cycled at 200 mA g−1, and
450 mAh g−1 for 450 cycles at 2 A g−1. It also showed great rate
capabilities maintaining the capacity of ~ 400 mAh g−1 cycled at

5 A g−1, without any signs of significant degradation (Lu et al.,
2019). However, recent studies on Sb2MoO6 have not been able to
reproduce such incredible performances (Yang et al., 2019; Wu
and Wang, 2020). Such discrepancies make the comparison
between active materials difficult, not only because of the
complexity of batteries in general, but also because of the
number of choices for selecting other components of the
electrodes. This can undermine materials’ development
because the materials themselves may have variations in
chemical composition and different morphological features,
surface chemistry, (nano)particle’s sizes, and surface coatings
that can substantially alter the electrochemical performance.
The testing procedures of the materials (potential window,
current density, temperature, etc.) are also different between
studies, complicating the comparison of “equal” materials
even more.

Nanostructuring techniques can generally improve the
performance of CAMs, often applied in combination with
carbon-based additives/coatings (Sottmann et al., 2016b;
Sottmann et al., 2017; Wen et al., 2019; Dai et al., 2020),
which is driven by the electrical conductivity. Many CAMs in
their pristine state do not have high electronic conductivity, nor
has the matrix formed through the conversion process. Creating
nanosized CAMs mitigates the consequences of the volume
change during the (de)sodiation processes and enhances their
activity towards the conversion and alloying reaction (Poizot
et al., 2000; Xu et al., 2016; Fang et al., 2019). This leads to a
considerable reduction of the diffusion distance of Na-ions in the
solid phase, which is beneficial for cycling stability and rate
capability (Fang et al., 2021).

THE (DE)SODIATION MECHANISM

The rational design of CAMs is practically impossible without
understanding the operating mechanism of CAMs. However,
CAMs typically undergo a set of complex structural and
chemical transformations during cycling (Fang et al., 2021).
That often involves transformation through or into
amorphous phases, which complicates the characterization of
the materials. The “standard set” of electrochemical
characterization techniques can aid in the overall
understanding of the conversion-alloying mechanism, but
other characterization techniques are also required. Due to
complexity of the operating mechanism (i.e., formation of new
phases, amorphization, etc.), post mortem and ex situ
characterization techniques do not reveal the full scope of the
reaction mechanisms. Additionally, air sensitivity and general
instability of the materials after sodiation or metastable
intermediates also represent a significant issue with ex situ
characterization (Gao et al., 2018). Techniques such as
operando X-ray diffraction (XRD), operando X-ray absorption
spectroscopy (XAS), and in situ transmission electron
microscopy (TEM) have emerged as suitable characterization
techniques providing information complementary to the post
mortem techniques. Worth mentioning that data-driven
guidance is also considered as powerful tool to acquire in-
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depth understanding of reaction processes and metastable
intermediates (Bai et al., 2018). Mechanistic insights into the
conversion-alloying reaction can be obtained by monitoring
changes in both crystalline and amorphous phases, oxidation
states of active elements, and local structure during (de)sodiation
combined with structural modeling (Shadike et al., 2018; Cui
et al., 2021a; Brennhagen et al., 2021).

For example, by applying operando XRD and in situ TEM it
has been shown that layered Sn-chalcogenides (SnS2 and SnSe2)
generally undergo through an intercalation step in addition to the
conversion and alloying reactions (Eqs 2–4, respectively) (Shi
et al., 2019; Liu et al., 2020; Zhang et al., 2020). In situ TEM have
also been used to study other binary CAMs, and examples include
Sb2Se3, Sb2S3, Sb2Te3/C Bi2Te3, SnO2, and Sb2Se3/rGO (Gu et al.,
2013; Ou et al., 2017; Yang et al., 2017; Yao et al., 2017; Wu et al.,
2020; Cui et al., 2021b).

SnXn + xNa+ → NaxSnXn (2)
NaxSnX2 + (4 − x)Na+ → Sn + 2Na2X (3)

Sn + 3.75Na+⇋Na3.75Sn (4)
Upon sodiation of SnXn (X = S, Se), the intercalation of Na-ions
1) occur in the voltage range of ~ 2.5–1.1 V vs. Na/Na+, followed
by the conversion reaction 2) in the range 1.1–0.6 V vs. Na/Na+,
and the 1st cycle is finalized by the alloying reaction 3) in the
0.6–0.1 V region vs. Na/Na+. Often, in situ TEM can be
complementary to operandoXRD, and vice versa (Ou et al., 2017).

Operando XRD (due to its availability) is the most common
characterization technique for assessment of the operation
mechanism of CAMs (Brennhagen et al., 2021). Operando
XRD has been used to elucidate the conversion and alloying
reactions for binary CAM anodes (e.g., SnS2, Bi2S3, Sb2S3 Sb2O3@
Sb, Sb2O3/rGO, Sb2S3@FeS2, and Sb2Se3/rGO) (Sottmann et al.,
2016b; Ou et al., 2017; Li et al., 2018; Ma et al., 2018; Shi et al.,
2019; Cao et al., 2020). In many cases, (ternary CAMs) the matrix
formed through the conversion is amorphous (Durai et al., 2017;
Lu et al., 2019; Pan et al., 2019; Brennhagen et al., 2022), which
calls for other characterization techniques to obtain an
understanding of the operation mechanism. Pair distribution
function (PDF) analysis is among such techniques allowing
elucidating amorphous phases formed during (de)sodiation.
However, to the best of our knowledge, no operando PDF has
been performed on CAMs, while bulk Sb and Sn metal (a pure
alloying anode) has been studied using operando PDF, showing
that these relatively simple alloying reactions also contains
amorphous intermediates (Allan et al., 2016; Stratford et al.,
2017). This also means that we have more to learn from the
alloying reactions in CAMs, even though the cycling mechanisms
might seem quite clear when only using operando XRD.

Another useful operando technique, which is used to monitor
specific elements in CAMs is operandoXAS, where X-ray energies
are scanned across the absorption edges of the target elements.
This technique has been utilized to gain information on changes
in oxidation states and local structures during cycling for Bi2O3,
Bi2S3, BiVO4, Bi2(MoO4)3, SnO2, and BiFeO3 (Kim et al., 2016;
Sottmann et al., 2016b; Sottmann et al., 2017; Dixon et al., 2019;
Surendran et al., 2022). In the case of Bi2S3, a measurement

combining operando XRD and XAS was used to reveal important
aspects of the cycling mechanism (Figure 2) (Sottmann et al.,
2016b). During the first sodiation, the irreversible conversion
reaction forms amorphous Bi (wide and diffuse peak, Figure 2A)
which further goes through a two-step alloying reaction into
crystalline NaBi and Na3Bi. A sharper peak for the Bi phase was
observed after the first desodiation, indicating higher degree of
crystallinity. The changes in the oxidation states of Bi are also
linked to the edge shift in the XANES data (Figure 2B), showing
that the oxidation state varies from Bi3+ in Bi2S3 to Bi

3- in Na3Bi.
The study further shows that the NaxSmatrix is not stable because
it cycles between Na2S4 and Na2S (Figure 2C). The conversion
reaction is partially reversible because some Bi2S3 is retrieved at
the end of the desodiation (Figure 2C), which is beneficial for
specific capacity, but not practical for cycling stability (the second
cycle demonstrates diminished formation of Bi2S3). Similar
instabilities in the matrixes of some ternary CAMs, such as
Bi2MoO6 and BiFeO3, were observed (Brennhagen et al., 2022;
Surendran et al., 2022). However, detailed studies on the behavior
of the matrixes linked to the electrochemical performance are
difficult to perform due to the complexity of the cycling
mechanisms and species formed. As a result, such studies are
limited and not always conclusive. This illustrates the importance
of analysis of the matrix materials when working and
designing CAMs.

DISCUSSION

There are clear indications that CAMs have significantly better
cycling stability than the pure conversion or alloying materials,
while still possessing higher capacities than intercalation
materials. Variety of chemical compositions makes it
possible to meet the desired compromise of high capacity,
good cycling stability, cost, and environmental friendliness.
There is a large playground for evaluation of alloying elements
with transitions metals to produce ternary CAMs. Until
present, only a few examples have been explored and there
are more to discover in the future. Although the main general
cycling mechanism is relatively well understood, the details of
the mechanisms have only recently begun to unravel. The
stability of the matrix is crucial to maintaining cycling stability
and therefore deserves more research efforts. Meanwhile, the
non-equilibrium phase of the nanoparticles formed through
conversion is also relevant for materials design because co-
existing phases (matrix) often exhibit and maintain extreme
non-stoichiometry (Yao et al., 2017). There have been high-
throughput search reports, along with the accelerated
discovery efforts of promising anodes. However, due to the
complicated electrochemical reaction with co-existing
metastable phases in CAMs, the most high-throughput
investigations of anodes have focused yet on single-phase
mode within the limited length scale (Ong et al., 2011;
Kirklin et al., 2013; Zhang X. et al., 2018; Zhang et al.,
2019). This complexity makes CAMs challenging to study
and develop. While CAM anodes emerge, it is critical to
understand and classify the metastability of intermediate
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compounds for elements in the active anode’s (de)sodiation
reactions to provide data-driven guidance.

One of the biggest challenges with CAMs in full cells is the
irreversible capacity loss during the first sodiation due to the
irreversible conversion reaction. This demands that the cathode
or electrolyte should supply more reaction Na-ions for the first
discharge and could lead to a significant amount of dead mass for
the subsequent cycles. This problem could be solved by
presodiation. Even though this complicates the battery
production, it could be viable due to the high capacity, good
cycling stability, and rate performance that CAMs could
potentially deliver. In addition, the design and optimization of
the active element/matrix combination can also assist in
mitigation of this complex challenge.

Estimation of the theoretical capacity of CAMs represents a
challenge and requires a detailed understanding of the cycling
mechanism, which involves multiple chemical and
electrochemical transformations. Calculation of the theoretical
capacity for CAMs is done by either assuming a fully reversible
conversion and alloying reactions or assuming that only the
alloying reaction contributes to the capacity. However, for
several materials described above partially reversible
conversion reactions and/or some electrochemical reactions in
the matrix are commonly encountered, which complicate the

estimation of theoretical capacities. Such uncertainty, before
determination of the operating mechanism makes it difficult to
assess which reactions should be included in the calculated
theoretical capacities. The 1-st cycle irreversible capacity (from
the irreversible conversion reaction) combined with the SEI
formation increases the gap between theoretical and measured
specific capacity. It can still be useful to compare the theoretical
capacity of certain stages of the reactions to the specific capacities
of the corresponding plateaus in the (de)sodiation curves to
improve the understanding of the reaction mechanisms.

Considering the abovementioned complication, it is very
important to provide all the necessary details of the study and do
comparative studies to get a clearer picture of the actual performance
of the material as was emphasized in a few recent publications (Li
J. et al., 2020; Stephan, 2021; Sun, 2021). The experimental
uncertainties add to the complexity of the problem for assessment
of the specific vs. theoretical capacities of CAMs. That includes proper
consideration of other components of the electrodes, potentially
uneven distribution of active material on the electrode sheet,
proper statistics of the results, and accurate measurement of the
mass of the active material. The latter can deliver an error of ≥ 10%
to the calculated specific capacity when performed at the laboratory
scale (Brennhagen et al., 2022). In addition, specific current densities
rather than C-rates should be preferably reported when working with

FIGURE 2 | A combined operando (A) XRD and (B) XAS measurement showing (C) the different phase fractions of the phases formed during the first two (de)
sodiation cycles of Bi2S3 in half cell vs. Na/Na+. Adapted with permission from the International Union of Crystallography (Sottmann et al., 2016b).
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these materials, as a determination of the C-rate requires an accurate
estimation of the theoretical capacity.

In conclusion, CAMs, while yet underexplored and poorly
understood deliver a large potential for the future of NIBs,
however, their challenges and operating mechanisms have to
be properly examined. That requires not only synthetic efforts,
but also careful consideration of the electrochemical
characterization techniques as well as development and
selection of the operando tools.
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